Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Leonardo number

From Wikipedia, the free encyclopedia
Set of numbers used in the smoothsort algorithm
icon
This articlerelies excessively onreferences toprimary sources. Please improve this article by addingsecondary or tertiary sources.
Find sources: "Leonardo number" – news ·newspapers ·books ·scholar ·JSTOR
(July 2017) (Learn how and when to remove this message)

TheLeonardo numbers are a sequence of numbers given by the recurrence:

L(n)={1if n=01if n=1L(n1)+L(n2)+1if n>1{\displaystyle L(n)={\begin{cases}1&{\mbox{if }}n=0\\1&{\mbox{if }}n=1\\L(n-1)+L(n-2)+1&{\mbox{if }}n>1\\\end{cases}}}

Edsger W. Dijkstra[1] used them as an integral part of hissmoothsortalgorithm,[2] and also analyzed them in some detail.[3][4]

ALeonardo prime is aLeonardo number that is alsoprime.

Name

[edit]

The term "Leonardo number" was coined by Dikjstra[5][nb 1], and the derivation is not given explicitly. Given the close relationship to the famous sequence credited toLeonardo Fibonacci, he may have considered the subject trivial. There is no known nor likely connection toLeonardo da Vinci, the most common subject of thatmononym.

Values

[edit]

The first few Leonardo numbers are

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753, 1219, 1973, 3193, 5167, 8361, ... (sequenceA001595 in theOEIS)

The first few Leonardo primes are

3,5,41,67,109, 1973, 5167, 2692537, 11405773, 126491971, 331160281, 535828591, 279167724889, 145446920496281, 28944668049352441, 5760134388741632239, 63880869269980199809, 167242286979696845953, 597222253637954133837103, ... (sequenceA145912 in theOEIS)

Modulo cycles

[edit]

The Leonardo numbers form a cycle in any modulon2{\displaystyle n\geq 2}. An easy way to see it is:

The cycles forn8{\displaystyle n\leq 8} are:

ModuloCycleLength
211
31,1,0,2,0,0,1,28
41,1,33
51,1,3,0,4,0,0,1,2,4,2,2,0,3,4,3,3,2,1,420
61,1,3,5,3,3,1,58
71,1,3,5,2,1,4,6,4,4,2,0,3,4,1,616
81,1,3,5,1,76

The cycle always end on the pair(1,n1){\displaystyle (1,n-1)}, as it is the only pair which can precede the pair(1,1){\displaystyle (1,1)}.

Expressions

[edit]
  • The following equation applies:
L(n)=2L(n1)L(n3){\displaystyle L(n)=2L(n-1)-L(n-3)}
Proof

L(n)=L(n1)+L(n2)+1=L(n1)+L(n2)+1+L(n3)L(n3)=2L(n1)L(n3){\displaystyle L(n)=L(n-1)+L(n-2)+1=L(n-1)+L(n-2)+1+L(n-3)-L(n-3)=2L(n-1)-L(n-3)}

Relation to Fibonacci numbers

[edit]

The Leonardo numbers are related to theFibonacci numbers by the relationL(n)=2F(n+1)1,n0{\displaystyle L(n)=2F(n+1)-1,n\geq 0}.

From this relation it is straightforward to derive aclosed-form expression for the Leonardo numbers, analogous to Binet's formula for the Fibonacci numbers:

L(n)=2φn+1ψn+1φψ1=25(φn+1ψn+1)1=2F(n+1)1{\displaystyle L(n)=2{\frac {\varphi ^{n+1}-\psi ^{n+1}}{\varphi -\psi }}-1={\frac {2}{\sqrt {5}}}\left(\varphi ^{n+1}-\psi ^{n+1}\right)-1=2F(n+1)-1}

where thegolden ratioφ=(1+5)/2{\displaystyle \varphi =\left(1+{\sqrt {5}}\right)/2} andψ=(15)/2{\displaystyle \psi =\left(1-{\sqrt {5}}\right)/2} are the roots of thequadratic polynomialx2x1=0{\displaystyle x^{2}-x-1=0}.

Leonardo polynomials

[edit]

The Leonardo polynomialsLn(x){\displaystyle L_{n}(x)} is defined by[6]

Ln+2(x)=xLn+1(x)+Ln(x)+x{\displaystyle L_{n+2}(x)=xL_{n+1}(x)+L_{n}(x)+x} withL0(x)=1,L1(x)=2x1.{\displaystyle L_{0}(x)=1,L_{1}(x)=2x-1.}

Equivalently, in homogeneous form, the Leonardo polynomials can be writtenas

Ln+3(x)=(x+1)Ln+2(x)(x1)Ln+1(x)Ln(x):{\displaystyle L_{n+3}(x)=(x+1)L_{n+2}(x)-(x-1)L_{n+1}(x)-L_{n}(x):}

whereL0(x)=1,L1(x)=2x1{\displaystyle L_{0}(x)=1,L_{1}(x)=2x-1} andL2(x)=2x2+1.{\displaystyle L_{2}(x)=2x^{2}+1.}

Examples of Leonardo polynomials

[edit]
L0(x)=1{\displaystyle L_{0}(x)=1\,}
L1(x)=2x1{\displaystyle L_{1}(x)=2x-1\,}
L2(x)=2x2+1{\displaystyle L_{2}(x)=2x^{2}+1\,}
L3(x)=2x3+4x1{\displaystyle L_{3}(x)=2x^{3}+4x-1\,}
L4(x)=2x4+6x2+1{\displaystyle L_{4}(x)=2x^{4}+6x^{2}+1\,}
L5(x)=2x5+8x3+6x1{\displaystyle L_{5}(x)=2x^{5}+8x^{3}+6x-1\,}
L6(x)=2x6+10x4+12x2+1{\displaystyle L_{6}(x)=2x^{6}+10x^{4}+12x^{2}+1\,}
L7(x)=2x7+12x5+20x3+8x1{\displaystyle L_{7}(x)=2x^{7}+12x^{5}+20x^{3}+8x-1\,}
L8(x)=2x8+14x6+30x4+20x2+1{\displaystyle L_{8}(x)=2x^{8}+14x^{6}+30x^{4}+20x^{2}+1\,}
L9(x)=2x9+16x7+42x5+40x3+10x1{\displaystyle L_{9}(x)=2x^{9}+16x^{7}+42x^{5}+40x^{3}+10x-1\,}
L10(x)=2x10+18x8+56x6+70x4+30x2+1{\displaystyle L_{10}(x)=2x^{10}+18x^{8}+56x^{6}+70x^{4}+30x^{2}+1\,}
L11(x)=2x11+20x9+72x7+112x5+70x3+12x1{\displaystyle L_{11}(x)=2x^{11}+20x^{9}+72x^{7}+112x^{5}+70x^{3}+12x-1\,}

Substitutingx=1{\displaystyle x=1} in the above polynomials gives the Leonardo numbers and settingx=k{\displaystyle x=k} gives thek{\displaystyle k}-Leonardo numbers.[7]

Notes

[edit]
  1. ^TheOEIS lists Dijkstra's paper as the first reference to the sequence. (sequenceA145912 in theOEIS)

References

[edit]
  1. ^"E.W.Dijkstra Archive: Fibonacci numbers and Leonardo numbers. (EWD 797)".www.cs.utexas.edu. Retrieved2020-08-11.
  2. ^Dijkstra, Edsger W.Smoothsort – an alternative to sorting in situ (EWD-796a)(PDF). E.W. Dijkstra Archive. Center for American History,University of Texas at Austin. (transcription)
  3. ^"E.W.Dijkstra Archive: Smoothsort, an alternative for sorting in situ (EWD 796a)".www.cs.utexas.edu. Retrieved2020-08-11.
  4. ^"Leonardo Number - GeeksforGeeks".www.geeksforgeeks.org. 18 October 2017. Retrieved2022-10-08.
  5. ^"E.W.Dijkstra Archive: Fibonacci numbers and Leonardo numbers. (EWD 797)".www.cs.utexas.edu. Retrieved2020-08-11.
  6. ^Kalika Prasad, Munesh Kumari (2024): The Leonardo polynomials and their algebraic properties.Proc. Indian Natl. Sci. Acad.https://doi.org/10.1007/s43538-024-00348-0
  7. ^Kalika Prasad, Munesh Kumari (2025): The generalized k-Leonardo numbers: a non-homogeneous generalization of the Fibonacci numbers,Palestine Journal of Mathematics, 14.

Cited

[edit]

1. P. Catarino, A. Borges (2019): On Leonardo numbers. Acta Mathematica Universitatis Comenianae, 89(1), 75-86. Retrieved fromhttp://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1005/799

2. K. Prasad, R. Mohanty, M. Kumari, H. Mahato (2024): Some new families of generalized k-Leonardo and Gaussian Leonardo Numbers,Communications in Combinatorics and Optimization, 9 (3), 539-553.https://comb-opt.azaruniv.ac.ir/article_14544_6844cc9ba641d31cafe5358297bc0096.pdf

3. M. Kumari, K. Prasad, H. Mahato, P. Catarino (2024): On the generalized Leonardo quaternions and associated spinors,Kragujevac Journal of Mathematics 50 (3), 425-438.https://imi.pmf.kg.ac.rs/kjm/pub/kjom503/kjm_50_3-6.pdf

4. K. Prasad, H. Mahato, M. Kumari, R. Mohanty: On the generalized Leonardo Pisano octonions,National Academy Science Letters 47, 579–585.https://link.springer.com/article/10.1007/s40009-023-01291-2

5. Y. Soykan (2023): Special cases of generalized Leonardo numbers: Modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo Numbers,Earthline Journal of Mathematical Sciences.https://www.preprints.org/frontend/manuscript/a700d41e884b69f92bc8eb6cf7ff1979/download_pub

6. Y. Soykan (2021): Generalized Leonardo numbers,Journal of Progressive Research in Mathematics.https://core.ac.uk/download/pdf/483697189.pdf

7. E. Tan, HH Leung (2023): ON LEONARDO p-NUMBERS,Journal of Combinatorial Number Theory.https://math.colgate.edu/~integers/x7/x7.pdf

External links

[edit]
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Leonardo_number&oldid=1337237809"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp