Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lemniscate elliptic functions

From Wikipedia, the free encyclopedia
(Redirected fromLemniscatic elliptic functions)
Mathematical functions
The lemniscate sine (red) and lemniscate cosine (purple) applied to a real argument, in comparison with the trigonometric siney = sin(πx/ϖ) (pale dashed red).

Inmathematics, thelemniscate elliptic functions areelliptic functions related to the arc length of thelemniscate of Bernoulli. They were first studied byGiulio Fagnano in 1718 and later byLeonhard Euler andCarl Friedrich Gauss, among others.[1]

Thelemniscate sine andlemniscate cosine functions, usually written with the symbolssl andcl (sometimes the symbolssinlem andcoslem orsin lemn andcos lemn are used instead),[2] are analogous to thetrigonometric functions sine and cosine. While the trigonometric sine relates the arc length to the chord length in a unit-diametercirclex2+y2=x,{\displaystyle x^{2}+y^{2}=x,}[3] the lemniscate sine relates the arc length to the chord length of a lemniscate(x2+y2)2=x2y2.{\displaystyle {\bigl (}x^{2}+y^{2}{\bigr )}{}^{2}=x^{2}-y^{2}.}

The lemniscate functions have periods related to a numberϖ={\displaystyle \varpi =} 2.622057... called thelemniscate constant, the ratio of a lemniscate's perimeter to its diameter. This number is aquartic analog of the (quadratic)π={\displaystyle \pi =} 3.141592...,ratio of perimeter to diameter of a circle.

Ascomplex functions,sl andcl have asquareperiod lattice (a multiple of theGaussian integers) withfundamental periods{(1+i)ϖ,(1i)ϖ},{\displaystyle \{(1+i)\varpi ,(1-i)\varpi \},}[4] and are a special case of twoJacobi elliptic functions on that lattice,slz=sn(z;1),{\displaystyle \operatorname {sl} z=\operatorname {sn} (z;-1),}clz=cd(z;1){\displaystyle \operatorname {cl} z=\operatorname {cd} (z;-1)}.

Similarly, thehyperbolic lemniscate sineslh andhyperbolic lemniscate cosineclh have a square period lattice with fundamental periods{2ϖ,2ϖi}.{\displaystyle {\bigl \{}{\sqrt {2}}\varpi ,{\sqrt {2}}\varpi i{\bigr \}}.}

The lemniscate functions and the hyperbolic lemniscate functions arerelated to theWeierstrass elliptic function(z;a,0){\displaystyle \wp (z;a,0)}.

Lemniscate sine and cosine functions

[edit]

Definitions

[edit]

The lemniscate functionssl andcl can be defined as the solution to theinitial value problem:[5]

ddzslz=(1+sl2z)clz, ddzclz=(1+cl2z)slz, sl0=0, cl0=1,{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {sl} z={\bigl (}1+\operatorname {sl} ^{2}z{\bigr )}\operatorname {cl} z,\ {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {cl} z=-{\bigl (}1+\operatorname {cl} ^{2}z{\bigr )}\operatorname {sl} z,\ \operatorname {sl} 0=0,\ \operatorname {cl} 0=1,}

or equivalently as theinverses of anelliptic integral, theSchwarz–Christoffel map from the complexunit disk to a square with corners{12ϖ,12ϖi,12ϖ,12ϖi}:{\displaystyle {\big \{}{\tfrac {1}{2}}\varpi ,{\tfrac {1}{2}}\varpi i,-{\tfrac {1}{2}}\varpi ,-{\tfrac {1}{2}}\varpi i{\big \}}\colon }[6]

z=0slzdt1t4=clz1dt1t4.{\displaystyle z=\int _{0}^{\operatorname {sl} z}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}=\int _{\operatorname {cl} z}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}.}

Beyond that square, the functions can be extended to thecomplex plane viaanalytic continuation by successivereflections.

By comparison, the circular sine and cosine can be defined as the solution to the initial value problem:

ddzsinz=cosz, ddzcosz=sinz, sin0=0, cos0=1,{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\sin z=\cos z,\ {\frac {\mathrm {d} }{\mathrm {d} z}}\cos z=-\sin z,\ \sin 0=0,\ \cos 0=1,}

or as inverses of a map from theupper half-plane to a half-infinite strip with real part between12π,12π{\displaystyle -{\tfrac {1}{2}}\pi ,{\tfrac {1}{2}}\pi } and positive imaginary part:

z=0sinzdt1t2=cosz1dt1t2.{\displaystyle z=\int _{0}^{\sin z}{\frac {\mathrm {d} t}{\sqrt {1-t^{2}}}}=\int _{\cos z}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{2}}}}.}

Relation to the lemniscate constant

[edit]
Main article:Lemniscate constant
The lemniscate sine function and hyperbolic lemniscate sine functions are defined as inverses of elliptic integrals. The complete integrals are related to the lemniscate constantϖ.

The lemniscate functions have minimal real period2ϖ{\displaystyle 2\varpi }, minimalimaginary period2ϖi{\displaystyle 2\varpi i} and fundamental complex periods(1+i)ϖ{\displaystyle (1+i)\varpi } and(1i)ϖ{\displaystyle (1-i)\varpi } for a constantϖ{\displaystyle \varpi } called thelemniscate constant,[7]

ϖ=201dt1t4=2.62205{\displaystyle \varpi =2\int _{0}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}=2.62205\ldots }

The lemniscate functions satisfy the basic relationclz=sl(12ϖz),{\displaystyle \operatorname {cl} z={\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\varpi -z{\bigr )},} analogous to the relationcosz=sin(12πz).{\displaystyle \cos z={\sin }{\bigl (}{\tfrac {1}{2}}\pi -z{\bigr )}.}

The lemniscate constantϖ{\displaystyle \varpi } is a close analog of thecircle constantπ{\displaystyle \pi }, and many identities involvingπ{\displaystyle \pi } have analogues involvingϖ{\displaystyle \varpi }, as identities involving thetrigonometric functions have analogues involving the lemniscate functions. For example,Viète's formula forπ{\displaystyle \pi } can be written:

2π=1212+121212+1212+1212{\displaystyle {\frac {2}{\pi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}}}\cdots }

An analogous formula forϖ{\displaystyle \varpi } is:[8]

2ϖ=1212+12/1212+12/12+12/12{\displaystyle {\frac {2}{\varpi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\Bigg /}\!{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}}}\cdots }

TheMachin formula forπ{\displaystyle \pi } is14π=4arctan15arctan1239,{\textstyle {\tfrac {1}{4}}\pi =4\arctan {\tfrac {1}{5}}-\arctan {\tfrac {1}{239}},} and several similar formulas forπ{\displaystyle \pi } can be developed using trigonometric angle sum identities, e.g. Euler's formula14π=arctan12+arctan13{\textstyle {\tfrac {1}{4}}\pi =\arctan {\tfrac {1}{2}}+\arctan {\tfrac {1}{3}}}. Analogous formulas can be developed forϖ{\displaystyle \varpi }, including the following found by Gauss:12ϖ=2arcsl12+arcsl723.{\displaystyle {\tfrac {1}{2}}\varpi =2\operatorname {arcsl} {\tfrac {1}{2}}+\operatorname {arcsl} {\tfrac {7}{23}}.}[9]

The lemniscate and circle constants were found by Gauss to be related to each-other by thearithmetic-geometric meanM{\displaystyle M}:[10]

πϖ=M(1,2 ){\displaystyle {\frac {\pi }{\varpi }}=M{\left(1,{\sqrt {2}}\!~\right)}}

Argument identities

[edit]

Zeros, poles and symmetries

[edit]
sl{\displaystyle \operatorname {sl} } in the complex plane.[11] In the picture, it can be seen that the fundamental periods(1+i)ϖ{\displaystyle (1+i)\varpi } and(1i)ϖ{\displaystyle (1-i)\varpi } are "minimal" in the sense that they have the smallest absolute value of all periods whose real part is non-negative.

The lemniscate functionscl andsl areeven and odd functions, respectively,

cl(z)=clzsl(z)=slz{\displaystyle {\begin{aligned}\operatorname {cl} (-z)&=\operatorname {cl} z\\[6mu]\operatorname {sl} (-z)&=-\operatorname {sl} z\end{aligned}}}

At translations of12ϖ,{\displaystyle {\tfrac {1}{2}}\varpi ,}cl andsl are exchanged, and at translations of12iϖ{\displaystyle {\tfrac {1}{2}}i\varpi } they are additionally rotated andreciprocated:[12]

cl(z±12ϖ)=slz,cl(z±12iϖ)=islzsl(z±12ϖ)=±clz,sl(z±12iϖ)=±iclz{\displaystyle {\begin{aligned}{\operatorname {cl} }{\bigl (}z\pm {\tfrac {1}{2}}\varpi {\bigr )}&=\mp \operatorname {sl} z,&{\operatorname {cl} }{\bigl (}z\pm {\tfrac {1}{2}}i\varpi {\bigr )}&={\frac {\mp i}{\operatorname {sl} z}}\\[6mu]{\operatorname {sl} }{\bigl (}z\pm {\tfrac {1}{2}}\varpi {\bigr )}&=\pm \operatorname {cl} z,&{\operatorname {sl} }{\bigl (}z\pm {\tfrac {1}{2}}i\varpi {\bigr )}&={\frac {\pm i}{\operatorname {cl} z}}\end{aligned}}}

Doubling these to translations by aunit-Gaussian-integer multiple ofϖ{\displaystyle \varpi } (that is,±ϖ{\displaystyle \pm \varpi } or±iϖ{\displaystyle \pm i\varpi }), negates each function, aninvolution:

cl(z+ϖ)=cl(z+iϖ)=clzsl(z+ϖ)=sl(z+iϖ)=slz{\displaystyle {\begin{aligned}\operatorname {cl} (z+\varpi )&=\operatorname {cl} (z+i\varpi )=-\operatorname {cl} z\\[4mu]\operatorname {sl} (z+\varpi )&=\operatorname {sl} (z+i\varpi )=-\operatorname {sl} z\end{aligned}}}

As a result, both functions are invariant under translation by aneven-Gaussian-integer multiple ofϖ{\displaystyle \varpi }.[13] That is, a displacement(a+bi)ϖ,{\displaystyle (a+bi)\varpi ,} witha+b=2k{\displaystyle a+b=2k} for integersa{\displaystyle a},b{\displaystyle b}, andk{\displaystyle k}.

cl(z+(1+i)ϖ)=cl(z+(1i)ϖ)=clzsl(z+(1+i)ϖ)=sl(z+(1i)ϖ)=slz{\displaystyle {\begin{aligned}{\operatorname {cl} }{\bigl (}z+(1+i)\varpi {\bigr )}&={\operatorname {cl} }{\bigl (}z+(1-i)\varpi {\bigr )}=\operatorname {cl} z\\[4mu]{\operatorname {sl} }{\bigl (}z+(1+i)\varpi {\bigr )}&={\operatorname {sl} }{\bigl (}z+(1-i)\varpi {\bigr )}=\operatorname {sl} z\end{aligned}}}

This makes themelliptic functions (doubly periodicmeromorphic functions in the complex plane) with adiagonal squareperiod lattice of fundamental periods(1+i)ϖ{\displaystyle (1+i)\varpi } and(1i)ϖ{\displaystyle (1-i)\varpi }.[14] Elliptic functions with a square period lattice are more symmetrical than arbitrary elliptic functions, following the symmetries of the square.

Reflections and quarter-turn rotations of lemniscate function arguments have simple expressions:

clz¯=clz¯slz¯=slz¯cliz=1clzsliz=islz{\displaystyle {\begin{aligned}\operatorname {cl} {\bar {z}}&={\overline {\operatorname {cl} z}}\\[6mu]\operatorname {sl} {\bar {z}}&={\overline {\operatorname {sl} z}}\\[4mu]\operatorname {cl} iz&={\frac {1}{\operatorname {cl} z}}\\[6mu]\operatorname {sl} iz&=i\operatorname {sl} z\end{aligned}}}

Thesl function has simplezeros at Gaussian integer multiples ofϖ{\displaystyle \varpi }, complex numbers of the formaϖ+bϖi{\displaystyle a\varpi +b\varpi i} for integersa{\displaystyle a} andb{\displaystyle b}. It has simplepoles at Gaussianhalf-integer multiples ofϖ{\displaystyle \varpi }, complex numbers of the form(a+12)ϖ+(b+12)ϖi{\displaystyle {\bigl (}a+{\tfrac {1}{2}}{\bigr )}\varpi +{\bigl (}b+{\tfrac {1}{2}}{\bigr )}\varpi i}, withresidues(1)ab+1i{\displaystyle (-1)^{a-b+1}i}. Thecl function is reflected and offset from thesl function,clz=sl(12ϖz){\displaystyle \operatorname {cl} z={\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\varpi -z{\bigr )}}. It has zeros for arguments(a+12)ϖ+bϖi{\displaystyle {\bigl (}a+{\tfrac {1}{2}}{\bigr )}\varpi +b\varpi i} and poles for argumentsaϖ+(b+12)ϖi,{\displaystyle a\varpi +{\bigl (}b+{\tfrac {1}{2}}{\bigr )}\varpi i,} with residues(1)abi.{\displaystyle (-1)^{a-b}i.}

Also

slz=slwz=(1)m+nw+(m+ni)ϖ{\displaystyle \operatorname {sl} z=\operatorname {sl} w\leftrightarrow z=(-1)^{m+n}w+(m+ni)\varpi }

for somem,nZ{\displaystyle m,n\in \mathbb {Z} } and

sl((1±i)z)=(1±i)slzslz.{\displaystyle \operatorname {sl} ((1\pm i)z)=(1\pm i){\frac {\operatorname {sl} z}{\operatorname {sl} 'z}}.}

The last formula is a special case ofcomplex multiplication. Analogous formulas can be given forsl((n+mi)z){\displaystyle \operatorname {sl} ((n+mi)z)} wheren+mi{\displaystyle n+mi} is any Gaussian integer – the functionsl{\displaystyle \operatorname {sl} } has complex multiplication byZ[i]{\displaystyle \mathbb {Z} [i]}.[15]

There are also infinite series reflecting the distribution of the zeros and poles ofsl:[16][17]

1slz=(n,k)Z2(1)n+kz+nϖ+kϖi{\displaystyle {\frac {1}{\operatorname {sl} z}}=\sum _{(n,k)\in \mathbb {Z} ^{2}}{\frac {(-1)^{n+k}}{z+n\varpi +k\varpi i}}}
slz=i(n,k)Z2(1)n+kz+(n+1/2)ϖ+(k+1/2)ϖi.{\displaystyle \operatorname {sl} z=-i\sum _{(n,k)\in \mathbb {Z} ^{2}}{\frac {(-1)^{n+k}}{z+(n+1/2)\varpi +(k+1/2)\varpi i}}.}

Pythagorean-like identity

[edit]
Curvesx² ⊕y² =a for various values ofa. Negativea in green, positivea in blue,a = ±1 in red,a = ∞ in black.

The lemniscate functions satisfy aPythagorean-like identity:

cl2z+sl2z+cl2zsl2z=1{\displaystyle \operatorname {cl^{2}} z+\operatorname {sl^{2}} z+\operatorname {cl^{2}} z\,\operatorname {sl^{2}} z=1}

As a result, the parametric equation(x,y)=(clt,slt){\displaystyle (x,y)=(\operatorname {cl} t,\operatorname {sl} t)} parametrizes thequartic curvex2+y2+x2y2=1.{\displaystyle x^{2}+y^{2}+x^{2}y^{2}=1.}

This identity can alternately be rewritten:[18]

(1+cl2z)(1+sl2z)=2{\displaystyle {\bigl (}1+\operatorname {cl^{2}} z{\bigr )}{\bigl (}1+\operatorname {sl^{2}} z{\bigr )}=2}
cl2z=1sl2z1+sl2z,sl2z=1cl2z1+cl2z{\displaystyle \operatorname {cl^{2}} z={\frac {1-\operatorname {sl^{2}} z}{1+\operatorname {sl^{2}} z}},\quad \operatorname {sl^{2}} z={\frac {1-\operatorname {cl^{2}} z}{1+\operatorname {cl^{2}} z}}}

Defining atangent-sum operator asab:=tan(arctana+arctanb)=a+b1ab,{\displaystyle a\oplus b\mathrel {:=} \tan(\arctan a+\arctan b)={\frac {a+b}{1-ab}},} gives:

cl2zsl2z=1.{\displaystyle \operatorname {cl^{2}} z\oplus \operatorname {sl^{2}} z=1.}

Derivatives and integrals

[edit]

The derivatives are as follows:

ddzclz=clz=(1+cl2z)slz=2slzsl2z+1cl2z=1cl4zddzslz=slz=(1+sl2z)clz=2clzcl2z+1sl2z=1sl4z{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {cl} z=\operatorname {cl'} z&=-{\bigl (}1+\operatorname {cl^{2}} z{\bigr )}\operatorname {sl} z=-{\frac {2\operatorname {sl} z}{\operatorname {sl} ^{2}z+1}}\\\operatorname {cl'^{2}} z&=1-\operatorname {cl^{4}} z\\[5mu]{\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {sl} z=\operatorname {sl'} z&={\bigl (}1+\operatorname {sl^{2}} z{\bigr )}\operatorname {cl} z={\frac {2\operatorname {cl} z}{\operatorname {cl} ^{2}z+1}}\\\operatorname {sl'^{2}} z&=1-\operatorname {sl^{4}} z\end{aligned}}}
ddzcl~z=2sl~zclzsl~zclzddzsl~z=2cl~zclzcl~zclz{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} z}}\,{\tilde {\operatorname {cl} }}\,z&=-2\,{\tilde {\operatorname {sl} }}\,z\,\operatorname {cl} z-{\frac {{\tilde {\operatorname {sl} }}\,z}{\operatorname {cl} z}}\\{\frac {\mathrm {d} }{\mathrm {d} z}}\,{\tilde {\operatorname {sl} }}\,z&=2\,{\tilde {\operatorname {cl} }}\,z\,\operatorname {cl} z-{\frac {{\tilde {\operatorname {cl} }}\,z}{\operatorname {cl} z}}\end{aligned}}}

The second derivatives of lemniscate sine and lemniscate cosine are their negative duplicated cubes:

d2dz2clz=2cl3z{\displaystyle {\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\operatorname {cl} z=-2\operatorname {cl^{3}} z}
d2dz2slz=2sl3z{\displaystyle {\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\operatorname {sl} z=-2\operatorname {sl^{3}} z}

The lemniscate functions can be integrated using the inverse tangent function:

clzdz=arctanslz+Cslzdz=arctanclz+Ccl~zdz=sl~zclz+Csl~zdz=cl~zclz+C{\displaystyle {\begin{aligned}\int \operatorname {cl} z\mathop {\mathrm {d} z} &=\arctan \operatorname {sl} z+C\\\int \operatorname {sl} z\mathop {\mathrm {d} z} &=-\arctan \operatorname {cl} z+C\\\int {\tilde {\operatorname {cl} }}\,z\,\mathrm {d} z&={\frac {{\tilde {\operatorname {sl} }}\,z}{\operatorname {cl} z}}+C\\\int {\tilde {\operatorname {sl} }}\,z\,\mathrm {d} z&=-{\frac {{\tilde {\operatorname {cl} }}\,z}{\operatorname {cl} z}}+C\end{aligned}}}

Argument sum and multiple identities

[edit]

Like the trigonometric functions, the lemniscate functions satisfy argument sum and difference identities. The original identity used by Fagnano for bisection of the lemniscate was:[19]

sl(u+v)=sluslv+slvslu1+sl2usl2v{\displaystyle \operatorname {sl} (u+v)={\frac {\operatorname {sl} u\,\operatorname {sl'} v+\operatorname {sl} v\,\operatorname {sl'} u}{1+\operatorname {sl^{2}} u\,\operatorname {sl^{2}} v}}}

The derivative and Pythagorean-like identities can be used to rework the identity used by Fagano in terms ofsl andcl. Defining atangent-sum operatorab:=tan(arctana+arctanb){\displaystyle a\oplus b\mathrel {:=} \tan(\arctan a+\arctan b)} and tangent-difference operatorab:=a(b),{\displaystyle a\ominus b\mathrel {:=} a\oplus (-b),} the argument sum and difference identities can be expressed as:[20]

cl(u+v)=cluclvsluslv=cluclvsluslv1+slucluslvclvcl(uv)=cluclvsluslvsl(u+v)=sluclvcluslv=sluclv+cluslv1slucluslvclvsl(uv)=sluclvcluslv{\displaystyle {\begin{aligned}\operatorname {cl} (u+v)&=\operatorname {cl} u\,\operatorname {cl} v\ominus \operatorname {sl} u\,\operatorname {sl} v={\frac {\operatorname {cl} u\,\operatorname {cl} v-\operatorname {sl} u\,\operatorname {sl} v}{1+\operatorname {sl} u\,\operatorname {cl} u\,\operatorname {sl} v\,\operatorname {cl} v}}\\[2mu]\operatorname {cl} (u-v)&=\operatorname {cl} u\,\operatorname {cl} v\oplus \operatorname {sl} u\,\operatorname {sl} v\\[2mu]\operatorname {sl} (u+v)&=\operatorname {sl} u\,\operatorname {cl} v\oplus \operatorname {cl} u\,\operatorname {sl} v={\frac {\operatorname {sl} u\,\operatorname {cl} v+\operatorname {cl} u\,\operatorname {sl} v}{1-\operatorname {sl} u\,\operatorname {cl} u\,\operatorname {sl} v\,\operatorname {cl} v}}\\[2mu]\operatorname {sl} (u-v)&=\operatorname {sl} u\,\operatorname {cl} v\ominus \operatorname {cl} u\,\operatorname {sl} v\end{aligned}}}

These resemble theirtrigonometric analogs:

cos(u±v)=cosucosvsinusinvsin(u±v)=sinucosv±cosusinv{\displaystyle {\begin{aligned}\cos(u\pm v)&=\cos u\,\cos v\mp \sin u\,\sin v\\[6mu]\sin(u\pm v)&=\sin u\,\cos v\pm \cos u\,\sin v\end{aligned}}}

In particular, to compute the complex-valued functions in real components,

cl(x+iy)=clxislxslyclycly+islxclxsly=clxcly(1sl2xsl2y)cl2y+sl2xcl2xsl2yislxsly(cl2x+cl2y)cl2y+sl2xcl2xsl2ysl(x+iy)=slx+iclxslyclyclyislxclxsly=slxcly(1cl2xsl2y)cl2y+sl2xcl2xsl2y+iclxsly(sl2x+cl2y)cl2y+sl2xcl2xsl2y{\displaystyle {\begin{aligned}\operatorname {cl} (x+iy)&={\frac {\operatorname {cl} x-i\operatorname {sl} x\,\operatorname {sl} y\,\operatorname {cl} y}{\operatorname {cl} y+i\operatorname {sl} x\,\operatorname {cl} x\,\operatorname {sl} y}}\\[4mu]&={\frac {\operatorname {cl} x\,\operatorname {cl} y\left(1-\operatorname {sl} ^{2}x\,\operatorname {sl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}-i{\frac {\operatorname {sl} x\,\operatorname {sl} y\left(\operatorname {cl} ^{2}x+\operatorname {cl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}\\[12mu]\operatorname {sl} (x+iy)&={\frac {\operatorname {sl} x+i\operatorname {cl} x\,\operatorname {sl} y\,\operatorname {cl} y}{\operatorname {cl} y-i\operatorname {sl} x\,\operatorname {cl} x\,\operatorname {sl} y}}\\[4mu]&={\frac {\operatorname {sl} x\,\operatorname {cl} y\left(1-\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}+i{\frac {\operatorname {cl} x\,\operatorname {sl} y\left(\operatorname {sl} ^{2}x+\operatorname {cl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}\end{aligned}}}

Gauss discovered that

sl(uv)sl(u+v)=sl((1+i)u)sl((1+i)v)sl((1+i)u)+sl((1+i)v){\displaystyle {\frac {\operatorname {sl} (u-v)}{\operatorname {sl} (u+v)}}={\frac {\operatorname {sl} ((1+i)u)-\operatorname {sl} ((1+i)v)}{\operatorname {sl} ((1+i)u)+\operatorname {sl} ((1+i)v)}}}

whereu,vC{\displaystyle u,v\in \mathbb {C} } such that both sides are well-defined.

Also

sl(u+v)sl(uv)=sl2usl2v1+sl2usl2v{\displaystyle \operatorname {sl} (u+v)\operatorname {sl} (u-v)={\frac {\operatorname {sl} ^{2}u-\operatorname {sl} ^{2}v}{1+\operatorname {sl} ^{2}u\operatorname {sl} ^{2}v}}}

whereu,vC{\displaystyle u,v\in \mathbb {C} } such that both sides are well-defined; this resembles the trigonometric analog

sin(u+v)sin(uv)=sin2usin2v.{\displaystyle \sin(u+v)\sin(u-v)=\sin ^{2}u-\sin ^{2}v.}

Bisection formulas:

cl212x=1+clx1+sl2x1+1+sl2x{\displaystyle \operatorname {cl} ^{2}{\tfrac {1}{2}}x={\frac {1+\operatorname {cl} x{\sqrt {1+\operatorname {sl} ^{2}x}}}{1+{\sqrt {1+\operatorname {sl} ^{2}x}}}}}
sl212x=1clx1+sl2x1+1+sl2x{\displaystyle \operatorname {sl} ^{2}{\tfrac {1}{2}}x={\frac {1-\operatorname {cl} x{\sqrt {1+\operatorname {sl} ^{2}x}}}{1+{\sqrt {1+\operatorname {sl} ^{2}x}}}}}

Duplication formulas:[21]

cl2x=1+2cl2x+cl4x1+2cl2xcl4x{\displaystyle \operatorname {cl} 2x={\frac {-1+2\,\operatorname {cl} ^{2}x+\operatorname {cl} ^{4}x}{1+2\,\operatorname {cl} ^{2}x-\operatorname {cl} ^{4}x}}}
sl2x=2slxclx1+sl2x1+sl4x{\displaystyle \operatorname {sl} 2x=2\,\operatorname {sl} x\,\operatorname {cl} x{\frac {1+\operatorname {sl} ^{2}x}{1+\operatorname {sl} ^{4}x}}}

Triplication formulas:[21]

cl3x=3clx+6cl5x+cl9x1+6cl4x3cl8x{\displaystyle \operatorname {cl} 3x={\frac {-3\,\operatorname {cl} x+6\,\operatorname {cl} ^{5}x+\operatorname {cl} ^{9}x}{1+6\,\operatorname {cl} ^{4}x-3\,\operatorname {cl} ^{8}x}}}
sl3x=3slx6sl5x1sl9x1+6sl4x3sl8x{\displaystyle \operatorname {sl} 3x={\frac {\color {red}{3}\,\color {black}{\operatorname {sl} x-\,}\color {green}{6}\,\color {black}{\operatorname {sl} ^{5}x-\,}\color {blue}{1}\,\color {black}{\operatorname {sl} ^{9}x}}{\color {blue}{1}\,\color {black}{+\,}\,\color {green}{6}\,\color {black}{\operatorname {sl} ^{4}x-\,}\color {red}{3}\,\color {black}{\operatorname {sl} ^{8}x}}}}

Note the "reverse symmetry" of the coefficients of numerator and denominator ofsl3x{\displaystyle \operatorname {sl} 3x}. This phenomenon can be observed in multiplication formulas forslβx{\displaystyle \operatorname {sl} \beta x} whereβ=m+ni{\displaystyle \beta =m+ni} wheneverm,nZ{\displaystyle m,n\in \mathbb {Z} } andm+n{\displaystyle m+n} is odd.[15]

Lemnatomic polynomials

[edit]

LetL{\displaystyle L} be thelattice

L=Z(1+i)ϖ+Z(1i)ϖ.{\displaystyle L=\mathbb {Z} (1+i)\varpi +\mathbb {Z} (1-i)\varpi .}

Furthermore, letK=Q(i){\displaystyle K=\mathbb {Q} (i)},O=Z[i]{\displaystyle {\mathcal {O}}=\mathbb {Z} [i]},zC{\displaystyle z\in \mathbb {C} },β=m+in{\displaystyle \beta =m+in},γ=m+in{\displaystyle \gamma =m'+in'} (wherem,n,m,nZ{\displaystyle m,n,m',n'\in \mathbb {Z} }),m+n{\displaystyle m+n} be odd,m+n{\displaystyle m'+n'} be odd,γ1mod2(1+i){\displaystyle \gamma \equiv 1\,\operatorname {mod} \,2(1+i)} andslβz=Mβ(slz){\displaystyle \operatorname {sl} \beta z=M_{\beta }(\operatorname {sl} z)}. Then

Mβ(x)=iεxPβ(x4)Qβ(x4){\displaystyle M_{\beta }(x)=i^{\varepsilon }x{\frac {P_{\beta }(x^{4})}{Q_{\beta }(x^{4})}}}

for some coprime polynomialsPβ(x),Qβ(x)O[x]{\displaystyle P_{\beta }(x),Q_{\beta }(x)\in {\mathcal {O}}[x]}and someε{0,1,2,3}{\displaystyle \varepsilon \in \{0,1,2,3\}}[22] where

xPβ(x4)=γ|βΛγ(x){\displaystyle xP_{\beta }(x^{4})=\prod _{\gamma |\beta }\Lambda _{\gamma }(x)}

and

Λβ(x)=[α](O/βO)×(xslαδβ){\displaystyle \Lambda _{\beta }(x)=\prod _{[\alpha ]\in ({\mathcal {O}}/\beta {\mathcal {O}})^{\times }}(x-\operatorname {sl} \alpha \delta _{\beta })}

whereδβ{\displaystyle \delta _{\beta }} is anyβ{\displaystyle \beta }-torsion generator (i.e.δβ(1/β)L{\displaystyle \delta _{\beta }\in (1/\beta )L} and[δβ](1/β)L/L{\displaystyle [\delta _{\beta }]\in (1/\beta )L/L} generates(1/β)L/L{\displaystyle (1/\beta )L/L} as anO{\displaystyle {\mathcal {O}}}-module). Examples ofβ{\displaystyle \beta }-torsion generators include2ϖ/β{\displaystyle 2\varpi /\beta } and(1+i)ϖ/β{\displaystyle (1+i)\varpi /\beta }. The polynomialΛβ(x)O[x]{\displaystyle \Lambda _{\beta }(x)\in {\mathcal {O}}[x]} is called theβ{\displaystyle \beta }-thlemnatomic polynomial. It is monic and is irreducible overK{\displaystyle K}. The lemnatomic polynomials are the "lemniscate analogs" of thecyclotomic polynomials,[23]

Φk(x)=[a](Z/kZ)×(xζka).{\displaystyle \Phi _{k}(x)=\prod _{[a]\in (\mathbb {Z} /k\mathbb {Z} )^{\times }}(x-\zeta _{k}^{a}).}

Theβ{\displaystyle \beta }-th lemnatomic polynomialΛβ(x){\displaystyle \Lambda _{\beta }(x)} is theminimal polynomial ofslδβ{\displaystyle \operatorname {sl} \delta _{\beta }} inK[x]{\displaystyle K[x]}. For convenience, letωβ=sl(2ϖ/β){\displaystyle \omega _{\beta }=\operatorname {sl} (2\varpi /\beta )} andω~β=sl((1+i)ϖ/β){\displaystyle {\tilde {\omega }}_{\beta }=\operatorname {sl} ((1+i)\varpi /\beta )}. So for example, the minimal polynomial ofω5{\displaystyle \omega _{5}} (and also ofω~5{\displaystyle {\tilde {\omega }}_{5}}) inK[x]{\displaystyle K[x]} is

Λ5(x)=x16+52x1226x812x4+1,{\displaystyle \Lambda _{5}(x)=x^{16}+52x^{12}-26x^{8}-12x^{4}+1,}

and[24]

ω5=13+65+2853854{\displaystyle \omega _{5}={\sqrt[{4}]{-13+6{\sqrt {5}}+2{\sqrt {85-38{\sqrt {5}}}}}}}
ω~5=1365+285+3854{\displaystyle {\tilde {\omega }}_{5}={\sqrt[{4}]{-13-6{\sqrt {5}}+2{\sqrt {85+38{\sqrt {5}}}}}}}[25]

(an equivalent expression is given in the table below). Another example is[23]

Λ1+2i(x)=x41+2i{\displaystyle \Lambda _{-1+2i}(x)=x^{4}-1+2i}

which is the minimal polynomial ofω1+2i{\displaystyle \omega _{-1+2i}} (and also ofω~1+2i{\displaystyle {\tilde {\omega }}_{-1+2i}}) inK[x].{\displaystyle K[x].}

Ifp{\displaystyle p} is prime andβ{\displaystyle \beta } is positive and odd,[26] then[27]

degΛβ=β2p|β(11p)(1(1)(p1)/2p){\displaystyle \operatorname {deg} \Lambda _{\beta }=\beta ^{2}\prod _{p|\beta }\left(1-{\frac {1}{p}}\right)\left(1-{\frac {(-1)^{(p-1)/2}}{p}}\right)}

which can be compared to the cyclotomic analog

degΦk=kp|k(11p).{\displaystyle \operatorname {deg} \Phi _{k}=k\prod _{p|k}\left(1-{\frac {1}{p}}\right).}

Specific values

[edit]

Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate inton{\displaystyle n} parts of equal length, using only basic arithmetic and square roots, if and only ifn{\displaystyle n} is of the formn=2kp1p2pm{\displaystyle n=2^{k}p_{1}p_{2}\cdots p_{m}} wherek{\displaystyle k} is a non-negativeinteger and eachpi{\displaystyle p_{i}} (if any) is a distinctFermat prime.[28]

n{\displaystyle n}clnϖ{\displaystyle \operatorname {cl} n\varpi }slnϖ{\displaystyle \operatorname {sl} n\varpi }
1{\displaystyle 1}1{\displaystyle -1}0{\displaystyle 0}
56{\displaystyle {\tfrac {5}{6}}}2334{\displaystyle -{\sqrt[{4}]{2{\sqrt {3}}-3}}}12(3+1124){\displaystyle {\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}}
34{\displaystyle {\tfrac {3}{4}}}21{\displaystyle -{\sqrt {{\sqrt {2}}-1}}}21{\displaystyle {\sqrt {{\sqrt {2}}-1}}}
23{\displaystyle {\tfrac {2}{3}}}12(3+1124){\displaystyle -{\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}}2334{\displaystyle {\sqrt[{4}]{2{\sqrt {3}}-3}}}
12{\displaystyle {\tfrac {1}{2}}}0{\displaystyle 0}1{\displaystyle 1}
13{\displaystyle {\tfrac {1}{3}}}12(3+1124){\displaystyle {\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}}2334{\displaystyle {\sqrt[{4}]{2{\sqrt {3}}-3}}}
14{\displaystyle {\tfrac {1}{4}}}21{\displaystyle {\sqrt {{\sqrt {2}}-1}}}21{\displaystyle {\sqrt {{\sqrt {2}}-1}}}
16{\displaystyle {\tfrac {1}{6}}}2334{\displaystyle {\sqrt[{4}]{2{\sqrt {3}}-3}}}12(3+1124){\displaystyle {\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}}

Relation to geometric shapes

[edit]

Arc length of Bernoulli's lemniscate

[edit]
The lemniscate sine and cosine relate the arc length of an arc of the lemniscate to the distance of one endpoint from the origin.
The trigonometric sine and cosine analogously relate the arc length of an arc of a unit-diameter circle to the distance of one endpoint from the origin.

L{\displaystyle {\mathcal {L}}}, thelemniscate of Bernoulli with unit distance from its center to its furthest point (i.e. with unit "half-width"), is essential in the theory of the lemniscate elliptic functions. It can becharacterized in at least three ways:

Angular characterization: Given two pointsA{\displaystyle A} andB{\displaystyle B} which are unit distance apart, letB{\displaystyle B'} be thereflection ofB{\displaystyle B} aboutA{\displaystyle A}. ThenL{\displaystyle {\mathcal {L}}} is theclosure of the locus of the pointsP{\displaystyle P} such that|APBAPB|{\displaystyle |APB-APB'|} is aright angle.[29]

Focal characterization:L{\displaystyle {\mathcal {L}}} is the locus of points in the plane such that the product of their distances from the two focal pointsF1=(12,0){\displaystyle F_{1}={\bigl (}{-{\tfrac {1}{\sqrt {2}}}},0{\bigr )}} andF2=(12,0){\displaystyle F_{2}={\bigl (}{\tfrac {1}{\sqrt {2}}},0{\bigr )}} is the constant12{\displaystyle {\tfrac {1}{2}}}.

Explicit coordinate characterization:L{\displaystyle {\mathcal {L}}} is aquartic curve satisfying thepolar equationr2=cos2θ{\displaystyle r^{2}=\cos 2\theta } or theCartesian equation(x2+y2)2=x2y2.{\displaystyle {\bigl (}x^{2}+y^{2}{\bigr )}{}^{2}=x^{2}-y^{2}.}

Theperimeter ofL{\displaystyle {\mathcal {L}}} is2ϖ{\displaystyle 2\varpi }.[30]

The points onL{\displaystyle {\mathcal {L}}} at distancer{\displaystyle r} from the origin are the intersections of the circlex2+y2=r2{\displaystyle x^{2}+y^{2}=r^{2}} and thehyperbolax2y2=r4{\displaystyle x^{2}-y^{2}=r^{4}}. The intersection in the positive quadrant has Cartesian coordinates:

(x(r),y(r))=(12r2(1+r2),12r2(1r2)).{\displaystyle {\big (}x(r),y(r){\big )}={\biggl (}\!{\sqrt {{\tfrac {1}{2}}r^{2}{\bigl (}1+r^{2}{\bigr )}}},\,{\sqrt {{\tfrac {1}{2}}r^{2}{\bigl (}1-r^{2}{\bigr )}}}\,{\biggr )}.}

Using thisparametrization withr[0,1]{\displaystyle r\in [0,1]} for a quarter ofL{\displaystyle {\mathcal {L}}}, thearc length from the origin to a point(x(r),y(r)){\displaystyle {\big (}x(r),y(r){\big )}} is:[31]

0rx(t)2+y(t)2dt=0r(1+2t2)22(1+t2)+(12t2)22(1t2)dt=0rdt1t4=arcslr.{\displaystyle {\begin{aligned}&\int _{0}^{r}{\sqrt {x'(t)^{2}+y'(t)^{2}}}\mathop {\mathrm {d} t} \\&\quad {}=\int _{0}^{r}{\sqrt {{\frac {(1+2t^{2})^{2}}{2(1+t^{2})}}+{\frac {(1-2t^{2})^{2}}{2(1-t^{2})}}}}\mathop {\mathrm {d} t} \\[6mu]&\quad {}=\int _{0}^{r}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}\\[6mu]&\quad {}=\operatorname {arcsl} r.\end{aligned}}}

Likewise, the arc length from(1,0){\displaystyle (1,0)} to(x(r),y(r)){\displaystyle {\big (}x(r),y(r){\big )}} is:

r1x(t)2+y(t)2dt=r1dt1t4=arcclr=12ϖarcslr.{\displaystyle {\begin{aligned}&\int _{r}^{1}{\sqrt {x'(t)^{2}+y'(t)^{2}}}\mathop {\mathrm {d} t} \\&\quad {}=\int _{r}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}\\[6mu]&\quad {}=\operatorname {arccl} r={\tfrac {1}{2}}\varpi -\operatorname {arcsl} r.\end{aligned}}}

Or in the inverse direction, the lemniscate sine and cosine functions give the distance from the origin as functions of arc length from the origin and the point(1,0){\displaystyle (1,0)}, respectively.

Analogously, the circular sine and cosine functions relate the chord length to the arc length for the unit diameter circle with polar equationr=cosθ{\displaystyle r=\cos \theta } or Cartesian equationx2+y2=x,{\displaystyle x^{2}+y^{2}=x,} using the same argument above but with the parametrization:

(x(r),y(r))=(r2,r2(1r2)).{\displaystyle {\big (}x(r),y(r){\big )}={\biggl (}r^{2},\,{\sqrt {r^{2}{\bigl (}1-r^{2}{\bigr )}}}\,{\biggr )}.}

Alternatively, just as theunit circlex2+y2=1{\displaystyle x^{2}+y^{2}=1} is parametrized in terms of the arc lengths{\displaystyle s} from the point(1,0){\displaystyle (1,0)} by

(x(s),y(s))=(coss,sins),{\displaystyle (x(s),y(s))=(\cos s,\sin s),}

L{\displaystyle {\mathcal {L}}} is parametrized in terms of the arc lengths{\displaystyle s} from the point(1,0){\displaystyle (1,0)} by[32]

(x(s),y(s))=(cls1+sl2s,slscls1+sl2s)=(cl~s,sl~s).{\displaystyle (x(s),y(s))=\left({\frac {\operatorname {cl} s}{\sqrt {1+\operatorname {sl} ^{2}s}}},{\frac {\operatorname {sl} s\operatorname {cl} s}{\sqrt {1+\operatorname {sl} ^{2}s}}}\right)=\left({\tilde {\operatorname {cl} }}\,s,{\tilde {\operatorname {sl} }}\,s\right).}

The notationcl~,sl~{\displaystyle {\tilde {\operatorname {cl} }},\,{\tilde {\operatorname {sl} }}} is used solely for the purposes of this article; in references, notation for general Jacobi elliptic functions is used instead.

The lemniscate integral and lemniscate functions satisfy an argument duplication identity discovered by Fagnano in 1718:[33]

0zdt1t4=20udt1t4,if z=2u1u41+u4 and 0u21.{\displaystyle \int _{0}^{z}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}=2\int _{0}^{u}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}},\quad {\text{if }}z={\frac {2u{\sqrt {1-u^{4}}}}{1+u^{4}}}{\text{ and }}0\leq u\leq {\sqrt {{\sqrt {2}}-1}}.}
A lemniscate divided into 15 sections of equal arclength (red curves). Because the prime factors of 15 (3 and 5) are both Fermat primes, this polygon (in black) is constructible using a straightedge and compass.

Later mathematicians generalized this result. Analogously to theconstructible polygons in the circle, the lemniscate can be divided inton{\displaystyle n} sections of equal arc length using onlystraightedge and compass if and only ifn{\displaystyle n} is of the formn=2kp1p2pm{\displaystyle n=2^{k}p_{1}p_{2}\cdots p_{m}} wherek{\displaystyle k} is a non-negativeinteger and eachpi{\displaystyle p_{i}} (if any) is a distinctFermat prime.[34] The "if" part of the theorem was proved byNiels Abel in 1827–1828, and the "only if" part was proved byMichael Rosen in 1981.[35] Equivalently, the lemniscate can be divided inton{\displaystyle n} sections of equal arc length using only straightedge and compass if and only ifφ(n){\displaystyle \varphi (n)} is apower of two (whereφ{\displaystyle \varphi } isEuler's totient function). The lemniscate isnot assumed to be already drawn, as that would go against the rules of straightedge and compass constructions; instead, it is assumed that we are given only two points by which the lemniscate is defined, such as its center and radial point (one of the two points on the lemniscate such that their distance from the center is maximal) or its two foci.

Letrj=sl2jϖn{\displaystyle r_{j}=\operatorname {sl} {\dfrac {2j\varpi }{n}}}. Then then{\displaystyle n}-division points forL{\displaystyle {\mathcal {L}}} are the points

(rj12(1+rj2), (1)4j/n12rj2(1rj2)),j{1,2,,n}{\displaystyle \left(r_{j}{\sqrt {{\tfrac {1}{2}}{\bigl (}1+r_{j}^{2}{\bigr )}}},\ (-1)^{\left\lfloor 4j/n\right\rfloor }{\sqrt {{\tfrac {1}{2}}r_{j}^{2}{\bigl (}1-r_{j}^{2}{\bigr )}}}\right),\quad j\in \{1,2,\ldots ,n\}}

where{\displaystyle \lfloor \cdot \rfloor } is thefloor function. Seebelow for some specific values ofsl2ϖn{\displaystyle \operatorname {sl} {\dfrac {2\varpi }{n}}}.

Arc length of rectangular elastica

[edit]
The lemniscate sine relates the arc length to the x coordinate in the rectangular elastica.

The inverse lemniscate sine also describes the arc lengths{\displaystyle s} relative to thex{\displaystyle x} coordinate of the rectangularelastica.[36] This curve hasy{\displaystyle y} coordinate and arc length:

y=x1t2dt1t4,s=arcslx=0xdt1t4{\displaystyle y=\int _{x}^{1}{\frac {t^{2}\mathop {\mathrm {d} t} }{\sqrt {1-t^{4}}}},\quad s=\operatorname {arcsl} x=\int _{0}^{x}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}}

The rectangular elastica solves a problem posed byJacob Bernoulli, in 1691, to describe the shape of an idealized flexible rod fixed in a vertical orientation at the bottom end, and pulled down by a weight from the far end until it has been bent horizontal. Bernoulli's proposed solution establishedEuler–Bernoulli beam theory, further developed by Euler in the 18th century.

Elliptic characterization

[edit]
The lemniscate elliptic functions and an ellipse

LetC{\displaystyle C} be a point on the ellipsex2+2y2=1{\displaystyle x^{2}+2y^{2}=1} in the first quadrant and letD{\displaystyle D} be the projection ofC{\displaystyle C} on the unit circlex2+y2=1{\displaystyle x^{2}+y^{2}=1}. The distancer{\displaystyle r} between the originA{\displaystyle A} and the pointC{\displaystyle C} is a function ofφ{\displaystyle \varphi } (the angleBAC{\displaystyle BAC} whereB=(1,0){\displaystyle B=(1,0)}; equivalently the length of the circular arcBD{\displaystyle BD}). The parameteru{\displaystyle u} is given by

u=0φr(θ)dθ=0φdθ1+sin2θ.{\displaystyle u=\int _{0}^{\varphi }r(\theta )\,\mathrm {d} \theta =\int _{0}^{\varphi }{\frac {\mathrm {d} \theta }{\sqrt {1+\sin ^{2}\theta }}}.}

IfE{\displaystyle E} is the projection ofD{\displaystyle D} on the x-axis and ifF{\displaystyle F} is the projection ofC{\displaystyle C} on the x-axis, then the lemniscate elliptic functions are given by

clu=AF¯,slu=DE¯,{\displaystyle \operatorname {cl} u={\overline {AF}},\quad \operatorname {sl} u={\overline {DE}},}
cl~u=AF¯AC¯,sl~u=AF¯FC¯.{\displaystyle {\tilde {\operatorname {cl} }}\,u={\overline {AF}}{\overline {AC}},\quad {\tilde {\operatorname {sl} }}\,u={\overline {AF}}{\overline {FC}}.}

Series Identities

[edit]

Power series

[edit]

Thepower series expansion of the lemniscate sine at the origin is[37]

slz=n=0anzn=z12z55!+3024z99!4390848z1313!+,|z|<ϖ2{\displaystyle \operatorname {sl} z=\sum _{n=0}^{\infty }a_{n}z^{n}=z-12{\frac {z^{5}}{5!}}+3024{\frac {z^{9}}{9!}}-4390848{\frac {z^{13}}{13!}}+\cdots ,\quad |z|<{\tfrac {\varpi }{\sqrt {2}}}}

where the coefficientsan{\displaystyle a_{n}} are determined as follows:

n1(mod4)an=0,{\displaystyle n\not \equiv 1{\pmod {4}}\implies a_{n}=0,}
a1=1,nN0:an+2=2(n+1)(n+2)i+j+k=naiajak{\displaystyle a_{1}=1,\,\forall n\in \mathbb {N} _{0}:\,a_{n+2}=-{\frac {2}{(n+1)(n+2)}}\sum _{i+j+k=n}a_{i}a_{j}a_{k}}

wherei+j+k=n{\displaystyle i+j+k=n} stands for all three-termcompositions ofn{\displaystyle n}. For example, to evaluatea13{\displaystyle a_{13}}, it can be seen that there are only six compositions of132=11{\displaystyle 13-2=11} that give a nonzero contribution to the sum:11=9+1+1=1+9+1=1+1+9{\displaystyle 11=9+1+1=1+9+1=1+1+9} and11=5+5+1=5+1+5=1+5+5{\displaystyle 11=5+5+1=5+1+5=1+5+5}, so

a13=21213(a9a1a1+a1a9a1+a1a1a9+a5a5a1+a5a1a5+a1a5a5)=1115600.{\displaystyle a_{13}=-{\tfrac {2}{12\cdot 13}}(a_{9}a_{1}a_{1}+a_{1}a_{9}a_{1}+a_{1}a_{1}a_{9}+a_{5}a_{5}a_{1}+a_{5}a_{1}a_{5}+a_{1}a_{5}a_{5})=-{\tfrac {11}{15600}}.}

The expansion can be equivalently written as[38]

slz=n=0p2nz4n+1(4n+1)!,|z|<ϖ2{\displaystyle \operatorname {sl} z=\sum _{n=0}^{\infty }p_{2n}{\frac {z^{4n+1}}{(4n+1)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}}

where

pn+2=12j=0n(2n+22j+2)pnjk=0j(2j+12k+1)pkpjk,p0=1,p1=0.{\displaystyle p_{n+2}=-12\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}p_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}p_{k}p_{j-k},\quad p_{0}=1,\,p_{1}=0.}

The power series expansion ofsl~{\displaystyle {\tilde {\operatorname {sl} }}} at the origin is

sl~z=n=0αnzn=z9z33!+153z55!4977z77!+,|z|<ϖ2{\displaystyle {\tilde {\operatorname {sl} }}\,z=\sum _{n=0}^{\infty }\alpha _{n}z^{n}=z-9{\frac {z^{3}}{3!}}+153{\frac {z^{5}}{5!}}-4977{\frac {z^{7}}{7!}}+\cdots ,\quad \left|z\right|<{\frac {\varpi }{2}}}

whereαn=0{\displaystyle \alpha _{n}=0} ifn{\displaystyle n} is even and[39]

αn=2πϖ(1)(n1)/2n!k=1(2kπ/ϖ)n+1coshkπ,|αn|2n+5/2n+1ϖn+2{\displaystyle \alpha _{n}={\sqrt {2}}{\frac {\pi }{\varpi }}{\frac {(-1)^{(n-1)/2}}{n!}}\sum _{k=1}^{\infty }{\frac {(2k\pi /\varpi )^{n+1}}{\cosh k\pi }},\quad \left|\alpha _{n}\right|\sim 2^{n+5/2}{\frac {n+1}{\varpi ^{n+2}}}}

ifn{\displaystyle n} is odd.

The expansion can be equivalently written as[40]

sl~z=n=0(1)n2n+1(l=0n2l(2n+22l+1)sltnl)z2n+1(2n+1)!,|z|<ϖ2{\displaystyle {\tilde {\operatorname {sl} }}\,z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2^{n+1}}}\left(\sum _{l=0}^{n}2^{l}{\binom {2n+2}{2l+1}}s_{l}t_{n-l}\right){\frac {z^{2n+1}}{(2n+1)!}},\quad \left|z\right|<{\frac {\varpi }{2}}}

where

sn+2=3sn+1+24j=0n(2n+22j+2)snjk=0j(2j+12k+1)sksjk,s0=1,s1=3,{\displaystyle s_{n+2}=3s_{n+1}+24\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}s_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}s_{k}s_{j-k},\quad s_{0}=1,\,s_{1}=3,}
tn+2=3tn+1+3j=0n(2n+22j+2)tnjk=0j(2j+12k+1)tktjk,t0=1,t1=3.{\displaystyle t_{n+2}=3t_{n+1}+3\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}t_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}t_{k}t_{j-k},\quad t_{0}=1,\,t_{1}=3.}

For the lemniscate cosine,[41]

clz=1n=0(1)n(l=0n2l(2n+22l+1)qlrnl)z2n+2(2n+2)!=12z22!+12z44!216z66!+,|z|<ϖ2,{\displaystyle \operatorname {cl} {z}=1-\sum _{n=0}^{\infty }(-1)^{n}\left(\sum _{l=0}^{n}2^{l}{\binom {2n+2}{2l+1}}q_{l}r_{n-l}\right){\frac {z^{2n+2}}{(2n+2)!}}=1-2{\frac {z^{2}}{2!}}+12{\frac {z^{4}}{4!}}-216{\frac {z^{6}}{6!}}+\cdots ,\quad \left|z\right|<{\frac {\varpi }{2}},}
cl~z=n=0(1)n2nqnz2n(2n)!=13z22!+33z44!819z66!+,|z|<ϖ2{\displaystyle {\tilde {\operatorname {cl} }}\,z=\sum _{n=0}^{\infty }(-1)^{n}2^{n}q_{n}{\frac {z^{2n}}{(2n)!}}=1-3{\frac {z^{2}}{2!}}+33{\frac {z^{4}}{4!}}-819{\frac {z^{6}}{6!}}+\cdots ,\quad \left|z\right|<{\frac {\varpi }{2}}}

where

rn+2=3j=0n(2n+22j+2)rnjk=0j(2j+12k+1)rkrjk,r0=1,r1=0,{\displaystyle r_{n+2}=3\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}r_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}r_{k}r_{j-k},\quad r_{0}=1,\,r_{1}=0,}
qn+2=32qn+1+6j=0n(2n+22j+2)qnjk=0j(2j+12k+1)qkqjk,q0=1,q1=32.{\displaystyle q_{n+2}={\tfrac {3}{2}}q_{n+1}+6\sum _{j=0}^{n}{\binom {2n+2}{2j+2}}q_{n-j}\sum _{k=0}^{j}{\binom {2j+1}{2k+1}}q_{k}q_{j-k},\quad q_{0}=1,\,q_{1}={\tfrac {3}{2}}.}

Ramanujan's cos/cosh identity

[edit]

Ramanujan's famous cos/cosh identity states that if

R(s)=πϖ2nZcos(2nπs/ϖ)coshnπ,{\displaystyle R(s)={\frac {\pi }{\varpi {\sqrt {2}}}}\sum _{n\in \mathbb {Z} }{\frac {\cos(2n\pi s/\varpi )}{\cosh n\pi }},}

then[39]

R(s)2+R(is)2=2,|Res|<ϖ2,|Ims|<ϖ2.{\displaystyle R(s)^{-2}+R(is)^{-2}=2,\quad \left|\operatorname {Re} s\right|<{\frac {\varpi }{2}},\left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}.}

There is a close relation between the lemniscate functions andR(s){\displaystyle R(s)}. Indeed,[39][42]

sl~s=ddsR(s)|Ims|<ϖ2{\displaystyle {\tilde {\operatorname {sl} }}\,s=-{\frac {\mathrm {d} }{\mathrm {d} s}}R(s)\quad \left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}}
cl~s=dds1R(s)2,|Resϖ2|<ϖ2,|Ims|<ϖ2{\displaystyle {\tilde {\operatorname {cl} }}\,s={\frac {\mathrm {d} }{\mathrm {d} s}}{\sqrt {1-R(s)^{2}}},\quad \left|\operatorname {Re} s-{\frac {\varpi }{2}}\right|<{\frac {\varpi }{2}},\,\left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}}

and

R(s)=11+sl2s,|Ims|<ϖ2.{\displaystyle R(s)={\frac {1}{\sqrt {1+\operatorname {sl} ^{2}s}}},\quad \left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}.}

Continued fractions

[edit]

ForzC{0}{\displaystyle z\in \mathbb {C} \setminus \{0\}}:[43]

0etz2cltdt=1/2z+a1z+a2z+a3z+,an=n24((1)n+1+3){\displaystyle \int _{0}^{\infty }e^{-tz{\sqrt {2}}}\operatorname {cl} t\,\mathrm {d} t={\cfrac {1/{\sqrt {2}}}{z+{\cfrac {a_{1}}{z+{\cfrac {a_{2}}{z+{\cfrac {a_{3}}{z+\ddots }}}}}}}},\quad a_{n}={\frac {n^{2}}{4}}((-1)^{n+1}+3)}
0etz2sltcltdt=1/2z2+b1a1z2+b2a2z2+b3,an=n2(4n21),bn=3(2n1)2{\displaystyle \int _{0}^{\infty }e^{-tz{\sqrt {2}}}\operatorname {sl} t\operatorname {cl} t\,\mathrm {d} t={\cfrac {1/2}{z^{2}+b_{1}-{\cfrac {a_{1}}{z^{2}+b_{2}-{\cfrac {a_{2}}{z^{2}+b_{3}-\ddots }}}}}},\quad a_{n}=n^{2}(4n^{2}-1),\,b_{n}=3(2n-1)^{2}}

Methods of computation

[edit]

A fast algorithm, returning approximations toslx{\displaystyle \operatorname {sl} x} (which get closer toslx{\displaystyle \operatorname {sl} x} with increasingN{\displaystyle N}), is the following:[44]

This is effectively using the arithmetic-geometric mean and is based onLanden's transformations.[45]

Several methods of computingslx{\displaystyle \operatorname {sl} x} involve first making the change of variablesπx=ϖx~{\displaystyle \pi x=\varpi {\tilde {x}}} and then computingsl(ϖx~/π).{\displaystyle \operatorname {sl} (\varpi {\tilde {x}}/\pi ).}

Ahyperbolic series method:[46][47]

sl(ϖπx)=πϖnZ(1)ncosh(x(n+1/2)π),xC{\displaystyle \operatorname {sl} \left({\frac {\varpi }{\pi }}x\right)={\frac {\pi }{\varpi }}\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{\cosh(x-(n+1/2)\pi )}},\quad x\in \mathbb {C} }
1sl(ϖx/π)=πϖnZ(1)nsinh(xnπ)=πϖnZ(1)nsin(xnπi),xC{\displaystyle {\frac {1}{\operatorname {sl} (\varpi x/\pi )}}={\frac {\pi }{\varpi }}\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{{\sinh }{\left(x-n\pi \right)}}}={\frac {\pi }{\varpi }}\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{\sin(x-n\pi i)}},\quad x\in \mathbb {C} }

Fourier series method:[48]

sl(ϖπx)=2πϖn=0(1)nsin((2n+1)x)cosh((n+1/2)π),|Imx|<π2{\displaystyle \operatorname {sl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}={\frac {2\pi }{\varpi }}\sum _{n=0}^{\infty }{\frac {(-1)^{n}\sin((2n+1)x)}{\cosh((n+1/2)\pi )}},\quad \left|\operatorname {Im} x\right|<{\frac {\pi }{2}}}
cl(ϖπx)=2πϖn=0cos((2n+1)x)cosh((n+1/2)π),|Imx|<π2{\displaystyle \operatorname {cl} \left({\frac {\varpi }{\pi }}x\right)={\frac {2\pi }{\varpi }}\sum _{n=0}^{\infty }{\frac {\cos((2n+1)x)}{\cosh((n+1/2)\pi )}},\quad \left|\operatorname {Im} x\right|<{\frac {\pi }{2}}}
1sl(ϖx/π)=πϖ(1sinx4n=0sin((2n+1)x)e(2n+1)π+1),|Imx|<π{\displaystyle {\frac {1}{\operatorname {sl} (\varpi x/\pi )}}={\frac {\pi }{\varpi }}\left({\frac {1}{\sin x}}-4\sum _{n=0}^{\infty }{\frac {\sin((2n+1)x)}{e^{(2n+1)\pi }+1}}\right),\quad \left|\operatorname {Im} x\right|<\pi }

The lemniscate functions can be computed more rapidly by

sl(ϖπx)=θ1(x,eπ)θ3(x,eπ),xCcl(ϖπx)=θ2(x,eπ)θ4(x,eπ),xC{\displaystyle {\begin{aligned}\operatorname {sl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}&={\frac {{\theta _{1}}{\left(x,e^{-\pi }\right)}}{{\theta _{3}}{\left(x,e^{-\pi }\right)}}},\quad x\in \mathbb {C} \\\operatorname {cl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}&={\frac {{\theta _{2}}{\left(x,e^{-\pi }\right)}}{{\theta _{4}}{\left(x,e^{-\pi }\right)}}},\quad x\in \mathbb {C} \end{aligned}}}

where

θ1(x,eπ)=nZ(1)n+1eπ(n+1/2+x/π)2=nZ(1)neπ(n+1/2)2sin((2n+1)x),θ2(x,eπ)=nZ(1)neπ(n+x/π)2=nZeπ(n+1/2)2cos((2n+1)x),θ3(x,eπ)=nZeπ(n+x/π)2=nZeπn2cos2nx,θ4(x,eπ)=nZeπ(n+1/2+x/π)2=nZ(1)neπn2cos2nx{\displaystyle {\begin{aligned}\theta _{1}(x,e^{-\pi })&=\sum _{n\in \mathbb {Z} }(-1)^{n+1}e^{-\pi (n+1/2+x/\pi )^{2}}=\sum _{n\in \mathbb {Z} }(-1)^{n}e^{-\pi (n+1/2)^{2}}\sin((2n+1)x),\\\theta _{2}(x,e^{-\pi })&=\sum _{n\in \mathbb {Z} }(-1)^{n}e^{-\pi (n+x/\pi )^{2}}=\sum _{n\in \mathbb {Z} }e^{-\pi (n+1/2)^{2}}\cos((2n+1)x),\\\theta _{3}(x,e^{-\pi })&=\sum _{n\in \mathbb {Z} }e^{-\pi (n+x/\pi )^{2}}=\sum _{n\in \mathbb {Z} }e^{-\pi n^{2}}\cos 2nx,\\\theta _{4}(x,e^{-\pi })&=\sum _{n\in \mathbb {Z} }e^{-\pi (n+1/2+x/\pi )^{2}}=\sum _{n\in \mathbb {Z} }(-1)^{n}e^{-\pi n^{2}}\cos 2nx\end{aligned}}}

are theJacobi theta functions.[49]

Fourier series for thelogarithm of the lemniscate sine:

lnsl(ϖπx)=ln2π4+lnsinx+2n=1(1)ncos2nxn(enπ+(1)n),|Imx|<π2{\displaystyle \ln \operatorname {sl} \left({\frac {\varpi }{\pi }}x\right)=\ln 2-{\frac {\pi }{4}}+\ln \sin x+2\sum _{n=1}^{\infty }{\frac {(-1)^{n}\cos 2nx}{n(e^{n\pi }+(-1)^{n})}},\quad \left|\operatorname {Im} x\right|<{\frac {\pi }{2}}}

The following series identities were discovered byRamanujan:[50]

ϖ2π2sl2(ϖx/π)=1sin2x1π8n=1ncos2nxe2nπ1,|Imx|<π{\displaystyle {\frac {\varpi ^{2}}{\pi ^{2}\operatorname {sl} ^{2}(\varpi x/\pi )}}={\frac {1}{\sin ^{2}x}}-{\frac {1}{\pi }}-8\sum _{n=1}^{\infty }{\frac {n\cos 2nx}{e^{2n\pi }-1}},\quad \left|\operatorname {Im} x\right|<\pi }
arctansl(ϖπx)=2n=0sin((2n+1)x)(2n+1)cosh((n+1/2)π),|Imx|<π2{\displaystyle \arctan \operatorname {sl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}=2\sum _{n=0}^{\infty }{\frac {\sin((2n+1)x)}{(2n+1)\cosh((n+1/2)\pi )}},\quad \left|\operatorname {Im} x\right|<{\frac {\pi }{2}}}

The functionssl~{\displaystyle {\tilde {\operatorname {sl} }}} andcl~{\displaystyle {\tilde {\operatorname {cl} }}} analogous tosin{\displaystyle \sin } andcos{\displaystyle \cos } on the unit circle have the following Fourier and hyperbolic series expansions:[39][42][51]

sl~s=22π2ϖ2n=1nsin(2nπs/ϖ)coshnπ,|Ims|<ϖ2{\displaystyle {\tilde {\operatorname {sl} }}\,s=2{\sqrt {2}}{\frac {\pi ^{2}}{\varpi ^{2}}}\sum _{n=1}^{\infty }{\frac {n\sin(2n\pi s/\varpi )}{\cosh n\pi }},\quad \left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}}
cl~s=2π2ϖ2n=0(2n+1)cos((2n+1)πs/ϖ)sinh((n+1/2)π),|Ims|<ϖ2{\displaystyle {\tilde {\operatorname {cl} }}\,s={\sqrt {2}}{\frac {\pi ^{2}}{\varpi ^{2}}}\sum _{n=0}^{\infty }{\frac {(2n+1)\cos((2n+1)\pi s/\varpi )}{\sinh((n+1/2)\pi )}},\quad \left|\operatorname {Im} s\right|<{\frac {\varpi }{2}}}
sl~s=π2ϖ22nZsinh(π(n+s/ϖ))cosh2(π(n+s/ϖ)),sC{\displaystyle {\tilde {\operatorname {sl} }}\,s={\frac {\pi ^{2}}{\varpi ^{2}{\sqrt {2}}}}\sum _{n\in \mathbb {Z} }{\frac {\sinh(\pi (n+s/\varpi ))}{\cosh ^{2}(\pi (n+s/\varpi ))}},\quad s\in \mathbb {C} }
cl~s=π2ϖ22nZ(1)ncosh2(π(n+s/ϖ)),sC{\displaystyle {\tilde {\operatorname {cl} }}\,s={\frac {\pi ^{2}}{\varpi ^{2}{\sqrt {2}}}}\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{\cosh ^{2}(\pi (n+s/\varpi ))}},\quad s\in \mathbb {C} }

The following identities come from product representations of the theta functions:[52]

sl(ϖπx)=2eπ/4sinxn=112e2nπcos2x+e4nπ1+2e(2n1)πcos2x+e(4n2)π,xC{\displaystyle \mathrm {sl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}=2e^{-\pi /4}\sin x\prod _{n=1}^{\infty }{\frac {1-2e^{-2n\pi }\cos 2x+e^{-4n\pi }}{1+2e^{-(2n-1)\pi }\cos 2x+e^{-(4n-2)\pi }}},\quad x\in \mathbb {C} }
cl(ϖπx)=2eπ/4cosxn=11+2e2nπcos2x+e4nπ12e(2n1)πcos2x+e(4n2)π,xC{\displaystyle \mathrm {cl} {\Bigl (}{\frac {\varpi }{\pi }}x{\Bigr )}=2e^{-\pi /4}\cos x\prod _{n=1}^{\infty }{\frac {1+2e^{-2n\pi }\cos 2x+e^{-4n\pi }}{1-2e^{-(2n-1)\pi }\cos 2x+e^{-(4n-2)\pi }}},\quad x\in \mathbb {C} }

A similar formula involving thesn{\displaystyle \operatorname {sn} } function can be given.[53]

The lemniscate functions as a ratio of entire functions

[edit]

Since the lemniscate sine is a meromorphic function in the whole complex plane, it can be written as a ratio ofentire functions. Gauss showed thatsl has the following product expansion, reflecting the distribution of its zeros and poles:[54]

slz=M(z)N(z){\displaystyle \operatorname {sl} z={\frac {M(z)}{N(z)}}}

where

M(z)=zα(1z4α4),N(z)=β(1z4β4).{\displaystyle M(z)=z\prod _{\alpha }\left(1-{\frac {z^{4}}{\alpha ^{4}}}\right),\quad N(z)=\prod _{\beta }\left(1-{\frac {z^{4}}{\beta ^{4}}}\right).}

Here,α{\displaystyle \alpha } andβ{\displaystyle \beta } denote, respectively, the zeros and poles ofsl which are in the quadrantRez>0,Imz0{\displaystyle \operatorname {Re} z>0,\operatorname {Im} z\geq 0}. A proof can be found in.[54][55] Importantly, the infinite products converge to the same value for all possible orders in which their terms can be multiplied, as a consequence ofuniform convergence.[56]

Proof of the infinite product for the lemniscate sine

Proof by logarithmic differentiation

It can be easily seen (using uniform andabsolute convergence arguments to justifyinterchanging of limiting operations) that

M(z)M(z)=n=024nH4nz4n1(4n)!,|z|<ϖ{\displaystyle {\frac {M'(z)}{M(z)}}=-\sum _{n=0}^{\infty }2^{4n}\mathrm {H} _{4n}{\frac {z^{4n-1}}{(4n)!}},\quad \left|z\right|<\varpi }

(whereHn{\displaystyle \mathrm {H} _{n}} are the Hurwitz numbers defined inLemniscate elliptic functions § Hurwitz numbers) and

N(z)N(z)=(1+i)M((1+i)z)M((1+i)z)M(z)M(z).{\displaystyle {\frac {N'(z)}{N(z)}}=(1+i){\frac {M'((1+i)z)}{M((1+i)z)}}-{\frac {M'(z)}{M(z)}}.}

Therefore

N(z)N(z)=n=024n(1(1)n22n)H4nz4n1(4n)!,|z|<ϖ2.{\displaystyle {\frac {N'(z)}{N(z)}}=\sum _{n=0}^{\infty }2^{4n}(1-(-1)^{n}2^{2n})\mathrm {H} _{4n}{\frac {z^{4n-1}}{(4n)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}.}

It is known that

1sl2z=n=024n(4n1)H4nz4n2(4n)!,|z|<ϖ.{\displaystyle {\frac {1}{\operatorname {sl} ^{2}z}}=\sum _{n=0}^{\infty }2^{4n}(4n-1)\mathrm {H} _{4n}{\frac {z^{4n-2}}{(4n)!}},\quad \left|z\right|<\varpi .}

Then from

ddzslzslz=1sl2zsl2z{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}{\frac {\operatorname {sl} 'z}{\operatorname {sl} z}}=-{\frac {1}{\operatorname {sl} ^{2}z}}-\operatorname {sl} ^{2}z}

and

sl2z=1sl2z(1+i)2sl2((1+i)z){\displaystyle \operatorname {sl} ^{2}z={\frac {1}{\operatorname {sl} ^{2}z}}-{\frac {(1+i)^{2}}{\operatorname {sl} ^{2}((1+i)z)}}}

we get

slzslz=n=024n(2(1)n22n)H4nz4n1(4n)!,|z|<ϖ2.{\displaystyle {\frac {\operatorname {sl} 'z}{\operatorname {sl} z}}=-\sum _{n=0}^{\infty }2^{4n}(2-(-1)^{n}2^{2n})\mathrm {H} _{4n}{\frac {z^{4n-1}}{(4n)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}.}

Hence

slzslz=M(z)M(z)N(z)N(z),|z|<ϖ2.{\displaystyle {\frac {\operatorname {sl} 'z}{\operatorname {sl} z}}={\frac {M'(z)}{M(z)}}-{\frac {N'(z)}{N(z)}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}.}

Therefore

slz=CM(z)N(z){\displaystyle \operatorname {sl} z=C{\frac {M(z)}{N(z)}}}

for some constantC{\displaystyle C} for|z|<ϖ/2{\displaystyle \left|z\right|<\varpi /{\sqrt {2}}} but this result holds for allzC{\displaystyle z\in \mathbb {C} } by analytic continuation. Using

limz0slzz=1{\displaystyle \lim _{z\to 0}{\frac {\operatorname {sl} z}{z}}=1}

givesC=1{\displaystyle C=1} which completes the proof.{\displaystyle \blacksquare }

Proof by Liouville's theorem

Let

f(z)=M(z)N(z)=(1+i)M(z)2M((1+i)z),{\displaystyle f(z)={\frac {M(z)}{N(z)}}={\frac {(1+i)M(z)^{2}}{M((1+i)z)}},}

with patches at removable singularities.The shifting formulas

M(z+2ϖ)=e2πϖ(z+ϖ)M(z),M(z+2ϖi)=e2πϖ(izϖ)M(z){\displaystyle M(z+2\varpi )=e^{2{\frac {\pi }{\varpi }}(z+\varpi )}M(z),\quad M(z+2\varpi i)=e^{-2{\frac {\pi }{\varpi }}(iz-\varpi )}M(z)}

imply thatf{\displaystyle f} is an elliptic function with periods2ϖ{\displaystyle 2\varpi } and2ϖi{\displaystyle 2\varpi i}, just assl{\displaystyle \operatorname {sl} }.It follows that the functiong{\displaystyle g} defined by

g(z)=slzf(z),{\displaystyle g(z)={\frac {\operatorname {sl} z}{f(z)}},}

when patched, is an elliptic function without poles. ByLiouville's theorem, it is a constant. By usingslz=z+O(z5){\displaystyle \operatorname {sl} z=z+\operatorname {O} (z^{5})},M(z)=z+O(z5){\displaystyle M(z)=z+\operatorname {O} (z^{5})} andN(z)=1+O(z4){\displaystyle N(z)=1+\operatorname {O} (z^{4})}, this constant is1{\displaystyle 1}, which proves the theorem.{\displaystyle \blacksquare }

Gauss conjectured thatlnN(ϖ)=π/2{\displaystyle \ln N(\varpi )=\pi /2} (this later turned out to be true) and commented that this “is most remarkable and a proof of this property promises the most serious increase in analysis”.[57] Gauss expanded the products forM{\displaystyle M} andN{\displaystyle N} as infinite series (see below). He also discovered several identities involving the functionsM{\displaystyle M} andN{\displaystyle N}, such as

TheM{\displaystyle M} function in the complex plane. The complex argument is represented by varying hue.
TheN{\displaystyle N} function in the complex plane. The complex argument is represented by varying hue.
N(z)=M((1+i)z)(1+i)M(z),zϖZ[i]{\displaystyle N(z)={\frac {M((1+i)z)}{(1+i)M(z)}},\quad z\notin \varpi \mathbb {Z} [i]}

and

N(2z)=M(z)4+N(z)4.{\displaystyle N(2z)=M(z)^{4}+N(z)^{4}.}

Thanks to a certain theorem[58] on splitting limits, we are allowed to multiply out the infinite products and collect like powers ofz{\displaystyle z}. Doing so gives the following power series expansions that are convergent everywhere in the complex plane:[59][60][61][62][63]

M(z)=z2z55!36z99!+552z1313!+,zC{\displaystyle M(z)=z-2{\frac {z^{5}}{5!}}-36{\frac {z^{9}}{9!}}+552{\frac {z^{13}}{13!}}+\cdots ,\quad z\in \mathbb {C} }
N(z)=1+2z44!4z88!+408z1212!+,zC.{\displaystyle N(z)=1+2{\frac {z^{4}}{4!}}-4{\frac {z^{8}}{8!}}+408{\frac {z^{12}}{12!}}+\cdots ,\quad z\in \mathbb {C} .}

This can be contrasted with the power series ofsl{\displaystyle \operatorname {sl} } which has only finite radius of convergence (because it is not entire).

We defineS{\displaystyle S} andT{\displaystyle T} by

S(z)=N(z1+i)2iM(z1+i)2,T(z)=S(iz).{\displaystyle S(z)=N\left({\frac {z}{1+i}}\right)^{2}-iM\left({\frac {z}{1+i}}\right)^{2},\quad T(z)=S(iz).}

Then the lemniscate cosine can be written as

clz=S(z)T(z){\displaystyle \operatorname {cl} z={\frac {S(z)}{T(z)}}}

where[64]

S(z)=1z22!z44!3z66!+17z88!9z1010!+111z1212!+,zC{\displaystyle S(z)=1-{\frac {z^{2}}{2!}}-{\frac {z^{4}}{4!}}-3{\frac {z^{6}}{6!}}+17{\frac {z^{8}}{8!}}-9{\frac {z^{10}}{10!}}+111{\frac {z^{12}}{12!}}+\cdots ,\quad z\in \mathbb {C} }
T(z)=1+z22!z44!+3z66!+17z88!+9z1010!+111z1212!+,zC.{\displaystyle T(z)=1+{\frac {z^{2}}{2!}}-{\frac {z^{4}}{4!}}+3{\frac {z^{6}}{6!}}+17{\frac {z^{8}}{8!}}+9{\frac {z^{10}}{10!}}+111{\frac {z^{12}}{12!}}+\cdots ,\quad z\in \mathbb {C} .}

Furthermore, the identities

M(2z)=2M(z)N(z)S(z)T(z),{\displaystyle M(2z)=2M(z)N(z)S(z)T(z),}
S(2z)=S(z)42M(z)4,{\displaystyle S(2z)=S(z)^{4}-2M(z)^{4},}
T(2z)=T(z)42M(z)4{\displaystyle T(2z)=T(z)^{4}-2M(z)^{4}}

and the Pythagorean-like identities

M(z)2+S(z)2=N(z)2,{\displaystyle M(z)^{2}+S(z)^{2}=N(z)^{2},}
M(z)2+N(z)2=T(z)2{\displaystyle M(z)^{2}+N(z)^{2}=T(z)^{2}}

hold for allzC{\displaystyle z\in \mathbb {C} }.

The quasi-addition formulas

M(z+w)M(zw)=M(z)2N(w)2N(z)2M(w)2,{\displaystyle M(z+w)M(z-w)=M(z)^{2}N(w)^{2}-N(z)^{2}M(w)^{2},}
N(z+w)N(zw)=N(z)2N(w)2+M(z)2M(w)2{\displaystyle N(z+w)N(z-w)=N(z)^{2}N(w)^{2}+M(z)^{2}M(w)^{2}}

(wherez,wC{\displaystyle z,w\in \mathbb {C} }) imply further multiplication formulas forM{\displaystyle M} andN{\displaystyle N} by recursion.[65]

Gauss'M{\displaystyle M} andN{\displaystyle N} satisfy the following system of differential equations:

M(z)M(z)=M(z)2N(z)2,{\displaystyle M(z)M''(z)=M'(z)^{2}-N(z)^{2},}
N(z)N(z)=N(z)2+M(z)2{\displaystyle N(z)N''(z)=N'(z)^{2}+M(z)^{2}}

wherezC{\displaystyle z\in \mathbb {C} }. BothM{\displaystyle M} andN{\displaystyle N} satisfy the differential equation[66]

X(z)X(z)=4X(z)X(z)3X(z)2+2X(z)2,zC.{\displaystyle X(z)X''''(z)=4X'(z)X'''(z)-3X''(z)^{2}+2X(z)^{2},\quad z\in \mathbb {C} .}

The functions can be also expressed by integrals involving elliptic functions:

M(z)=zexp(0z0w(1sl2v1v2)dvdw),{\displaystyle M(z)=z\exp \left(-\int _{0}^{z}\int _{0}^{w}\left({\frac {1}{\operatorname {sl} ^{2}v}}-{\frac {1}{v^{2}}}\right)\,\mathrm {d} v\,\mathrm {d} w\right),}
N(z)=exp(0z0wsl2vdvdw){\displaystyle N(z)=\exp \left(\int _{0}^{z}\int _{0}^{w}\operatorname {sl} ^{2}v\,\mathrm {d} v\,\mathrm {d} w\right)}

where the contours do not cross the poles; while the innermost integrals are path-independent, the outermost ones are path-dependent; however, the path dependence cancels out with the non-injectivity of the complexexponential function.

An alternative way of expressing the lemniscate functions as a ratio of entire functions involves the theta functions (seeLemniscate elliptic functions § Methods of computation); the relation betweenM,N{\displaystyle M,N} andθ1,θ3{\displaystyle \theta _{1},\theta _{3}} is

M(z)=21/4eπz2/(2ϖ2)πϖθ1(πzϖ,eπ),{\displaystyle M(z)=2^{-1/4}e^{\pi z^{2}/(2\varpi ^{2})}{\sqrt {\frac {\pi }{\varpi }}}\theta _{1}\left({\frac {\pi z}{\varpi }},e^{-\pi }\right),}
N(z)=21/4eπz2/(2ϖ2)πϖθ3(πzϖ,eπ){\displaystyle N(z)=2^{-1/4}e^{\pi z^{2}/(2\varpi ^{2})}{\sqrt {\frac {\pi }{\varpi }}}\theta _{3}\left({\frac {\pi z}{\varpi }},e^{-\pi }\right)}

wherezC{\displaystyle z\in \mathbb {C} }.

Relation to other functions

[edit]

Relation to Weierstrass and Jacobi elliptic functions

[edit]

The lemniscate functions are closely related to theWeierstrass elliptic function(z;1,0){\displaystyle \wp (z;1,0)} (the "lemniscatic case"), with invariantsg2=1{\displaystyle g_{2}=1} andg3=0{\displaystyle g_{3}=0}. This lattice has fundamental periodsω1=2ϖ,{\displaystyle \omega _{1}={\sqrt {2}}\varpi ,} andω2=iω1{\displaystyle \omega _{2}=i\omega _{1}}. The associated constants of the Weierstrass function aree1=12, e2=0, e3=12.{\displaystyle e_{1}={\tfrac {1}{2}},\ e_{2}=0,\ e_{3}=-{\tfrac {1}{2}}.}

The related case of a Weierstrass elliptic function withg2=a{\displaystyle g_{2}=a},g3=0{\displaystyle g_{3}=0} may be handled by a scaling transformation. However, this may involve complex numbers. If it is desired to remain within real numbers, there are two cases to consider:a>0{\displaystyle a>0} anda<0{\displaystyle a<0}. The periodparallelogram is either asquare or arhombus. The Weierstrass elliptic function(z;1,0){\displaystyle \wp (z;-1,0)} is called the "pseudolemniscatic case".[67]

The square of the lemniscate sine can be represented as

sl2z=1(z;4,0)=i2((1i)z;1,0)=2(2z+(i1)ϖ2;1,0){\displaystyle \operatorname {sl} ^{2}z={\frac {1}{\wp (z;4,0)}}={\frac {i}{2\wp ((1-i)z;-1,0)}}={-2\wp }{\left({\sqrt {2}}z+(i-1){\frac {\varpi }{\sqrt {2}}};1,0\right)}}

where the second and third argument of{\displaystyle \wp } denote the lattice invariantsg2{\displaystyle g_{2}} andg3{\displaystyle g_{3}}. The lemniscate sine is arational function in the Weierstrass elliptic function and its derivative:[68]

slz=2(z;1,0)(z;1,0).{\displaystyle \operatorname {sl} z=-2{\frac {\wp (z;-1,0)}{\wp '(z;-1,0)}}.}

The lemniscate functions can also be written in terms ofJacobi elliptic functions. The Jacobi elliptic functionssn{\displaystyle \operatorname {sn} } andcd{\displaystyle \operatorname {cd} } with positive real elliptic modulus have an "upright" rectangular lattice aligned with real and imaginary axes. Alternately, the functionssn{\displaystyle \operatorname {sn} } andcd{\displaystyle \operatorname {cd} } with modulusi{\displaystyle i} (andsd{\displaystyle \operatorname {sd} } andcn{\displaystyle \operatorname {cn} } with modulus1/2{\displaystyle 1/{\sqrt {2}}}) have a square period lattice rotated 1/8 turn.[69][70]

slz=sn(z;i)=sc(z;2)=12sd(2z;12){\displaystyle \operatorname {sl} z=\operatorname {sn} (z;i)=\operatorname {sc} (z;{\sqrt {2}})={{\tfrac {1}{\sqrt {2}}}\operatorname {sd} }\left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)}
clz=cd(z;i)=dn(z;2)=cn(2z;12){\displaystyle \operatorname {cl} z=\operatorname {cd} (z;i)=\operatorname {dn} (z;{\sqrt {2}})={\operatorname {cn} }\left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)}

where the second arguments denote the elliptic modulusk{\displaystyle k}.

The functionssl~{\displaystyle {\tilde {\operatorname {sl} }}} andcl~{\displaystyle {\tilde {\operatorname {cl} }}} can also be expressed in terms of Jacobi elliptic functions:

sl~z=cd(z;i)sd(z;i)=dn(z;2)sn(z;2)=12cn(2z;12)sn(2z;12),{\displaystyle {\tilde {\operatorname {sl} }}\,z=\operatorname {cd} (z;i)\operatorname {sd} (z;i)=\operatorname {dn} (z;{\sqrt {2}})\operatorname {sn} (z;{\sqrt {2}})={\tfrac {1}{\sqrt {2}}}\operatorname {cn} \left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)\operatorname {sn} \left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right),}
cl~z=cd(z;i)nd(z;i)=dn(z;2)cn(z;2)=cn(2z;12)dn(2z;12).{\displaystyle {\tilde {\operatorname {cl} }}\,z=\operatorname {cd} (z;i)\operatorname {nd} (z;i)=\operatorname {dn} (z;{\sqrt {2}})\operatorname {cn} (z;{\sqrt {2}})=\operatorname {cn} \left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)\operatorname {dn} \left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right).}

Relation to the modular lambda function

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(August 2024) (Learn how and when to remove this message)

The lemniscate sine can be used for the computation of values of themodular lambda function:

k=1nsl(2k12n+1ϖ2)=λ((2n+1)i)1λ((2n+1)i)8{\displaystyle \prod _{k=1}^{n}\;{\operatorname {sl} }{\left({\frac {2k-1}{2n+1}}{\frac {\varpi }{2}}\right)}={\sqrt[{8}]{\frac {\lambda ((2n+1)i)}{1-\lambda ((2n+1)i)}}}}

For example:

sl(114ϖ)sl(314ϖ)sl(514ϖ)=λ(7i)1λ(7i)8=tan(12arccsc(1287+21+127+1))=22+7+21+87+214+67+455+1727sl(118ϖ)sl(318ϖ)sl(518ϖ)sl(718ϖ)=λ(9i)1λ(9i)8=tan(||π4arctan(||223232233+31124||)){\displaystyle {\begin{aligned}&{\operatorname {sl} }{\bigl (}{\tfrac {1}{14}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {3}{14}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {5}{14}}\varpi {\bigr )}\\[7mu]&\quad {}={\sqrt[{8}]{\frac {\lambda (7i)}{1-\lambda (7i)}}}={\tan }{\Bigl (}{{\tfrac {1}{2}}\operatorname {arccsc} }{\Bigl (}{\tfrac {1}{2}}{\sqrt {8{\sqrt {7}}+21}}+{\tfrac {1}{2}}{\sqrt {7}}+1{\Bigr )}{\Bigr )}\\[7mu]&\quad {}={\frac {2}{2+{\sqrt {7}}+{\sqrt {21+8{\sqrt {7}}}}+{\sqrt {2{14+6{\sqrt {7}}+{\sqrt {455+172{\sqrt {7}}}}}}}}}\\[18mu]&{\operatorname {sl} }{\bigl (}{\tfrac {1}{18}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {3}{18}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {5}{18}}\varpi {\bigr )}\,{\operatorname {sl} }{\bigl (}{\tfrac {7}{18}}\varpi {\bigr )}\\&\quad {}={\sqrt[{8}]{\frac {\lambda (9i)}{1-\lambda (9i)}}}=\tan \left({\vphantom {\frac {\Big |}{\Big |}}}\right.{\frac {\pi }{4}}-\arctan \left({\vphantom {\frac {\Big |}{\Big |}}}\right.{\frac {2{\sqrt[{3}]{2{\sqrt {3}}-2}}-2{\sqrt[{3}]{2-{\sqrt {3}}}}+{\sqrt {3}}-1}{\sqrt[{4}]{12}}}\left.\left.{\vphantom {\frac {\Big |}{\Big |}}}\right)\right)\end{aligned}}}

Inverse functions

[edit]

The inverse function of the lemniscate sine is the lemniscate arcsine, defined as[71]

arcslx=0xdt1t4.{\displaystyle \operatorname {arcsl} x=\int _{0}^{x}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}.}

It can also be represented by thehypergeometric function:

arcslx=x2F1(12,14;54;x4){\displaystyle \operatorname {arcsl} x=x\,{}_{2}F_{1}{\bigl (}{\tfrac {1}{2}},{\tfrac {1}{4}};{\tfrac {5}{4}};x^{4}{\bigr )}}

which can be easily seen by using thebinomial series.

The inverse function of the lemniscate cosine is the lemniscate arccosine. This function is defined by following expression:

arcclx=x1dt1t4=12ϖarcslx{\displaystyle \operatorname {arccl} x=\int _{x}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}={\tfrac {1}{2}}\varpi -\operatorname {arcsl} x}

Forx{\displaystyle x} in the interval1x1{\displaystyle -1\leq x\leq 1},slarcslx=x{\displaystyle \operatorname {sl} \operatorname {arcsl} x=x} andclarcclx=x{\displaystyle \operatorname {cl} \operatorname {arccl} x=x}

For the halving of the lemniscate arc length these formulas are valid:[citation needed]

sl(12arcslx)=sin(12arcsinx)sech(12arsinhx)sl(12arcslx)2=tan(14arcsinx2){\displaystyle {\begin{aligned}{\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\operatorname {arcsl} x{\bigr )}&={\sin }{\bigl (}{\tfrac {1}{2}}\arcsin x{\bigr )}\,{\operatorname {sech} }{\bigl (}{\tfrac {1}{2}}\operatorname {arsinh} x{\bigr )}\\{\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\operatorname {arcsl} x{\bigr )}^{2}&={\tan }{\bigl (}{\tfrac {1}{4}}\arcsin x^{2}{\bigr )}\end{aligned}}}

Furthermore there are the so called Hyperbolic lemniscate area functions:[citation needed]

aslh(x)=0x1y4+1dy=12F(2arctanx;12){\displaystyle \operatorname {aslh} (x)=\int _{0}^{x}{\frac {1}{\sqrt {y^{4}+1}}}\mathrm {d} y={\tfrac {1}{2}}F\left(2\arctan x;{\tfrac {1}{\sqrt {2}}}\right)}
aclh(x)=x1y4+1dy=12F(2arccotx;12){\displaystyle \operatorname {aclh} (x)=\int _{x}^{\infty }{\frac {1}{\sqrt {y^{4}+1}}}\mathrm {d} y={\tfrac {1}{2}}F\left(2\operatorname {arccot} x;{\tfrac {1}{\sqrt {2}}}\right)}
aclh(x)=ϖ2aslh(x){\displaystyle \operatorname {aclh} (x)={\frac {\varpi }{\sqrt {2}}}-\operatorname {aslh} (x)}
aslh(x)=2arcsl(x/1+x4+1){\displaystyle \operatorname {aslh} (x)={\sqrt {2}}\operatorname {arcsl} \left(x{\Big /}{\sqrt {\textstyle 1+{\sqrt {x^{4}+1}}}}\right)}
arcsl(x)=2aslh(x/1+1x4){\displaystyle \operatorname {arcsl} (x)={\sqrt {2}}\operatorname {aslh} \left(x{\Big /}{\sqrt {\textstyle 1+{\sqrt {1-x^{4}}}}}\right)}

Expression using elliptic integrals

[edit]

The lemniscate arcsine and the lemniscate arccosine can also be expressed by the Legendre-Form:

These functions can be displayed directly by using the incompleteelliptic integral of the first kind:[citation needed]

arcslx=12F(arcsin2x1+x2;12){\displaystyle \operatorname {arcsl} x={\frac {1}{\sqrt {2}}}F\left({\arcsin }{\frac {{\sqrt {2}}x}{\sqrt {1+x^{2}}}};{\frac {1}{\sqrt {2}}}\right)}
arcslx=2(21)F(arcsin(2+1)x1+x2+1;(21)2){\displaystyle \operatorname {arcsl} x=2({\sqrt {2}}-1)F\left({\arcsin }{\frac {({\sqrt {2}}+1)x}{{\sqrt {1+x^{2}}}+1}};({\sqrt {2}}-1)^{2}\right)}

The arc lengths of the lemniscate can also be expressed by only using the arc lengths ofellipses (calculated by elliptic integrals of the second kind):[citation needed]

arcslx=2+22E(arcsin(2+1)x1+x2+1;(21)2)  E(arcsin2x1+x2;12)+x1x22(1+x2+1+x2){\displaystyle {\begin{aligned}\operatorname {arcsl} x={}&{\frac {2+{\sqrt {2}}}{2}}E\left({\arcsin }{\frac {({\sqrt {2}}+1)x}{{\sqrt {1+x^{2}}}+1}};({\sqrt {2}}-1)^{2}\right)\\[5mu]&\ \ -E\left({\arcsin }{\frac {{\sqrt {2}}x}{\sqrt {1+x^{2}}}};{\frac {1}{\sqrt {2}}}\right)+{\frac {x{\sqrt {1-x^{2}}}}{{\sqrt {2}}(1+x^{2}+{\sqrt {1+x^{2}}})}}\end{aligned}}}

The lemniscate arccosine has this expression:[citation needed]

arcclx=12F(arccosx;12){\displaystyle \operatorname {arccl} x={\frac {1}{\sqrt {2}}}F\left(\arccos x;{\frac {1}{\sqrt {2}}}\right)}

Use in integration

[edit]

The lemniscate arcsine can be used to integrate many functions. Here is a list of important integrals (theconstants of integration are omitted):

11x4dx=arcslx{\displaystyle \int {\frac {1}{\sqrt {1-x^{4}}}}\,\mathrm {d} x=\operatorname {arcsl} x}
1(x2+1)(2x2+1)dx=arcslxx2+1{\displaystyle \int {\frac {1}{\sqrt {(x^{2}+1)(2x^{2}+1)}}}\,\mathrm {d} x={\operatorname {arcsl} }{\frac {x}{\sqrt {x^{2}+1}}}}
1x4+6x2+1dx=arcsl2xx4+6x2+1+x2+1{\displaystyle \int {\frac {1}{\sqrt {x^{4}+6x^{2}+1}}}\,\mathrm {d} x={\operatorname {arcsl} }{\frac {{\sqrt {2}}x}{\sqrt {{\sqrt {x^{4}+6x^{2}+1}}+x^{2}+1}}}}
1x4+1dx=2arcslxx4+1+1{\displaystyle \int {\frac {1}{\sqrt {x^{4}+1}}}\,\mathrm {d} x={{\sqrt {2}}\operatorname {arcsl} }{\frac {x}{\sqrt {{\sqrt {x^{4}+1}}+1}}}}
1(1x4)34dx=2arcslx1+1x4{\displaystyle \int {\frac {1}{\sqrt[{4}]{(1-x^{4})^{3}}}}\,\mathrm {d} x={{\sqrt {2}}\operatorname {arcsl} }{\frac {x}{\sqrt {1+{\sqrt {1-x^{4}}}}}}}
1(x4+1)34dx=arcslxx4+14{\displaystyle \int {\frac {1}{\sqrt[{4}]{(x^{4}+1)^{3}}}}\,\mathrm {d} x={\operatorname {arcsl} }{\frac {x}{\sqrt[{4}]{x^{4}+1}}}}
1(1x2)34dx=2arcslx1+1x2{\displaystyle \int {\frac {1}{\sqrt[{4}]{(1-x^{2})^{3}}}}\,\mathrm {d} x={2\operatorname {arcsl} }{\frac {x}{1+{\sqrt {1-x^{2}}}}}}
1(x2+1)34dx=2arcslxx2+1+1{\displaystyle \int {\frac {1}{\sqrt[{4}]{(x^{2}+1)^{3}}}}\,\mathrm {d} x={2\operatorname {arcsl} }{\frac {x}{{\sqrt {x^{2}+1}}+1}}}
1(ax2+bx+c)34dx=224a2cab24arcsl2ax+b4a(ax2+bx+c)+4acb2{\displaystyle \int {\frac {1}{\sqrt[{4}]{(ax^{2}+bx+c)^{3}}}}\,\mathrm {d} x={{\frac {2{\sqrt {2}}}{\sqrt[{4}]{4a^{2}c-ab^{2}}}}\operatorname {arcsl} }{\frac {2ax+b}{{\sqrt {4a(ax^{2}+bx+c)}}+{\sqrt {4ac-b^{2}}}}}}
sechxdx=2arcsltanh12x{\displaystyle \int {\sqrt {\operatorname {sech} x}}\,\mathrm {d} x={2\operatorname {arcsl} }\tanh {\tfrac {1}{2}}x}
secxdx=2arcsltan12x{\displaystyle \int {\sqrt {\sec x}}\,\mathrm {d} x={2\operatorname {arcsl} }\tan {\tfrac {1}{2}}x}

Hyperbolic lemniscate functions

[edit]

Fundamental information

[edit]
The hyperbolic lemniscate sine (red) and hyperbolic lemniscate cosine (purple) applied to a real argument, in comparison with the trigonometric tangent (pale dashed red).
The hyperbolic lemniscate sine in the complex plane. Dark areas represent zeros and bright areas represent poles. The complex argument is represented by varying hue.

For convenience, letσ=2ϖ{\displaystyle \sigma ={\sqrt {2}}\varpi }.σ{\displaystyle \sigma } is the "squircular" analog ofπ{\displaystyle \pi } (see below). The decimal expansion ofσ{\displaystyle \sigma } (i.e.3.7081{\displaystyle 3.7081\ldots }[72]) appears in entry 34e of chapter 11 of Ramanujan's second notebook.[73]

The hyperbolic lemniscate sine (slh) and cosine (clh) can be defined as inverses of elliptic integrals as follows:

z=0slhzdt1+t4=clhzdt1+t4{\displaystyle z\mathrel {\overset {*}{=}} \int _{0}^{\operatorname {slh} z}{\frac {\mathrm {d} t}{\sqrt {1+t^{4}}}}=\int _{\operatorname {clh} z}^{\infty }{\frac {\mathrm {d} t}{\sqrt {1+t^{4}}}}}

where in(){\displaystyle (*)},z{\displaystyle z} is in the square with corners{σ/2,σi/2,σ/2,σi/2}{\displaystyle \{\sigma /2,\sigma i/2,-\sigma /2,-\sigma i/2\}}. Beyond that square, the functions can be analytically continued to meromorphic functions in the whole complex plane.

The complete integral has the value:

0dtt4+1=14B(14,14)=σ2=1.854074677301371{\displaystyle \int _{0}^{\infty }{\frac {\mathrm {d} t}{\sqrt {t^{4}+1}}}={\tfrac {1}{4}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{4}}{\bigr )}={\frac {\sigma }{2}}=1.85407\;46773\;01371\ldots }

Therefore, the two defined functions have following relation to each other:

slhz=clh(σ2z){\displaystyle \operatorname {slh} z={\operatorname {clh} }{{\Bigl (}{\frac {\sigma }{2}}-z{\Bigr )}}}

The product of hyperbolic lemniscate sine and hyperbolic lemniscate cosine is equal to one:

slhzclhz=1{\displaystyle \operatorname {slh} z\,\operatorname {clh} z=1}

The functionsslh{\displaystyle \operatorname {slh} } andclh{\displaystyle \operatorname {clh} } have a square period lattice with fundamental periods{σ,σi}{\displaystyle \{\sigma ,\sigma i\}}.

The hyperbolic lemniscate functions can be expressed in terms of lemniscate sine and lemniscate cosine:

slh(2z)=(1+cl2z)slz2clz{\displaystyle \operatorname {slh} {\bigl (}{\sqrt {2}}z{\bigr )}={\frac {(1+\operatorname {cl} ^{2}z)\operatorname {sl} z}{{\sqrt {2}}\operatorname {cl} z}}}
clh(2z)=(1+sl2z)clz2slz{\displaystyle \operatorname {clh} {\bigl (}{\sqrt {2}}z{\bigr )}={\frac {(1+\operatorname {sl} ^{2}z)\operatorname {cl} z}{{\sqrt {2}}\operatorname {sl} z}}}

But there is also a relation to theJacobi elliptic functions with the elliptic modulus one bysquare root of two:

slhz=sn(z;1/2)cd(z;1/2){\displaystyle \operatorname {slh} z={\frac {\operatorname {sn} (z;1/{\sqrt {2}})}{\operatorname {cd} (z;1/{\sqrt {2}})}}}
clhz=cd(z;1/2)sn(z;1/2){\displaystyle \operatorname {clh} z={\frac {\operatorname {cd} (z;1/{\sqrt {2}})}{\operatorname {sn} (z;1/{\sqrt {2}})}}}

The hyperbolic lemniscate sine has following imaginary relation to the lemniscate sine:

slhz=1i2sl(1+i2z)=sl(14z)14{\displaystyle \operatorname {slh} z={\frac {1-i}{\sqrt {2}}}\operatorname {sl} \left({\frac {1+i}{\sqrt {2}}}z\right)={\frac {\operatorname {sl} \left({\sqrt[{4}]{-1}}z\right)}{\sqrt[{4}]{-1}}}}

This is analogous to the relationship between hyperbolic and trigonometric sine:

sinhz=isin(iz)=sin(12z)12{\displaystyle \sinh z=-i\sin(iz)={\frac {\sin \left({\sqrt[{2}]{-1}}z\right)}{\sqrt[{2}]{-1}}}}

Relation to quartic Fermat curve

[edit]

Hyperbolic Lemniscate Tangent and Cotangent

[edit]

This image shows the standardized superelliptic Fermat squircle curve of the fourth degree:

Superellipse with the relationx4+y4=1{\displaystyle x^{4}+y^{4}=1}

In a quarticFermat curvex4+y4=1{\displaystyle x^{4}+y^{4}=1} (sometimes called asquircle) the hyperbolic lemniscate sine and cosine are analogous to the tangent and cotangent functions in a unit circlex2+y2=1{\displaystyle x^{2}+y^{2}=1} (the quadratic Fermat curve). If the origin and a point on the curve are connected to each other by a lineL{\displaystyle L}, the hyperbolic lemniscate sine of twice the enclosed area between this line and the x-axis is the y-coordinate of the intersection ofL{\displaystyle L} with the linex=1{\displaystyle x=1}.[74] Just asπ{\displaystyle \pi } is the area enclosed by the circlex2+y2=1{\displaystyle x^{2}+y^{2}=1}, the area enclosed by the squirclex4+y4=1{\displaystyle x^{4}+y^{4}=1} isσ{\displaystyle \sigma }. Moreover,

M(1,1/2)=πσ{\displaystyle M(1,1/{\sqrt {2}})={\frac {\pi }{\sigma }}}

whereM{\displaystyle M} is thearithmetic–geometric mean.

The hyperbolic lemniscate sine satisfies the argument addition identity:

slh(a+b)=slhaslhb+slhbslha1slh2aslh2b{\displaystyle \operatorname {slh} (a+b)={\frac {\operatorname {slh} a\operatorname {slh} 'b+\operatorname {slh} b\operatorname {slh} 'a}{1-\operatorname {slh} ^{2}a\,\operatorname {slh} ^{2}b}}}

Whenu{\displaystyle u} is real, the derivative and the originalantiderivative ofslh{\displaystyle \operatorname {slh} } andclh{\displaystyle \operatorname {clh} } can be expressed in this way:

dduslh(u)=1+slh(u)4{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\operatorname {slh} (u)={\sqrt {1+\operatorname {slh} (u)^{4}}}}

dduclh(u)=1+clh(u)4{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\operatorname {clh} (u)=-{\sqrt {1+\operatorname {clh} (u)^{4}}}}

ddu12arsinh[slh(u)2]=slh(u){\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\,{\frac {1}{2}}\operatorname {arsinh} {\bigl [}\operatorname {slh} (u)^{2}{\bigr ]}=\operatorname {slh} (u)}

ddu12arsinh[clh(u)2]=clh(u){\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}-\,{\frac {1}{2}}\operatorname {arsinh} {\bigl [}\operatorname {clh} (u)^{2}{\bigr ]}=\operatorname {clh} (u)}

There are also the Hyperbolic lemniscate tangent and the Hyperbolic lemniscate coangent als further functions:

The functions tlh and ctlh fulfill the identities described in the differential equation mentioned:

tlh(2u)=sin4(2u)=sl(u)cl2u+1sl2u+cl2u{\displaystyle {\text{tlh}}({\sqrt {2}}\,u)=\sin _{4}({\sqrt {2}}\,u)=\operatorname {sl} (u){\sqrt {\frac {\operatorname {cl} ^{2}u+1}{\operatorname {sl} ^{2}u+\operatorname {cl} ^{2}u}}}}
ctlh(2u)=cos4(2u)=cl(u)sl2u+1sl2u+cl2u{\displaystyle {\text{ctlh}}({\sqrt {2}}\,u)=\cos _{4}({\sqrt {2}}\,u)=\operatorname {cl} (u){\sqrt {\frac {\operatorname {sl} ^{2}u+1}{\operatorname {sl} ^{2}u+\operatorname {cl} ^{2}u}}}}

The functional designation sl stands for the lemniscatic sine and the designation cl stands for the lemniscatic cosine.In addition, those relations to theJacobi elliptic functions are valid:

tlh(u)=sn(u;122)cd(u;122)4+sn(u;122)44{\displaystyle {\text{tlh}}(u)={\frac {{\text{sn}}(u;{\tfrac {1}{2}}{\sqrt {2}})}{\sqrt[{4}]{{\text{cd}}(u;{\tfrac {1}{2}}{\sqrt {2}})^{4}+{\text{sn}}(u;{\tfrac {1}{2}}{\sqrt {2}})^{4}}}}}
ctlh(u)=cd(u;122)cd(u;122)4+sn(u;122)44{\displaystyle {\text{ctlh}}(u)={\frac {{\text{cd}}(u;{\tfrac {1}{2}}{\sqrt {2}})}{\sqrt[{4}]{{\text{cd}}(u;{\tfrac {1}{2}}{\sqrt {2}})^{4}+{\text{sn}}(u;{\tfrac {1}{2}}{\sqrt {2}})^{4}}}}}

Whenu{\displaystyle u} is real, the derivative andquarter period integral oftlh{\displaystyle \operatorname {tlh} } andctlh{\displaystyle \operatorname {ctlh} } can be expressed in this way:

ddutlh(u)=ctlh(u)3{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\operatorname {tlh} (u)=\operatorname {ctlh} (u)^{3}}

dductlh(u)=tlh(u)3{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} u}}\operatorname {ctlh} (u)=-\operatorname {tlh} (u)^{3}}

0ϖ/2tlh(u)du=ϖ2{\displaystyle \int _{0}^{\varpi /{\sqrt {2}}}\operatorname {tlh} (u)\,\mathrm {d} u={\frac {\varpi }{2}}}

0ϖ/2ctlh(u)du=ϖ2{\displaystyle \int _{0}^{\varpi /{\sqrt {2}}}\operatorname {ctlh} (u)\,\mathrm {d} u={\frac {\varpi }{2}}}

Derivation of the Hyperbolic Lemniscate functions

[edit]
With respect to the quartic Fermat curvex4+y4=1{\displaystyle x^{4}+y^{4}=1}, the hyperbolic lemniscate sine is analogous to the trigonometric tangent function. Unlikeslh{\displaystyle \operatorname {slh} } andclh{\displaystyle \operatorname {clh} }, the functionssin4{\displaystyle \sin _{4}} andcos4{\displaystyle \cos _{4}} cannot be analytically extended to meromorphic functions in the whole complex plane.[75]

The horizontal and vertical coordinates of this superellipse are dependent on twice the enclosed area w = 2A, so the following conditions must be met:

x(w)4+y(w)4=1{\displaystyle x(w)^{4}+y(w)^{4}=1}
ddwx(w)=y(w)3{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} w}}x(w)=-y(w)^{3}}
ddwy(w)=x(w)3{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} w}}y(w)=x(w)^{3}}
x(w=0)=1{\displaystyle x(w=0)=1}
y(w=0)=0{\displaystyle y(w=0)=0}

The solutions to this system of equations are as follows:

x(w)=cl(122w)[sl(122w)2+1]1/2[sl(122w)2+cl(122w)2]1/2{\displaystyle x(w)=\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)[\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+1]^{1/2}[\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}]^{-1/2}}
y(w)=sl(122w)[cl(122w)2+1]1/2[sl(122w)2+cl(122w)2]1/2{\displaystyle y(w)=\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)[\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+1]^{1/2}[\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}]^{-1/2}}

The following therefore applies to the quotient:

y(w)x(w)=sl(122w)[cl(122w)2+1]1/2cl(122w)[sl(122w)2+1]1/2=slh(w){\displaystyle {\frac {y(w)}{x(w)}}={\frac {\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)[\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+1]^{1/2}}{\operatorname {cl} ({\tfrac {1}{2}}{\sqrt {2}}w)[\operatorname {sl} ({\tfrac {1}{2}}{\sqrt {2}}w)^{2}+1]^{1/2}}}=\operatorname {slh} (w)}

The functions x(w) and y(w) are calledcotangent hyperbolic lemniscatus andhyperbolic tangent.

x(w)=ctlh(w){\displaystyle x(w)={\text{ctlh}}(w)}
y(w)=tlh(w){\displaystyle y(w)={\text{tlh}}(w)}

The sketch also shows the fact that the derivation of the Areasinus hyperbolic lemniscatus function is equal to the reciprocal of the square root of the successor of thefourth power function.

First proof: comparison with the derivative of the arctangent

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(August 2024) (Learn how and when to remove this message)

There is a black diagonal on the sketch shown on the right. The length of the segment that runs perpendicularly from the intersection of this black diagonal with the red vertical axis to the point (1|0) should be called s. And the length of the section of the black diagonal from the coordinate origin point to the point of intersection of this diagonal with the cyan curved line of the superellipse has the following value depending on the slh value:

D(s)=(1s4+14)2+(ss4+14)2=s2+1s4+14{\displaystyle D(s)={\sqrt {{\biggl (}{\frac {1}{\sqrt[{4}]{s^{4}+1}}}{\biggr )}^{2}+{\biggl (}{\frac {s}{\sqrt[{4}]{s^{4}+1}}}{\biggr )}^{2}}}={\frac {\sqrt {s^{2}+1}}{\sqrt[{4}]{s^{4}+1}}}}

This connection is described by thePythagorean theorem.

An analogous unit circle results in the arctangent of the circle trigonometric with the described area allocation.

The following derivation applies to this:

ddsarctan(s)=1s2+1{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} s}}\arctan(s)={\frac {1}{s^{2}+1}}}

To determine the derivation of the areasinus lemniscatus hyperbolicus, the comparison of the infinitesimally small triangular areas for the same diagonal in the superellipse and the unit circle is set up below. Because the summation of the infinitesimally small triangular areas describes the area dimensions. In the case of the superellipse in the picture, half of the area concerned is shown in green. Because of the quadratic ratio of the areas to the lengths of triangles with the same infinitesimally small angle at the origin of the coordinates, the following formula applies:

ddsaslh(s)=[ddsarctan(s)]D(s)2=1s2+1D(s)2=1s2+1(s2+1s4+14)2=1s4+1{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} s}}{\text{aslh}}(s)={\biggl [}{\frac {\mathrm {d} }{\mathrm {d} s}}\arctan(s){\biggr ]}D(s)^{2}={\frac {1}{s^{2}+1}}D(s)^{2}={\frac {1}{s^{2}+1}}{\biggl (}{\frac {\sqrt {s^{2}+1}}{\sqrt[{4}]{s^{4}+1}}}{\biggr )}^{2}={\frac {1}{\sqrt {s^{4}+1}}}}

Second proof: integral formation and area subtraction

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(August 2024) (Learn how and when to remove this message)

In the picture shown, the area tangent lemniscatus hyperbolicus assigns the height of the intersection of the diagonal and the curved line to twice the green area. The green area itself is created as the difference integral of the superellipse function from zero to the relevant height value minus the area of the adjacent triangle:

atlh(v)=2(0v1w44dw)v1v44{\displaystyle {\text{atlh}}(v)=2{\biggl (}\int _{0}^{v}{\sqrt[{4}]{1-w^{4}}}\mathrm {d} w{\biggr )}-v{\sqrt[{4}]{1-v^{4}}}}
ddvatlh(v)=21v44(ddvv1v44)=1(1v4)3/4{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} v}}{\text{atlh}}(v)=2{\sqrt[{4}]{1-v^{4}}}-{\biggl (}{\frac {\mathrm {d} }{\mathrm {d} v}}v{\sqrt[{4}]{1-v^{4}}}{\biggr )}={\frac {1}{(1-v^{4})^{3/4}}}}

The following transformation applies:

aslh(x)=atlh(xx4+14){\displaystyle {\text{aslh}}(x)={\text{atlh}}{\biggl (}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}}

And so, according to thechain rule, this derivation holds:

ddxaslh(x)=ddxatlh(xx4+14)=(ddxxx4+14)[1(xx4+14)4]3/4={\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\text{aslh}}(x)={\frac {\mathrm {d} }{\mathrm {d} x}}{\text{atlh}}{\biggl (}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}={\biggl (}{\frac {\mathrm {d} }{\mathrm {d} x}}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}{\biggl [}1-{\biggl (}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}^{4}{\biggr ]}^{-3/4}=}
=1(x4+1)5/4[1(xx4+14)4]3/4=1(x4+1)5/4(1x4+1)3/4=1x4+1{\displaystyle ={\frac {1}{(x^{4}+1)^{5/4}}}{\biggl [}1-{\biggl (}{\frac {x}{\sqrt[{4}]{x^{4}+1}}}{\biggr )}^{4}{\biggr ]}^{-3/4}={\frac {1}{(x^{4}+1)^{5/4}}}{\biggl (}{\frac {1}{x^{4}+1}}{\biggr )}^{-3/4}={\frac {1}{\sqrt {x^{4}+1}}}}

Specific values

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(August 2024) (Learn how and when to remove this message)

This list shows the values of theHyperbolic Lemniscate Sine accurately. Recall that,

0dtt4+1=14B(14,14)=ϖ2=σ2=1.85407{\displaystyle \int _{0}^{\infty }{\frac {\operatorname {d} t}{\sqrt {t^{4}+1}}}={\tfrac {1}{4}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{4}}{\bigr )}={\frac {\varpi }{\sqrt {2}}}={\frac {\sigma }{2}}=1.85407\ldots }

whereas12B(12,12)=π2,{\displaystyle {\tfrac {1}{2}}\mathrm {B} {\bigl (}{\tfrac {1}{2}},{\tfrac {1}{2}}{\bigr )}={\tfrac {\pi }{2}},} so the values below such asslh(ϖ22)=slh(σ4)=1{\displaystyle {\operatorname {slh} }{\bigl (}{\tfrac {\varpi }{2{\sqrt {2}}}}{\bigr )}={\operatorname {slh} }{\bigl (}{\tfrac {\sigma }{4}}{\bigr )}=1} are analogous to the trigonometricsin(π2)=1{\displaystyle {\sin }{\bigl (}{\tfrac {\pi }{2}}{\bigr )}=1}.

slh(ϖ22)=1{\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{2{\sqrt {2}}}}\right)=1}
slh(ϖ32)=1342334{\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{3{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{3}}}{\sqrt[{4}]{2{\sqrt {3}}-3}}}
slh(2ϖ32)=23+34{\displaystyle \operatorname {slh} \,\left({\frac {2\varpi }{3{\sqrt {2}}}}\right)={\sqrt[{4}]{2{\sqrt {3}}+3}}}
slh(ϖ42)=124(2+11){\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{4{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{2}}}({\sqrt {{\sqrt {2}}+1}}-1)}
slh(3ϖ42)=124(2+1+1){\displaystyle \operatorname {slh} \,\left({\frac {3\varpi }{4{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{2}}}({\sqrt {{\sqrt {2}}+1}}+1)}
slh(ϖ52)=184512045+1=2524sin(120π)sin(320π){\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{5{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{8}}}{\sqrt {{\sqrt {5}}-1}}{\sqrt {{\sqrt[{4}]{20}}-{\sqrt {{\sqrt {5}}+1}}}}=2{\sqrt[{4}]{{\sqrt {5}}-2}}{\sqrt {\sin({\tfrac {1}{20}}\pi )\sin({\tfrac {3}{20}}\pi )}}}
slh(2ϖ52)=1224(5+1)2045+1=25+24sin(120π)sin(320π){\displaystyle \operatorname {slh} \,\left({\frac {2\varpi }{5{\sqrt {2}}}}\right)={\frac {1}{2{\sqrt[{4}]{2}}}}({\sqrt {5}}+1){\sqrt {{\sqrt[{4}]{20}}-{\sqrt {{\sqrt {5}}+1}}}}=2{\sqrt[{4}]{{\sqrt {5}}+2}}{\sqrt {\sin({\tfrac {1}{20}}\pi )\sin({\tfrac {3}{20}}\pi )}}}
slh(3ϖ52)=18451204+5+1=2524cos(120π)cos(320π){\displaystyle \operatorname {slh} \,\left({\frac {3\varpi }{5{\sqrt {2}}}}\right)={\frac {1}{\sqrt[{4}]{8}}}{\sqrt {{\sqrt {5}}-1}}{\sqrt {{\sqrt[{4}]{20}}+{\sqrt {{\sqrt {5}}+1}}}}=2{\sqrt[{4}]{{\sqrt {5}}-2}}{\sqrt {\cos({\tfrac {1}{20}}\pi )\cos({\tfrac {3}{20}}\pi )}}}
slh(4ϖ52)=1224(5+1)204+5+1=25+24cos(120π)cos(320π){\displaystyle \operatorname {slh} \,\left({\frac {4\varpi }{5{\sqrt {2}}}}\right)={\frac {1}{2{\sqrt[{4}]{2}}}}({\sqrt {5}}+1){\sqrt {{\sqrt[{4}]{20}}+{\sqrt {{\sqrt {5}}+1}}}}=2{\sqrt[{4}]{{\sqrt {5}}+2}}{\sqrt {\cos({\tfrac {1}{20}}\pi )\cos({\tfrac {3}{20}}\pi )}}}
slh(ϖ62)=12(23+3+1)(12334){\displaystyle \operatorname {slh} \,\left({\frac {\varpi }{6{\sqrt {2}}}}\right)={\frac {1}{2}}({\sqrt {2{\sqrt {3}}+3}}+1)(1-{\sqrt[{4}]{2{\sqrt {3}}-3}})}
slh(5ϖ62)=12(23+3+1)(1+2334){\displaystyle \operatorname {slh} \,\left({\frac {5\varpi }{6{\sqrt {2}}}}\right)={\frac {1}{2}}({\sqrt {2{\sqrt {3}}+3}}+1)(1+{\sqrt[{4}]{2{\sqrt {3}}-3}})}

That table shows the most important values of theHyperbolic Lemniscate Tangent and Cotangent functions:

z{\displaystyle z}clhz{\displaystyle \operatorname {clh} z}slhz{\displaystyle \operatorname {slh} z}ctlhz=cos4z{\displaystyle \operatorname {ctlh} z=\cos _{4}z}tlhz=sin4z{\displaystyle \operatorname {tlh} z=\sin _{4}z}
0{\displaystyle 0}{\displaystyle \infty }0{\displaystyle 0}1{\displaystyle 1}0{\displaystyle 0}
14σ{\displaystyle {\tfrac {1}{4}}\sigma }1{\displaystyle 1}1{\displaystyle 1}1/24{\displaystyle 1{\big /}{\sqrt[{4}]{2}}}1/24{\displaystyle 1{\big /}{\sqrt[{4}]{2}}}
12σ{\displaystyle {\tfrac {1}{2}}\sigma }0{\displaystyle 0}{\displaystyle \infty }0{\displaystyle 0}1{\displaystyle 1}
34σ{\displaystyle {\tfrac {3}{4}}\sigma }1{\displaystyle -1}1{\displaystyle -1}1/24{\displaystyle -1{\big /}{\sqrt[{4}]{2}}}1/24{\displaystyle 1{\big /}{\sqrt[{4}]{2}}}
σ{\displaystyle \sigma }{\displaystyle \infty }0{\displaystyle 0}1{\displaystyle -1}0{\displaystyle 0}

Combination and halving theorems

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(August 2024) (Learn how and when to remove this message)

Given thehyperbolic lemniscate tangent (tlh{\displaystyle \operatorname {tlh} }) andhyperbolic lemniscate cotangent (ctlh{\displaystyle \operatorname {ctlh} }). Recall thehyperbolic lemniscate area functions from the section on inverse functions,

aslh(x)=0x1y4+1dy{\displaystyle \operatorname {aslh} (x)=\int _{0}^{x}{\frac {1}{\sqrt {y^{4}+1}}}\mathrm {d} y}
aclh(x)=x1y4+1dy{\displaystyle \operatorname {aclh} (x)=\int _{x}^{\infty }{\frac {1}{\sqrt {y^{4}+1}}}\mathrm {d} y}

Then the following identities can be established,

tlh[aslh(x)]=ctlh[aclh(x)]=xx4+14{\displaystyle {\text{tlh}}{\bigl [}{\text{aslh}}(x){\bigr ]}={\text{ctlh}}{\bigl [}{\text{aclh}}(x){\bigr ]}={\frac {x}{\sqrt[{4}]{x^{4}+1}}}}
ctlh[aslh(x)]=tlh[aclh(x)]=1x4+14{\displaystyle {\text{ctlh}}{\bigl [}{\text{aslh}}(x){\bigr ]}={\text{tlh}}{\bigl [}{\text{aclh}}(x){\bigr ]}={\frac {1}{\sqrt[{4}]{x^{4}+1}}}}

hence the 4th power oftlh{\displaystyle \operatorname {tlh} } andctlh{\displaystyle \operatorname {ctlh} } for these arguments is equal to one,

tlh[aslh(x)]4+ctlh[aslh(x)]4=1{\displaystyle {\text{tlh}}{\bigl [}{\text{aslh}}(x){\bigr ]}^{4}+{\text{ctlh}}{\bigl [}{\text{aslh}}(x){\bigr ]}^{4}=1}
tlh[aclh(x)]4+ctlh[aclh(x)]4=1{\displaystyle {\text{tlh}}{\bigl [}{\text{aclh}}(x){\bigr ]}^{4}+{\text{ctlh}}{\bigl [}{\text{aclh}}(x){\bigr ]}^{4}=1}

so a 4th power version of thePythagorean theorem. The bisection theorem of the hyperbolic sinus lemniscatus reads as follows:

slh[12aslh(x)]=2xx2+1+x4+1+x4+1x2+1{\displaystyle {\text{slh}}{\bigl [}{\tfrac {1}{2}}{\text{aslh}}(x){\bigr ]}={\frac {{\sqrt {2}}x}{{\sqrt {x^{2}+1+{\sqrt {x^{4}+1}}}}+{\sqrt {{\sqrt {x^{4}+1}}-x^{2}+1}}}}}

This formula can be revealed as a combination of the following two formulas:

aslh(x)=2arcsl[x(x4+1+1)1/2]{\displaystyle \mathrm {aslh} (x)={\sqrt {2}}\,{\text{arcsl}}{\bigl [}x({\sqrt {x^{4}+1}}+1)^{-1/2}{\bigr ]}}
arcsl(x)=2aslh(2x1+x2+1x2){\displaystyle {\text{arcsl}}(x)={\sqrt {2}}\,{\text{aslh}}{\bigl (}{\frac {{\sqrt {2}}x}{{\sqrt {1+x^{2}}}+{\sqrt {1-x^{2}}}}}{\bigr )}}

In addition, the following formulas are valid for all real valuesxR{\displaystyle x\in \mathbb {R} }:

slh[12aclh(x)]=x4+1+x22xx4+1+x2=(x4+1x2+1)1/2(x4+1+1x){\displaystyle {\text{slh}}{\bigl [}{\tfrac {1}{2}}{\text{aclh}}(x){\bigr ]}={\sqrt {{\sqrt {x^{4}+1}}+x^{2}-{\sqrt {2}}x{\sqrt {{\sqrt {x^{4}+1}}+x^{2}}}}}={\bigl (}{\sqrt {x^{4}+1}}-x^{2}+1{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {x^{4}+1}}+1}}-x{\bigr )}}
clh[12aclh(x)]=x4+1+x2+2xx4+1+x2=(x4+1x2+1)1/2(x4+1+1+x){\displaystyle {\text{clh}}{\bigl [}{\tfrac {1}{2}}{\text{aclh}}(x){\bigr ]}={\sqrt {{\sqrt {x^{4}+1}}+x^{2}+{\sqrt {2}}x{\sqrt {{\sqrt {x^{4}+1}}+x^{2}}}}}={\bigl (}{\sqrt {x^{4}+1}}-x^{2}+1{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {x^{4}+1}}+1}}+x{\bigr )}}

These identities follow from the last-mentioned formula:

tlh[12aclh(x)]2=12222xx4+1x2=(2x2+2+2x4+1)1/2(x4+1+1x){\displaystyle {\text{tlh}}[{\tfrac {1}{2}}{\text{aclh}}(x)]^{2}={\tfrac {1}{2}}{\sqrt {2-2{\sqrt {2}}\,x{\sqrt {{\sqrt {x^{4}+1}}-x^{2}}}}}={\bigl (}2x^{2}+2+2{\sqrt {x^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {x^{4}+1}}+1}}-x{\bigr )}}
ctlh[12aclh(x)]2=122+22xx4+1x2=(2x2+2+2x4+1)1/2(x4+1+1+x){\displaystyle {\text{ctlh}}[{\tfrac {1}{2}}{\text{aclh}}(x)]^{2}={\tfrac {1}{2}}{\sqrt {2+2{\sqrt {2}}\,x{\sqrt {{\sqrt {x^{4}+1}}-x^{2}}}}}={\bigl (}2x^{2}+2+2{\sqrt {x^{4}+1}}{\bigr )}^{-1/2}{\bigl (}{\sqrt {{\sqrt {x^{4}+1}}+1}}+x{\bigr )}}

Hence, their 4th powers again equal one,

tlh[12aclh(x)]4+ctlh[12aclh(x)]4=1{\displaystyle {\text{tlh}}{\bigl [}{\tfrac {1}{2}}{\text{aclh}}(x){\bigr ]}^{4}+{\text{ctlh}}{\bigl [}{\tfrac {1}{2}}{\text{aclh}}(x){\bigr ]}^{4}=1}

The following formulas for the lemniscatic sine and lemniscatic cosine are closely related:

sl[122aclh(x)]=cl[122aslh(x)]=x4+1x2{\displaystyle {\text{sl}}[{\tfrac {1}{2}}{\sqrt {2}}\,{\text{aclh}}(x)]={\text{cl}}[{\tfrac {1}{2}}{\sqrt {2}}\,{\text{aslh}}(x)]={\sqrt {{\sqrt {x^{4}+1}}-x^{2}}}}
sl[122aslh(x)]=cl[122aclh(x)]=x(x4+1+1)1/2{\displaystyle {\text{sl}}[{\tfrac {1}{2}}{\sqrt {2}}\,{\text{aslh}}(x)]={\text{cl}}[{\tfrac {1}{2}}{\sqrt {2}}\,{\text{aclh}}(x)]=x{\bigl (}{\sqrt {x^{4}+1}}+1{\bigr )}^{-1/2}}

Coordinate Transformations

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(August 2024) (Learn how and when to remove this message)

Analogous to the determination of theimproper integral in theGaussian bell curve function, the coordinate transformation of ageneral cylinder can be used to calculate the integral from 0 to the positive infinity in the functionf(x)=exp(x4){\displaystyle f(x)=\exp(-x^{4})} integrated in relation to x. In the following, the proofs of both integrals are given in a parallel way of displaying.

This is thecylindrical coordinate transformation in the Gaussian bell curve function:

[0exp(x2)dx]2=00exp(y2z2)dydz={\displaystyle {\biggl [}\int _{0}^{\infty }\exp(-x^{2})\,\mathrm {d} x{\biggr ]}^{2}=\int _{0}^{\infty }\int _{0}^{\infty }\exp(-y^{2}-z^{2})\,\mathrm {d} y\,\mathrm {d} z=}
=0π/20det[/rrcos(ϕ)/ϕrcos(ϕ)/rrsin(ϕ)/ϕrsin(ϕ)]exp{[rcos(ϕ)]2[rsin(ϕ)]2}drdϕ={\displaystyle =\int _{0}^{\pi /2}\int _{0}^{\infty }\det {\begin{bmatrix}\partial /\partial r\,\,r\cos(\phi )&\partial /\partial \phi \,\,r\cos(\phi )\\\partial /\partial r\,\,r\sin(\phi )&\partial /\partial \phi \,\,r\sin(\phi )\end{bmatrix}}\exp {\bigl \{}-{\bigl [}r\cos(\phi ){\bigr ]}^{2}-{\bigl [}r\sin(\phi ){\bigr ]}^{2}{\bigr \}}\,\mathrm {d} r\,\mathrm {d} \phi =}
=0π/20rexp(r2)drdϕ=0π/212dϕ=π4{\displaystyle =\int _{0}^{\pi /2}\int _{0}^{\infty }r\exp(-r^{2})\,\mathrm {d} r\,\mathrm {d} \phi =\int _{0}^{\pi /2}{\frac {1}{2}}\,\mathrm {d} \phi ={\frac {\pi }{4}}}

And this is the analogous coordinate transformation for the lemniscatory case:

[0exp(x4)dx]2=00exp(y4z4)dydz={\displaystyle {\biggl [}\int _{0}^{\infty }\exp(-x^{4})\,\mathrm {d} x{\biggr ]}^{2}=\int _{0}^{\infty }\int _{0}^{\infty }\exp(-y^{4}-z^{4})\,\mathrm {d} y\,\mathrm {d} z=}
=0ϖ/20det[/rrctlh(ϕ)/ϕrctlh(ϕ)/rrtlh(ϕ)/ϕrtlh(ϕ)]exp{[rctlh(ϕ)]4[rtlh(ϕ)]4}drdϕ={\displaystyle =\int _{0}^{\varpi /{\sqrt {2}}}\int _{0}^{\infty }\det {\begin{bmatrix}\partial /\partial r\,\,r\,{\text{ctlh}}(\phi )&\partial /\partial \phi \,\,r\,{\text{ctlh}}(\phi )\\\partial /\partial r\,\,r\,{\text{tlh}}(\phi )&\partial /\partial \phi \,\,r\,{\text{tlh}}(\phi )\end{bmatrix}}\exp {\bigl \{}-{\bigl [}r\,{\text{ctlh}}(\phi ){\bigr ]}^{4}-{\bigl [}r\,{\text{tlh}}(\phi ){\bigr ]}^{4}{\bigr \}}\,\mathrm {d} r\,\mathrm {d} \phi =}
=0ϖ/20rexp(r4)drdϕ=0ϖ/2π4dϕ=ϖπ42{\displaystyle =\int _{0}^{\varpi /{\sqrt {2}}}\int _{0}^{\infty }r\exp(-r^{4})\,\mathrm {d} r\,\mathrm {d} \phi =\int _{0}^{\varpi /{\sqrt {2}}}{\frac {\sqrt {\pi }}{4}}\,\mathrm {d} \phi ={\frac {\varpi {\sqrt {\pi }}}{4{\sqrt {2}}}}}

In the last line of this elliptically analogous equation chain there is again the original Gauss bell curve integrated with the square function as the inner substitution according to theChain rule of infinitesimal analytics (analysis).

In both cases, the determinant of theJacobi matrix is multiplied to the original function in the integration domain.

The resulting new functions in the integration area are then integrated according to the new parameters.

Number theory

[edit]

Inalgebraic number theory, every finiteabelian extension of theGaussian rationalsQ(i){\displaystyle \mathbb {Q} (i)} is asubfield ofQ(i,ωn){\displaystyle \mathbb {Q} (i,\omega _{n})} for some positive integern{\displaystyle n}.[23][76] This is analogous to theKronecker–Weber theorem for the rational numbersQ{\displaystyle \mathbb {Q} } which is based on division of the circle – in particular, every finite abelian extension ofQ{\displaystyle \mathbb {Q} } is a subfield ofQ(ζn){\displaystyle \mathbb {Q} (\zeta _{n})} for some positive integern{\displaystyle n}. Both are special cases of Kronecker's Jugendtraum, which becameHilbert's twelfth problem.

ThefieldQ(i,sl(ϖ/n)){\displaystyle \mathbb {Q} (i,\operatorname {sl} (\varpi /n))} (for positive oddn{\displaystyle n}) is the extension ofQ(i){\displaystyle \mathbb {Q} (i)} generated by thex{\displaystyle x}- andy{\displaystyle y}-coordinates of the(1+i)n{\displaystyle (1+i)n}-torsion points on theelliptic curvey2=4x3+x{\displaystyle y^{2}=4x^{3}+x}.[76]

Hurwitz numbers

[edit]

TheBernoulli numbersBn{\displaystyle \mathrm {B} _{n}} can be defined by

Bn=limz0dndznzez1,n0{\displaystyle \mathrm {B} _{n}=\lim _{z\to 0}{\frac {\mathrm {d} ^{n}}{\mathrm {d} z^{n}}}{\frac {z}{e^{z}-1}},\quad n\geq 0}

and appear in

kZ{0}1k2n=(1)n1B2n(2π)2n(2n)!=2ζ(2n),n1{\displaystyle \sum _{k\in \mathbb {Z} \setminus \{0\}}{\frac {1}{k^{2n}}}=(-1)^{n-1}\mathrm {B} _{2n}{\frac {(2\pi )^{2n}}{(2n)!}}=2\zeta (2n),\quad n\geq 1}

whereζ{\displaystyle \zeta } is theRiemann zeta function.

TheHurwitz numbersHn,{\displaystyle \mathrm {H} _{n},} named afterAdolf Hurwitz, are the "lemniscate analogs" of the Bernoulli numbers. They can be defined by[77][78]

Hn=limz0dndznzζ(z;1/4,0),n0{\displaystyle \mathrm {H} _{n}=-\lim _{z\to 0}{\frac {\mathrm {d} ^{n}}{\mathrm {d} z^{n}}}z\zeta (z;1/4,0),\quad n\geq 0}

whereζ(;1/4,0){\displaystyle \zeta (\cdot ;1/4,0)} is theWeierstrass zeta function with lattice invariants1/4{\displaystyle 1/4} and0{\displaystyle 0}. They appear in

zZ[i]{0}1z4n=H4n(2ϖ)4n(4n)!=G4n(i),n1{\displaystyle \sum _{z\in \mathbb {Z} [i]\setminus \{0\}}{\frac {1}{z^{4n}}}=\mathrm {H} _{4n}{\frac {(2\varpi )^{4n}}{(4n)!}}=G_{4n}(i),\quad n\geq 1}

whereZ[i]{\displaystyle \mathbb {Z} [i]} are theGaussian integers andG4n{\displaystyle G_{4n}} are theEisenstein series of weight4n{\displaystyle 4n}, and in

n=1nke2πn1={12418πif k=1Bk+12k+2if k1(mod4) and k5Bk+12k+2+Hk+12k+2(ϖπ)k+1if k3(mod4) and k3.{\displaystyle \displaystyle {\begin{array}{ll}\displaystyle \sum _{n=1}^{\infty }{\dfrac {n^{k}}{e^{2\pi n}-1}}={\begin{cases}{\dfrac {1}{24}}-{\dfrac {1}{8\pi }}&{\text{if}}\ k=1\\{\dfrac {\mathrm {B} _{k+1}}{2k+2}}&{\text{if}}\ k\equiv 1\,(\mathrm {mod} \,4)\ {\text{and}}\ k\geq 5\\{\dfrac {\mathrm {B} _{k+1}}{2k+2}}+{\dfrac {\mathrm {H} _{k+1}}{2k+2}}\left({\dfrac {\varpi }{\pi }}\right)^{k+1}&{\text{if}}\ k\equiv 3\,(\mathrm {mod} \,4)\ {\text{and}}\ k\geq 3.\\\end{cases}}\end{array}}}

The Hurwitz numbers can also be determined as follows:H4=1/10{\displaystyle \mathrm {H} _{4}=1/10},

H4n=3(2n3)(16n21)k=1n1(4n4k)(4k1)(4(nk)1)H4kH4(nk),n2{\displaystyle \mathrm {H} _{4n}={\frac {3}{(2n-3)(16n^{2}-1)}}\sum _{k=1}^{n-1}{\binom {4n}{4k}}(4k-1)(4(n-k)-1)\mathrm {H} _{4k}\mathrm {H} _{4(n-k)},\quad n\geq 2}

andHn=0{\displaystyle \mathrm {H} _{n}=0} ifn{\displaystyle n} is not a multiple of4{\displaystyle 4}.[79] This yields[77]

H8=310,H12=567130,H16=43659170,{\displaystyle \mathrm {H} _{8}={\frac {3}{10}},\,\mathrm {H} _{12}={\frac {567}{130}},\,\mathrm {H} _{16}={\frac {43\,659}{170}},\,\ldots }

Also[80]

denomH4n=(p1)|4np{\displaystyle \operatorname {denom} \mathrm {H} _{4n}=\prod _{(p-1)|4n}p}

wherepP{\displaystyle p\in \mathbb {P} } such thatp3(mod4),{\displaystyle p\not \equiv 3\,({\text{mod}}\,4),}just as

denomB2n=(p1)|2np{\displaystyle \operatorname {denom} \mathrm {B} _{2n}=\prod _{(p-1)|2n}p}

wherepP{\displaystyle p\in \mathbb {P} } (by thevon Staudt–Clausen theorem).

In fact, the von Staudt–Clausen theorem determines thefractional part of the Bernoulli numbers:

B2n+(p1)|2n1pZ,n1{\displaystyle \mathrm {B} _{2n}+\sum _{(p-1)|2n}{\frac {1}{p}}\in \mathbb {Z} ,\quad n\geq 1}

(sequenceA000146 in theOEIS) wherep{\displaystyle p} is any prime, and an analogous theorem holds for the Hurwitz numbers: suppose thataZ{\displaystyle a\in \mathbb {Z} } is odd,bZ{\displaystyle b\in \mathbb {Z} } is even,p{\displaystyle p} is a prime such thatp1(mod4){\displaystyle p\equiv 1\,(\mathrm {mod} \,4)},p=a2+b2{\displaystyle p=a^{2}+b^{2}} (seeFermat's theorem on sums of two squares) andab+1(mod4){\displaystyle a\equiv b+1\,(\mathrm {mod} \,4)}. Then for any givenp{\displaystyle p},2a=ν(p){\displaystyle 2a=\nu (p)} is uniquely determined; equivalentlyν(p)=pNp{\displaystyle \nu (p)=p-{\mathcal {N}}_{p}} whereNp{\displaystyle {\mathcal {N}}_{p}} is the number of solutions of the congruenceX3XY2(modp){\displaystyle X^{3}-X\equiv Y^{2}\,(\operatorname {mod} p)} in variablesX,Y{\displaystyle X,Y} that are non-negative integers.[81] The Hurwitz theorem then determines the fractional part of the Hurwitz numbers:[77]

H4n12(p1)|4nν(p)4n/(p1)p=defGnZ,n1.{\displaystyle \mathrm {H} _{4n}-{\frac {1}{2}}-\sum _{(p-1)|4n}{\frac {\nu (p)^{4n/(p-1)}}{p}}\mathrel {\overset {\text{def}}{=}} \mathrm {G} _{n}\in \mathbb {Z} ,\quad n\geq 1.}

The sequence of the integersGn{\displaystyle \mathrm {G} _{n}} starts with0,1,5,253,.{\displaystyle 0,-1,5,253,\ldots .}[77]

Letn2{\displaystyle n\geq 2}. If4n+1{\displaystyle 4n+1} is a prime, thenGn1(mod4){\displaystyle \mathrm {G} _{n}\equiv 1\,(\mathrm {mod} \,4)}. If4n+1{\displaystyle 4n+1} is not a prime, thenGn3(mod4){\displaystyle \mathrm {G} _{n}\equiv 3\,(\mathrm {mod} \,4)}.[82]

Some authors instead define the Hurwitz numbers asHn=H4n{\displaystyle \mathrm {H} _{n}'=\mathrm {H} _{4n}}.

Appearances in Laurent series

[edit]

The Hurwitz numbers appear in severalLaurent series expansions related to the lemniscate functions:[83]

sl2z=n=124n(1(1)n22n)H4n4nz4n2(4n2)!,|z|<ϖ2slzslz=1zn=124n(2(1)n22n)H4n4nz4n1(4n1)!,|z|<ϖ21slz=1zn=122n((1)n222n)H4n4nz4n1(4n1)!,|z|<ϖ1sl2z=1z2+n=124nH4n4nz4n2(4n2)!,|z|<ϖ{\displaystyle {\begin{aligned}\operatorname {sl} ^{2}z&=\sum _{n=1}^{\infty }{\frac {2^{4n}(1-(-1)^{n}2^{2n})\mathrm {H} _{4n}}{4n}}{\frac {z^{4n-2}}{(4n-2)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}\\{\frac {\operatorname {sl} 'z}{\operatorname {sl} {z}}}&={\frac {1}{z}}-\sum _{n=1}^{\infty }{\frac {2^{4n}(2-(-1)^{n}2^{2n})\mathrm {H} _{4n}}{4n}}{\frac {z^{4n-1}}{(4n-1)!}},\quad \left|z\right|<{\frac {\varpi }{\sqrt {2}}}\\{\frac {1}{\operatorname {sl} z}}&={\frac {1}{z}}-\sum _{n=1}^{\infty }{\frac {2^{2n}((-1)^{n}2-2^{2n})\mathrm {H} _{4n}}{4n}}{\frac {z^{4n-1}}{(4n-1)!}},\quad \left|z\right|<\varpi \\{\frac {1}{\operatorname {sl} ^{2}z}}&={\frac {1}{z^{2}}}+\sum _{n=1}^{\infty }{\frac {2^{4n}\mathrm {H} _{4n}}{4n}}{\frac {z^{4n-2}}{(4n-2)!}},\quad \left|z\right|<\varpi \end{aligned}}}

Analogously, in terms of the Bernoulli numbers:

1sinh2z=1z2n=122nB2n2nz2n2(2n2)!,|z|<π.{\displaystyle {\frac {1}{\sinh ^{2}z}}={\frac {1}{z^{2}}}-\sum _{n=1}^{\infty }{\frac {2^{2n}\mathrm {B} _{2n}}{2n}}{\frac {z^{2n-2}}{(2n-2)!}},\quad \left|z\right|<\pi .}

A quartic analog of the Legendre symbol

[edit]

Letp{\displaystyle p} be a prime such thatp1(mod4){\displaystyle p\equiv 1\,({\text{mod}}\,4)}. Aquartic residue (modp{\displaystyle p}) is any number congruent to the fourth power of an integer. Define(ap)4{\displaystyle \left({\tfrac {a}{p}}\right)_{4}}to be1{\displaystyle 1} ifa{\displaystyle a} is a quartic residue (modp{\displaystyle p}) and define it to be1{\displaystyle -1} ifa{\displaystyle a} is not a quartic residue (modp{\displaystyle p}).

Ifa{\displaystyle a} andp{\displaystyle p} are coprime, then there exist numberspZ[i]{\displaystyle p'\in \mathbb {Z} [i]} (see[84] for these numbers) such that[85]

(ap)4=psl(2ϖap/p)sl(2ϖp/p).{\displaystyle \left({\frac {a}{p}}\right)_{4}=\prod _{p'}{\frac {\operatorname {sl} (2\varpi ap'/p)}{\operatorname {sl} (2\varpi p'/p)}}.}

This theorem is analogous to

(ap)=n=1p12sin(2πan/p)sin(2πn/p){\displaystyle \left({\frac {a}{p}}\right)=\prod _{n=1}^{\frac {p-1}{2}}{\frac {\sin(2\pi an/p)}{\sin(2\pi n/p)}}}

where(){\displaystyle \left({\tfrac {\cdot }{\cdot }}\right)} is theLegendre symbol.

World map projections

[edit]
"The World on a Quincuncial Projection", fromPeirce (1879).

ThePeirce quincuncial projection, designed byCharles Sanders Peirce of theUS Coast Survey in the 1870s, is a worldmap projection based on the inverse lemniscate sine ofstereographically projected points (treated as complex numbers).[86]

When lines of constant real or imaginary part are projected onto the complex plane via the hyperbolic lemniscate sine, and thence stereographically projected onto the sphere (seeRiemann sphere), the resulting curves arespherical conics, the spherical analog of planarellipses andhyperbolas.[87] Thus the lemniscate functions (and more generally, theJacobi elliptic functions) provide a parametrization for spherical conics.

Aconformal map projection from the globe onto the 6 square faces of acube can also be defined using the lemniscate functions.[88] Because manypartial differential equations can be effectively solved byconformal mapping, this map from sphere to cube is convenient foratmospheric modeling.[89]

See also

[edit]

Notes

[edit]
  1. ^Fagnano (1718–1723);Euler (1761);Gauss (1917)
  2. ^Gauss (1917) p. 199 used the symbolssl andcl for the lemniscate sine and cosine, respectively, and this notation is most common today: see e.g.Cox (1984) p. 316,Eymard & Lafon (2004) p. 204, andLemmermeyer (2000) p. 240.Ayoub (1984) usessinlem andcoslem.Whittaker & Watson (1920) use the symbolssin lemn andcos lemn. Some sources use the generic letterss andc.Prasolov & Solovyev (1997) use the letterφ for the lemniscate sine andφ′ for its derivative.
  3. ^The circlex2+y2=x{\displaystyle x^{2}+y^{2}=x} is the unit-diameter circle centered at(12,0){\textstyle {\bigl (}{\tfrac {1}{2}},0{\bigr )}} with polar equationr=cosθ,{\displaystyle r=\cos \theta ,} the degree-2clover under the definition fromCox & Shurman (2005). This isnot the unit-radius circlex2+y2=1{\displaystyle x^{2}+y^{2}=1} centered at the origin. Notice that the lemniscate(x2+y2)2=x2y2{\displaystyle {\bigl (}x^{2}+y^{2}{\bigr )}{}^{2}=x^{2}-y^{2}} is the degree-4 clover.
  4. ^The fundamental periods(1+i)ϖ{\displaystyle (1+i)\varpi } and(1i)ϖ{\displaystyle (1-i)\varpi } are "minimal" in the sense that they have the smallest absolute value of all periods whose real part is non-negative.
  5. ^Robinson (2019a) starts from this definition and thence derives other properties of the lemniscate functions.
  6. ^This map was the first ever picture of a Schwarz–Christoffel mapping, inSchwarz (1869)p. 113.
  7. ^Schappacher (1997). OEIS sequenceA062539 lists the lemniscate constant's decimal digits.
  8. ^Levin (2006)
  9. ^Todd (1975)
  10. ^Cox (1984)
  11. ^Dark areas represent zeros, and bright areas represent poles. As theargument ofslz{\displaystyle \operatorname {sl} z} changes fromπ{\displaystyle -\pi } (excludingπ{\displaystyle -\pi }) toπ{\displaystyle \pi }, the colors go through cyan, blue(Argπ/2){\displaystyle (\operatorname {Arg} \approx -\pi /2)}, magneta, red(Arg0){\displaystyle (\operatorname {Arg} \approx 0)}, orange, yellow(Argπ/2){\displaystyle (\operatorname {Arg} \approx \pi /2)}, green, and back to cyan(Argπ){\displaystyle (\operatorname {Arg} \approx \pi )}.
  12. ^Combining the first and fourth identity givesslz=i/sl(z(1+i)ϖ/2){\displaystyle \operatorname {sl} z=-i/\operatorname {sl} (z-(1+i)\varpi /2)}. This identity is (incorrectly) given inEymard & Lafon (2004) p. 226, without the minus sign at the front of the right-hand side.
  13. ^The even Gaussian integers are the residue class of0{\displaystyle 0}, modulo1+i{\displaystyle 1+i}, the black squares on acheckerboard.
  14. ^Prasolov & Solovyev (1997);Robinson (2019a)
  15. ^abCox (2012)
  16. ^Reinhardt & Walker (2010a)§22.12.6,§22.12.12
  17. ^Analogously,1sinz=nZ(1)nz+nπ.{\displaystyle {\frac {1}{\sin z}}=\sum _{n\in \mathbb {Z} }{\frac {(-1)^{n}}{z+n\pi }}.}
  18. ^Lindqvist & Peetre (2001) generalizes the first of these forms.
  19. ^Ayoub (1984);Prasolov & Solovyev (1997)
  20. ^Euler (1761)§44 p. 79, §47 pp. 80–81
  21. ^abEuler (1761)§46 p. 80
  22. ^In fact,iε=slβϖ2{\displaystyle i^{\varepsilon }=\operatorname {sl} {\tfrac {\beta \varpi }{2}}}.
  23. ^abcCox & Hyde (2014)
  24. ^Gómez-Molleda & Lario (2019)
  25. ^The fourth root with the least positiveprincipal argument is chosen.
  26. ^The restriction to positive and oddβ{\displaystyle \beta } can be dropped indegΛβ=|(O/βO)×|{\displaystyle \operatorname {deg} \Lambda _{\beta }=\left|({\mathcal {O}}/\beta {\mathcal {O}})^{\times }\right|}.
  27. ^Cox (2013) p. 142, Example 7.29(c)
  28. ^Rosen (1981)
  29. ^Eymard & Lafon (2004) p. 200
  30. ^And the area enclosed byL{\displaystyle {\mathcal {L}}} is1{\displaystyle 1}, which stands in stark contrast to the unit circle (whose enclosed area is a non-constructible number).
  31. ^Euler (1761);Siegel (1969).Prasolov & Solovyev (1997) use the polar-coordinate representation of the Lemniscate to derive differential arc length, but the result is the same.
  32. ^Reinhardt & Walker (2010a)§22.18.E6
  33. ^Siegel (1969);Schappacher (1997)
  34. ^Such numbers are OEIS sequenceA003401.
  35. ^Abel (1827–1828);Rosen (1981);Prasolov & Solovyev (1997)
  36. ^Euler (1786);Sridharan (2004);Levien (2008)
  37. ^"A104203".The On-Line Encyclopedia of Integer Sequences.
  38. ^Lomont, J.S.; Brillhart, John (2001).Elliptic Polynomials. CRC Press. pp. 12, 44.ISBN 1-58488-210-7.
  39. ^abcd"A193543 - Oeis".
  40. ^Lomont, J.S.; Brillhart, John (2001).Elliptic Polynomials. CRC Press.ISBN 1-58488-210-7. p. 79, eq. 5.36
  41. ^Lomont, J.S.; Brillhart, John (2001).Elliptic Polynomials. CRC Press.ISBN 1-58488-210-7. p. 79, eq. 5. 36 and p. 78, eq. 5.33
  42. ^ab"A289695 - Oeis".
  43. ^Wall, H. S. (1948).Analytic Theory of Continued Fractions. Chelsea Publishing Company. pp. 374–375.
  44. ^Reinhardt & Walker (2010a)§22.20(ii)
  45. ^Carlson (2010)§19.8
  46. ^Reinhardt & Walker (2010a)§22.12.12
  47. ^In general,sinh(xnπ){\displaystyle \sinh(x-n\pi )} andsin(xnπi)=isinh(ix+nπ){\displaystyle \sin(x-n\pi i)=-i\sinh(ix+n\pi )} are not equivalent, but the resulting infinite sum is the same.
  48. ^Reinhardt & Walker (2010a)§22.11
  49. ^Reinhardt & Walker (2010a)§22.2.E7
  50. ^Berndt (1994) p. 247, 248, 253
  51. ^Reinhardt & Walker (2010a)§22.11.E1
  52. ^Whittaker & Watson (1927)
  53. ^Borwein & Borwein (1987)
  54. ^abEymard & Lafon (2004) p. 227.
  55. ^Cartan, H. (1961).Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes (in French). Hermann. pp. 160–164.
  56. ^More precisely, suppose{an}{\displaystyle \{a_{n}\}} is a sequence of bounded complex functions on a setS{\displaystyle S}, such that|an(z)|{\textstyle \sum \left|a_{n}(z)\right|} converges uniformly onS{\displaystyle S}. If{n1,n2,n3,}{\displaystyle \{n_{1},n_{2},n_{3},\ldots \}} is anypermutation of{1,2,3,}{\displaystyle \{1,2,3,\ldots \}}, thenn=1(1+an(z))=k=1(1+ank(z)){\textstyle \prod _{n=1}^{\infty }(1+a_{n}(z))=\prod _{k=1}^{\infty }(1+a_{n_{k}}(z))} for allzS{\displaystyle z\in S}. The theorem in question then follows from the fact that there exists abijection between the natural numbers andα{\displaystyle \alpha }'s (resp.β{\displaystyle \beta }'s).
  57. ^Bottazzini & Gray (2013) p. 58
  58. ^More precisely, if for eachk{\displaystyle k},limnak(n){\textstyle \lim _{n\to \infty }a_{k}(n)} exists and there is a convergent seriesk=1Mk{\textstyle \sum _{k=1}^{\infty }M_{k}} of nonnegative real numbers such that|ak(n)|Mk{\displaystyle \left|a_{k}(n)\right|\leq M_{k}} for allnN{\displaystyle n\in \mathbb {N} } and1kn{\displaystyle 1\leq k\leq n}, then
    limnk=1nak(n)=k=1limnak(n).{\displaystyle \lim _{n\to \infty }\sum _{k=1}^{n}a_{k}(n)=\sum _{k=1}^{\infty }\lim _{n\to \infty }a_{k}(n).}
  59. ^Alternatively, it can be inferred that these expansions exist just from the analyticity ofM{\displaystyle M} andN{\displaystyle N}. However, establishing the connection to "multiplying out and collecting like powers" reveals identities between sums of reciprocals and the coefficients of the power series, likeα1α4=the coefficient ofz5{\textstyle \sum _{\alpha }{\frac {1}{\alpha ^{4}}}=-\,{\text{the coefficient of}}\,z^{5}} in theM{\displaystyle M} series, and infinitely many others.
  60. ^Gauss, C. F. (1866).Werke (Band III) (in Latin and German). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen. p. 405; there's an error on the page: the coefficient ofφ17{\displaystyle \varphi ^{17}} should be1077410154752000{\displaystyle {\tfrac {107}{7\,410\,154\,752\,000}}}, not107207484333056000{\displaystyle {\tfrac {107}{207\,484\,333\,056\,000}}}.
  61. ^IfM(z)=n=0anzn+1{\textstyle M(z)=\sum _{n=0}^{\infty }a_{n}z^{n+1}}, then the coefficientsan{\displaystyle a_{n}} are given by the recurrencean+1=1n+1k=0n2nk+1akHnk+1(nk+1)!{\textstyle a_{n+1}=-{\frac {1}{n+1}}\sum _{k=0}^{n}2^{n-k+1}a_{k}{\frac {\mathrm {H} _{n-k+1}}{(n-k+1)!}}} witha0=1{\displaystyle a_{0}=1} whereHn{\displaystyle \mathrm {H} _{n}} are the Hurwitz numbers defined inLemniscate elliptic functions § Hurwitz numbers.
  62. ^The power series expansions ofM{\displaystyle M} andN{\displaystyle N} are useful for finding aβ{\displaystyle \beta }-division polynomial for theβ{\displaystyle \beta }-division of the lemniscateL{\displaystyle {\mathcal {L}}} (whereβ=m+ni{\displaystyle \beta =m+ni} wherem,nZ{\displaystyle m,n\in \mathbb {Z} } such thatm+n{\displaystyle m+n} is odd). For example, suppose we want to find a3{\displaystyle 3}-division polynomial. Given that
    M(3z)=d9M(z)9+d5M(z)5N(z)4+d1M(z)N(z)8{\displaystyle M(3z)=d_{9}M(z)^{9}+d_{5}M(z)^{5}N(z)^{4}+d_{1}M(z)N(z)^{8}}
    for some constantsd1,d5,d9{\displaystyle d_{1},d_{5},d_{9}}, from
    3z2(3z)55!36(3z)99!+O(z13)=d9x9+d5x5y4+d1xy8,{\displaystyle 3z-2{\frac {(3z)^{5}}{5!}}-36{\frac {(3z)^{9}}{9!}}+\operatorname {O} (z^{13})=d_{9}x^{9}+d_{5}x^{5}y^{4}+d_{1}xy^{8},}
    where
    x=z2z55!36z99!+O(z13),y=1+2z44!4z88!+O(z12),{\displaystyle x=z-2{\frac {z^{5}}{5!}}-36{\frac {z^{9}}{9!}}+\operatorname {O} (z^{13}),\quad y=1+2{\frac {z^{4}}{4!}}-4{\frac {z^{8}}{8!}}+\operatorname {O} (z^{12}),}
    we have
    {d1,d5,d9}={3,6,1}.{\displaystyle \{d_{1},d_{5},d_{9}\}=\{3,-6,-1\}.}
    Therefore, a3{\displaystyle 3}-division polynomial is
    X96X5+3X{\displaystyle -X^{9}-6X^{5}+3X}
    (meaning one of its roots issl(2ϖ/3){\displaystyle \operatorname {sl} (2\varpi /3)}).The equations arrived at by this process are the lemniscate analogs of
    Xn=1{\displaystyle X^{n}=1}
    (so thate2πi/n{\displaystyle e^{2\pi i/n}} is one of the solutions) which comes up when dividing the unit circle inton{\displaystyle n} arcs of equal length. In the following note, the first few coefficients of the monic normalization of suchβ{\displaystyle \beta }-division polynomials are described symbolically in terms ofβ{\displaystyle \beta }.
  63. ^By utilizing the power series expansion of theN{\displaystyle N} function, it can be proved that a polynomial havingsl(2ϖ/β){\displaystyle \operatorname {sl} (2\varpi /\beta )} as one of its roots (withβ{\displaystyle \beta } from the previous note) is
    n=0(ββ¯1)/4a4n+1(β)Xββ¯4n{\displaystyle \sum _{n=0}^{(\beta {\overline {\beta }}-1)/4}a_{4n+1}(\beta )X^{\beta {\overline {\beta }}-4n}}
    where
    a1(β)=1,a5(β)=β4ββ¯12,a9(β)=β870β5β¯+336β4+35β2β¯2300ββ¯10080{\displaystyle {\begin{aligned}a_{1}(\beta )&=1,\\a_{5}(\beta )&={\frac {\beta ^{4}-\beta {\overline {\beta }}}{12}},\\a_{9}(\beta )&={\frac {-\beta ^{8}-70\beta ^{5}{\overline {\beta }}+336\beta ^{4}+35\beta ^{2}{\overline {\beta }}^{2}-300\beta {\overline {\beta }}}{10080}}\end{aligned}}}
    and so on.
  64. ^Zhuravskiy, A. M. (1941).Spravochnik po ellipticheskim funktsiyam (in Russian). Izd. Akad. Nauk. U.S.S.R.
  65. ^For example, by the quasi-addition formulas, the duplication formulas and the Pythagorean-like identities, we have
    M(3z)=M(z)96M(z)5N(z)4+3M(z)N(z)8,{\displaystyle M(3z)=-M(z)^{9}-6M(z)^{5}N(z)^{4}+3M(z)N(z)^{8},}
    N(3z)=N(z)9+6M(z)4N(z)53M(z)8N(z),{\displaystyle N(3z)=N(z)^{9}+6M(z)^{4}N(z)^{5}-3M(z)^{8}N(z),}
    so
    sl3z=M(z)96M(z)5N(z)4+3M(z)N(z)8N(z)9+6M(z)4N(z)53M(z)8N(z).{\displaystyle \operatorname {sl} 3z={\frac {-M(z)^{9}-6M(z)^{5}N(z)^{4}+3M(z)N(z)^{8}}{N(z)^{9}+6M(z)^{4}N(z)^{5}-3M(z)^{8}N(z)}}.}
    On dividing the numerator and the denominator byN(z)9{\displaystyle N(z)^{9}}, we obtain the triplication formula forsl{\displaystyle \operatorname {sl} }:
    sl3z=sl9z6sl5z+3slz1+6sl4z3sl8z.{\displaystyle \operatorname {sl} 3z={\frac {-\operatorname {sl} ^{9}z-6\operatorname {sl} ^{5}z+3\operatorname {sl} z}{1+6\operatorname {sl} ^{4}z-3\operatorname {sl} ^{8}z}}.}
  66. ^Gauss (1866), p. 408
  67. ^Robinson (2019a)
  68. ^Eymard & Lafon (2004) p. 234
  69. ^Armitage, J. V.; Eberlein, W. F. (2006).Elliptic Functions. Cambridge University Press. p. 49.ISBN 978-0-521-78563-1.
  70. ^The identityclz=cn(2z;12){\displaystyle \operatorname {cl} z={\operatorname {cn} }\left({\sqrt {2}}z;{\tfrac {1}{\sqrt {2}}}\right)} can be found inGreenhill (1892)p. 33.
  71. ^Siegel (1969)
  72. ^Sloane, N. J. A. (ed.)."Sequence A175576".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  73. ^Berndt, Bruce C. (1989).Ramanujan's Notebooks Part II. Springer.ISBN 978-1-4612-4530-8. p. 96
  74. ^Levin (2006);Robinson (2019b)
  75. ^Levin (2006) p. 515
  76. ^abCox (2012) p. 508, 509
  77. ^abcdArakawa, Tsuneo; Ibukiyama, Tomoyoshi; Kaneko, Masanobu (2014).Bernoulli Numbers and Zeta Functions. Springer.ISBN 978-4-431-54918-5. p. 203—206
  78. ^Equivalently,Hn=limz0dndzn((1+i)z/2sl((1+i)z/2)+z2E(z2;i)){\displaystyle \mathrm {H} _{n}=-\lim _{z\to 0}{\frac {\mathrm {d} ^{n}}{\mathrm {d} z^{n}}}\left({\frac {(1+i)z/2}{\operatorname {sl} ((1+i)z/2)}}+{\frac {z}{2}}{\mathcal {E}}\left({\frac {z}{2}};i\right)\right)}wheren4{\displaystyle n\geq 4} andE(;i){\displaystyle {\mathcal {E}}(\cdot ;i)} is theJacobi epsilon function with modulusi{\displaystyle i}.
  79. ^The Bernoulli numbers can be determined by an analogous recurrence:B2n=12n+1k=1n1(2n2k)B2kB2(nk){\displaystyle \mathrm {B} _{2n}=-{\frac {1}{2n+1}}\sum _{k=1}^{n-1}{\binom {2n}{2k}}\mathrm {B} _{2k}\mathrm {B} _{2(n-k)}} wheren2{\displaystyle n\geq 2} andB2=1/6{\displaystyle \mathrm {B} _{2}=1/6}.
  80. ^Katz, Nicholas M. (1975). "The congruences of Clausen — von Staudt and Kummer for Bernoulli-Hurwitz numbers".Mathematische Annalen.216 (1):1–4.doi:10.1007/BF02547966. See eq. (9)
  81. ^For more on theν{\displaystyle \nu } function, seeLemniscate constant.
  82. ^Hurwitz, Adolf (1963).Mathematische Werke: Band II (in German). Springer Basel AG. p. 370
  83. ^Arakawa et al. (2014) defineH4n{\displaystyle \mathrm {H} _{4n}} by the expansion of1/sl2.{\displaystyle 1/\operatorname {sl} ^{2}.}
  84. ^Eisenstein, G. (1846)."Beiträge zur Theorie der elliptischen Functionen".Journal für die reine und angewandte Mathematik (in German).30. Eisenstein usesφ=sl{\displaystyle \varphi =\operatorname {sl} } andω=2ϖ{\displaystyle \omega =2\varpi }.
  85. ^Ogawa (2005)
  86. ^Peirce (1879).Guyou (1887) andAdams (1925) introducedtransverse and oblique aspects of the same projection, respectively. Also seeLee (1976). These authors write their projection formulas in terms of Jacobi elliptic functions, with a square lattice.
  87. ^Adams (1925)
  88. ^Adams (1925);Lee (1976).
  89. ^Rančić, Purser & Mesinger (1996);McGregor (2005).

References

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lemniscate_elliptic_functions&oldid=1332588614"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp