Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lemniscate constant

From Wikipedia, the free encyclopedia
Ratio of the perimeter of Bernoulli's lemniscate to its diameter
"Gauss's constant" redirects here. For the parameter used in orbital mechanics, seeGaussian gravitational constant.
Lemniscate of Bernoulli

Inmathematics, thelemniscate constantϖ is atranscendental mathematical constant that is the ratio of theperimeter ofBernoulli's lemniscate to itsdiameter, analogous to the definition ofπ for the circle.[1] Equivalently, the perimeter of the lemniscate(x2+y2)2=x2y2{\displaystyle (x^{2}+y^{2})^{2}=x^{2}-y^{2}} is2ϖ. The lemniscate constant is closely related to thelemniscate elliptic functions and approximately equal to 2.62205755.[2] It also appears in evaluation of thegamma andbeta function at certain rational values. The symbolϖ is acursive variant ofπ known asvariant pi represented in Unicode by the characterU+03D6 ϖGREEK PI SYMBOL.

Sometimes the quantities2ϖ orϖ/2 are referred to asthe lemniscate constant.[3][4]

As of 2024 over 1.2 trillion digits of this constant have been calculated.[5]

History

[edit]

Gauss's constant, denoted byG, is equal toϖ /π ≈ 0.8346268[6] and named afterCarl Friedrich Gauss, who calculated it via thearithmetic–geometric mean as1/M(1,2){\displaystyle 1/M{\bigl (}1,{\sqrt {2}}{\bigr )}}.[7] By 1799, Gauss had two proofs of the theorem thatM(1,2)=π/ϖ{\displaystyle M{\bigl (}1,{\sqrt {2}}{\bigr )}=\pi /\varpi } whereϖ{\displaystyle \varpi } is the lemniscate constant.[8]

John Todd named two more lemniscate constants, thefirst lemniscate constantA =ϖ/2 ≈ 1.3110287771 and thesecond lemniscate constantB =π/(2ϖ) ≈ 0.5990701173.[9][10][11]

The lemniscate constantϖ{\displaystyle \varpi } and Todd's first lemniscate constantA{\displaystyle A} were proventranscendental byCarl Ludwig Siegel in 1932 and later byTheodor Schneider in 1937 and Todd's second lemniscate constantB{\displaystyle B} and Gauss's constantG{\displaystyle G} were proven transcendental by Theodor Schneider in 1941.[9][12][13] In 1975,Gregory Chudnovsky proved that the set{π,ϖ}{\displaystyle \{\pi ,\varpi \}} isalgebraically independent overQ{\displaystyle \mathbb {Q} }, which implies thatA{\displaystyle A} andB{\displaystyle B} are algebraically independent as well.[14][15] But the set{π,M(1,1/2),M(1,1/2)}{\displaystyle {\bigl \{}\pi ,M{\bigl (}1,1/{\sqrt {2}}{\bigr )},M'{\bigl (}1,1/{\sqrt {2}}{\bigr )}{\bigr \}}} (where the prime denotes thederivative with respect to the second variable) is not algebraically independent overQ{\displaystyle \mathbb {Q} }.[16] In 1996,Yuri Nesterenko proved that the set{π,ϖ,eπ}{\displaystyle \{\pi ,\varpi ,e^{\pi }\}} is algebraically independent overQ{\displaystyle \mathbb {Q} }.[17]

Forms

[edit]

Usually,ϖ{\displaystyle \varpi } is defined by the first equality below, but it has many equivalent forms:[18]

ϖ=201dt1t4=20dt1+t4=01dttt3=1dtt3t=40(1+t44t)dt=22011t44dt=3011t4dt=2K(i)=12B(14,12)=122B(14,14)=Γ(1/4)222π=224ζ(3/4)2ζ(1/4)2=2.62205755429211981046483958989111941,{\displaystyle {\begin{aligned}\varpi &=2\int _{0}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}={\sqrt {2}}\int _{0}^{\infty }{\frac {\mathrm {d} t}{\sqrt {1+t^{4}}}}=\int _{0}^{1}{\frac {\mathrm {d} t}{\sqrt {t-t^{3}}}}=\int _{1}^{\infty }{\frac {\mathrm {d} t}{\sqrt {t^{3}-t}}}\\[6mu]&=4\int _{0}^{\infty }{\Bigl (}{\sqrt[{4}]{1+t^{4}}}-t{\Bigr )}\,\mathrm {d} t=2{\sqrt {2}}\int _{0}^{1}{\sqrt[{4}]{1-t^{4}}}\mathop {\mathrm {d} t} =3\int _{0}^{1}{\sqrt {1-t^{4}}}\,\mathrm {d} t\\[2mu]&=2K(i)={\tfrac {1}{2}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{2}}{\bigr )}={\tfrac {1}{2{\sqrt {2}}}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{4}}{\bigr )}={\frac {\Gamma (1/4)^{2}}{2{\sqrt {2\pi }}}}={\frac {2-{\sqrt {2}}}{4}}{\frac {\zeta (3/4)^{2}}{\zeta (1/4)^{2}}}\\[5mu]&=2.62205\;75542\;92119\;81046\;48395\;89891\;11941\ldots ,\end{aligned}}}

whereK is thecomplete elliptic integral of the first kind with modulusk,Β is thebeta function,Γ is thegamma function andζ is theRiemann zeta function.

The lemniscate constant can also be computed by thearithmetic–geometric meanM{\displaystyle M},

ϖ=πM(1,2).{\displaystyle \varpi ={\frac {\pi }{M{\bigl (}1,{\sqrt {2}}{\bigr )}}}.}

Gauss's constant is typically defined as thereciprocal of thearithmetic–geometric mean of 1 and thesquare root of 2, after his calculation ofM(1,2){\displaystyle M{\bigl (}1,{\sqrt {2}}{\bigr )}} published in 1800:[19]G=1M(1,2){\displaystyle G={\frac {1}{M{\bigl (}1,{\sqrt {2}}{\bigr )}}}}John Todd's lemniscate constants may be given in terms of thebeta function B:A=ϖ2=14B(14,12),B=π2ϖ=14B(12,34).{\displaystyle {\begin{aligned}A&={\frac {\varpi }{2}}={\tfrac {1}{4}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{2}}{\bigr )},\\[3mu]B&={\frac {\pi }{2\varpi }}={\tfrac {1}{4}}\mathrm {B} {\bigl (}{\tfrac {1}{2}},{\tfrac {3}{4}}{\bigr )}.\end{aligned}}}

As a special value of L-functions

[edit]

β(0)=logϖπ{\displaystyle \beta '(0)=\log {\frac {\varpi }{\sqrt {\pi }}}}

which is analogous to

ζ(0)=log12π{\displaystyle \zeta '(0)=\log {\frac {1}{\sqrt {2\pi }}}}

whereβ{\displaystyle \beta } is theDirichlet beta function andζ{\displaystyle \zeta } is theRiemann zeta function.[20]

Analogously to theLeibniz formula for π,β(1)=n=1χ(n)n=π4,{\displaystyle \beta (1)=\sum _{n=1}^{\infty }{\frac {\chi (n)}{n}}={\frac {\pi }{4}},}we have[21][22][23][24][25]L(E,1)=n=1ν(n)n=ϖ4{\displaystyle L(E,1)=\sum _{n=1}^{\infty }{\frac {\nu (n)}{n}}={\frac {\varpi }{4}}}whereL{\displaystyle L} is theL-function of theelliptic curveE:y2=x3x{\displaystyle E:\,y^{2}=x^{3}-x} overQ{\displaystyle \mathbb {Q} }; this means thatν{\displaystyle \nu } is themultiplicative function given byν(pn)={pNp,pP,n=10,p=2,n2ν(p)ν(pn1)pν(pn2),pP{2},n2{\displaystyle \nu (p^{n})={\begin{cases}p-{\mathcal {N}}_{p},&p\in \mathbb {P} ,\,n=1\\[5mu]0,&p=2,\,n\geq 2\\[5mu]\nu (p)\nu (p^{n-1})-p\nu (p^{n-2}),&p\in \mathbb {P} \setminus \{2\},\,n\geq 2\end{cases}}}whereNp{\displaystyle {\mathcal {N}}_{p}} is the number of solutions of the congruencea3ab2(modp),pP{\displaystyle a^{3}-a\equiv b^{2}\,(\operatorname {mod} p),\quad p\in \mathbb {P} }in variablesa,b{\displaystyle a,b} that are non-negative integers (P{\displaystyle \mathbb {P} } is the set of all primes).Equivalently,ν{\displaystyle \nu } is given byF(τ)=η(4τ)2η(8τ)2=n=1ν(n)qn,q=e2πiτ{\displaystyle F(\tau )=\eta (4\tau )^{2}\eta (8\tau )^{2}=\sum _{n=1}^{\infty }\nu (n)q^{n},\quad q=e^{2\pi i\tau }}whereτC{\displaystyle \tau \in \mathbb {C} } such thatτ>0{\displaystyle \operatorname {\Im } \tau >0} andη{\displaystyle \eta } is theeta function.[26][27][28]The above result can be equivalently written asn=1ν(n)ne2πn/32=ϖ8{\displaystyle \sum _{n=1}^{\infty }{\frac {\nu (n)}{n}}e^{-2\pi n/{\sqrt {32}}}={\frac {\varpi }{8}}}(the number32{\displaystyle 32} is theconductor ofE{\displaystyle E}) and also tells us that theBSD conjecture is true for the aboveE{\displaystyle E}.[29]The first few values ofν{\displaystyle \nu } are given by the following table; if1n113{\displaystyle 1\leq n\leq 113} such thatn{\displaystyle n} doesn't appear in the table, thenν(n)=0{\displaystyle \nu (n)=0}:nν(n)nν(n)11531452611093651213673617281925185429108910372971841101012456109649711314{\displaystyle {\begin{array}{r|r|r|r}n&\nu (n)&n&\nu (n)\\\hline 1&1&53&14\\5&-2&61&-10\\9&-3&65&-12\\13&6&73&-6\\17&2&81&9\\25&-1&85&-4\\29&-10&89&10\\37&-2&97&18\\41&10&101&-2\\45&6&109&6\\49&-7&113&-14\\\end{array}}}

As a special value of other functions

[edit]

LetΔ{\displaystyle \Delta } be the minimal weight level1{\displaystyle 1} new form. Then[30]Δ(i)=164(ϖπ)12.{\displaystyle \Delta (i)={\frac {1}{64}}\left({\frac {\varpi }{\pi }}\right)^{12}.}Theq{\displaystyle q}-coefficient ofΔ{\displaystyle \Delta } is theRamanujan tau function.

Series

[edit]

Viète's formula forπ can be written:

2π=1212+121212+1212+1212{\displaystyle {\frac {2}{\pi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}}}\cdots }

An analogous formula forϖ is:[31]

2ϖ=1212+12/1212+12/12+12/12{\displaystyle {\frac {2}{\varpi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\Bigg /}\!{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}}}\cdots }

TheWallis product forπ is:

π2=n=1(1+1n)(1)n+1=n=1(2n2n12n2n+1)=(2123)(4345)(6567){\displaystyle {\frac {\pi }{2}}=\prod _{n=1}^{\infty }\left(1+{\frac {1}{n}}\right)^{(-1)^{n+1}}=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\biggl (}{\frac {2}{1}}\cdot {\frac {2}{3}}{\biggr )}{\biggl (}{\frac {4}{3}}\cdot {\frac {4}{5}}{\biggr )}{\biggl (}{\frac {6}{5}}\cdot {\frac {6}{7}}{\biggr )}\cdots }

An analogous formula forϖ is:[32]

ϖ2=n=1(1+12n)(1)n+1=n=1(4n14n24n4n+1)=(3245)(7689)(11101213){\displaystyle {\frac {\varpi }{2}}=\prod _{n=1}^{\infty }\left(1+{\frac {1}{2n}}\right)^{(-1)^{n+1}}=\prod _{n=1}^{\infty }\left({\frac {4n-1}{4n-2}}\cdot {\frac {4n}{4n+1}}\right)={\biggl (}{\frac {3}{2}}\cdot {\frac {4}{5}}{\biggr )}{\biggl (}{\frac {7}{6}}\cdot {\frac {8}{9}}{\biggr )}{\biggl (}{\frac {11}{10}}\cdot {\frac {12}{13}}{\biggr )}\cdots }

A related result for Gauss's constant (G=ϖ/π{\displaystyle G=\varpi /\pi }) is:[33]

ϖπ=n=1(4n14n4n+24n+1)=(3465)(78109)(11121413){\displaystyle {\frac {\varpi }{\pi }}=\prod _{n=1}^{\infty }\left({\frac {4n-1}{4n}}\cdot {\frac {4n+2}{4n+1}}\right)={\biggl (}{\frac {3}{4}}\cdot {\frac {6}{5}}{\biggr )}{\biggl (}{\frac {7}{8}}\cdot {\frac {10}{9}}{\biggr )}{\biggl (}{\frac {11}{12}}\cdot {\frac {14}{13}}{\biggr )}\cdots }

An infinite series discovered by Gauss is:[34]

ϖπ=n=0(1)nk=1n(2k1)2(2k)2=11222+12322242123252224262+{\displaystyle {\frac {\varpi }{\pi }}=\sum _{n=0}^{\infty }(-1)^{n}\prod _{k=1}^{n}{\frac {(2k-1)^{2}}{(2k)^{2}}}=1-{\frac {1^{2}}{2^{2}}}+{\frac {1^{2}\cdot 3^{2}}{2^{2}\cdot 4^{2}}}-{\frac {1^{2}\cdot 3^{2}\cdot 5^{2}}{2^{2}\cdot 4^{2}\cdot 6^{2}}}+\cdots }

TheMachin formula forπ is14π=4arctan15arctan1239,{\textstyle {\tfrac {1}{4}}\pi =4\arctan {\tfrac {1}{5}}-\arctan {\tfrac {1}{239}},} and several similar formulas forπ can be developed using trigonometric angle sum identities, e.g. Euler's formula14π=arctan12+arctan13{\textstyle {\tfrac {1}{4}}\pi =\arctan {\tfrac {1}{2}}+\arctan {\tfrac {1}{3}}}. Analogous formulas can be developed forϖ, including the following found by Gauss:12ϖ=2arcsl12+arcsl723{\displaystyle {\tfrac {1}{2}}\varpi =2\operatorname {arcsl} {\tfrac {1}{2}}+\operatorname {arcsl} {\tfrac {7}{23}}}, wherearcsl{\displaystyle \operatorname {arcsl} } is thelemniscate arcsine.[35]

The lemniscate constant can be rapidly computed by the series[36][37]

ϖ=21/2π(nZeπn2)2=21/4πeπ/12(nZ(1)neπpn)2{\displaystyle \varpi =2^{-1/2}\pi {\biggl (}\sum _{n\in \mathbb {Z} }e^{-\pi n^{2}}{\biggr )}^{2}=2^{1/4}\pi e^{-\pi /12}{\biggl (}\sum _{n\in \mathbb {Z} }(-1)^{n}e^{-\pi p_{n}}{\biggr )}^{2}}

wherepn=12(3n2n){\displaystyle p_{n}={\tfrac {1}{2}}(3n^{2}-n)} (these are thegeneralized pentagonal numbers). Also[38]

m,nZe2π(m2+mn+n2)=1+3ϖ121/8π.{\displaystyle \sum _{m,n\in \mathbb {Z} }e^{-2\pi (m^{2}+mn+n^{2})}={\sqrt {1+{\sqrt {3}}}}{\dfrac {\varpi }{12^{1/8}\pi }}.}

In a spirit similar to that of theBasel problem,

zZ[i]{0}1z4=G4(i)=ϖ415{\displaystyle \sum _{z\in \mathbb {Z} [i]\setminus \{0\}}{\frac {1}{z^{4}}}=G_{4}(i)={\frac {\varpi ^{4}}{15}}}

whereZ[i]{\displaystyle \mathbb {Z} [i]} are theGaussian integers andG4{\displaystyle G_{4}} is theEisenstein series of weight4{\displaystyle 4} (seeLemniscate elliptic functions § Hurwitz numbers for a more general result).[39]

A related result is

n=1σ3(n)e2πn=ϖ480π41240{\displaystyle \sum _{n=1}^{\infty }\sigma _{3}(n)e^{-2\pi n}={\frac {\varpi ^{4}}{80\pi ^{4}}}-{\frac {1}{240}}}

whereσ3{\displaystyle \sigma _{3}} is thesum of positive divisors function.[40]

In 1842,Malmsten found

β(1)=n=1(1)n+1log(2n+1)2n+1=π4(γ+2logπϖ2){\displaystyle \beta '(1)=\sum _{n=1}^{\infty }(-1)^{n+1}{\frac {\log(2n+1)}{2n+1}}={\frac {\pi }{4}}\left(\gamma +2\log {\frac {\pi }{\varpi {\sqrt {2}}}}\right)}

whereγ{\displaystyle \gamma } isEuler's constant andβ(s){\displaystyle \beta (s)} is the Dirichlet-Beta function.

The lemniscate constant is given by the rapidly converging series

ϖ=π324eπ3(n=(1)ne2nπ(3n+1))2.{\displaystyle \varpi =\pi {\sqrt[{4}]{32}}e^{-{\frac {\pi }{3}}}{\biggl (}\sum _{n=-\infty }^{\infty }(-1)^{n}e^{-2n\pi (3n+1)}{\biggr )}^{2}.}

The constant is also given by theinfinite product

ϖ=πm=1tanh2(πm2).{\displaystyle \varpi =\pi \prod _{m=1}^{\infty }\tanh ^{2}\left({\frac {\pi m}{2}}\right).}

Also[41]

n=0(1)n6635520n(4n)!n!4=2457/4ϖ2π2.{\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{6635520^{n}}}{\frac {(4n)!}{n!^{4}}}={\frac {24}{5^{7/4}}}{\frac {\varpi ^{2}}{\pi ^{2}}}.}

Continued fractions

[edit]

A (generalized)continued fraction forπ isπ2=1+11+121+231+341+{\displaystyle {\frac {\pi }{2}}=1+{\cfrac {1}{1+{\cfrac {1\cdot 2}{1+{\cfrac {2\cdot 3}{1+{\cfrac {3\cdot 4}{1+\ddots }}}}}}}}}An analogous formula forϖ is[10]ϖ2=1+12+232+452+672+{\displaystyle {\frac {\varpi }{2}}=1+{\cfrac {1}{2+{\cfrac {2\cdot 3}{2+{\cfrac {4\cdot 5}{2+{\cfrac {6\cdot 7}{2+\ddots }}}}}}}}}

DefineBrouncker's continued fraction by[42]b(s)=s+122s+322s+522s+,s>0.{\displaystyle b(s)=s+{\cfrac {1^{2}}{2s+{\cfrac {3^{2}}{2s+{\cfrac {5^{2}}{2s+\ddots }}}}}},\quad s>0.}Letn0{\displaystyle n\geq 0} except for the first equality wheren1{\displaystyle n\geq 1}. Then[43][44]b(4n)=(4n+1)k=1n(4k1)2(4k3)(4k+1)πϖ2b(4n+1)=(2n+1)k=1n(2k)2(2k1)(2k+1)4πb(4n+2)=(4n+1)k=1n(4k3)(4k+1)(4k1)2ϖ2πb(4n+3)=(2n+1)k=1n(2k1)(2k+1)(2k)2π.{\displaystyle {\begin{aligned}b(4n)&=(4n+1)\prod _{k=1}^{n}{\frac {(4k-1)^{2}}{(4k-3)(4k+1)}}{\frac {\pi }{\varpi ^{2}}}\\b(4n+1)&=(2n+1)\prod _{k=1}^{n}{\frac {(2k)^{2}}{(2k-1)(2k+1)}}{\frac {4}{\pi }}\\b(4n+2)&=(4n+1)\prod _{k=1}^{n}{\frac {(4k-3)(4k+1)}{(4k-1)^{2}}}{\frac {\varpi ^{2}}{\pi }}\\b(4n+3)&=(2n+1)\prod _{k=1}^{n}{\frac {(2k-1)(2k+1)}{(2k)^{2}}}\,\pi .\end{aligned}}}For example,b(1)=4π,b(2)=ϖ2π,b(3)=π,b(4)=9πϖ2.{\displaystyle {\begin{aligned}b(1)&={\frac {4}{\pi }},&b(2)&={\frac {\varpi ^{2}}{\pi }},&b(3)&=\pi ,&b(4)&={\frac {9\pi }{\varpi ^{2}}}.\end{aligned}}}

In fact, the values ofb(1){\displaystyle b(1)} andb(2){\displaystyle b(2)}, coupled with the functional equationb(s+2)=(s+1)2b(s),{\displaystyle b(s+2)={\frac {(s+1)^{2}}{b(s)}},}determine the values ofb(n){\displaystyle b(n)} for alln{\displaystyle n}.

Simple continued fractions

[edit]

Simple continued fractions for the lemniscate constant and related constants include[45][46]ϖ=[2,1,1,1,1,1,4,1,2,],2ϖ=[5,4,10,2,1,2,3,29,],ϖ2=[1,3,4,1,1,1,5,2,],ϖπ=[0,1,5,21,3,4,14,].{\displaystyle {\begin{aligned}\varpi &=[2,1,1,1,1,1,4,1,2,\ldots ],\\[8mu]2\varpi &=[5,4,10,2,1,2,3,29,\ldots ],\\[5mu]{\frac {\varpi }{2}}&=[1,3,4,1,1,1,5,2,\ldots ],\\[2mu]{\frac {\varpi }{\pi }}&=[0,1,5,21,3,4,14,\ldots ].\end{aligned}}}

Integrals

[edit]
A geometric representation ofϖ/2{\displaystyle \varpi /2} andϖ/2{\displaystyle \varpi /{\sqrt {2}}}

The lemniscate constantϖ is related to the area under the curvex4+y4=1{\displaystyle x^{4}+y^{4}=1}. Definingπn:=B(1n,1n){\displaystyle \pi _{n}\mathrel {:=} \mathrm {B} {\bigl (}{\tfrac {1}{n}},{\tfrac {1}{n}}{\bigr )}}, twice the area in the positive quadrant under the curvexn+yn=1{\displaystyle x^{n}+y^{n}=1} is2011xnndx=1nπn.{\textstyle 2\int _{0}^{1}{\sqrt[{n}]{1-x^{n}}}\mathop {\mathrm {d} x} ={\tfrac {1}{n}}\pi _{n}.} In the quartic case,14π4=12ϖ.{\displaystyle {\tfrac {1}{4}}\pi _{4}={\tfrac {1}{\sqrt {2}}}\varpi .}

In 1842, Malmsten discovered that[47]

01log(logx)1+x2dx=π2logπϖ2.{\displaystyle \int _{0}^{1}{\frac {\log(-\log x)}{1+x^{2}}}\,dx={\frac {\pi }{2}}\log {\frac {\pi }{\varpi {\sqrt {2}}}}.}

Furthermore,0tanhxxexdx=logϖ2π{\displaystyle \int _{0}^{\infty }{\frac {\tanh x}{x}}e^{-x}\,dx=\log {\frac {\varpi ^{2}}{\pi }}}

and[48]

0ex4dx=2ϖ2π4,analogous to0ex2dx=π2,{\displaystyle \int _{0}^{\infty }e^{-x^{4}}\,dx={\frac {\sqrt {2\varpi {\sqrt {2\pi }}}}{4}},\quad {\text{analogous to}}\,\int _{0}^{\infty }e^{-x^{2}}\,dx={\frac {\sqrt {\pi }}{2}},}a form ofGaussian integral.

The lemniscate constant appears in the evaluation of the integrals

πϖ=0π2sin(x)dx=0π2cos(x)dx{\displaystyle {\frac {\pi }{\varpi }}=\int _{0}^{\frac {\pi }{2}}{\sqrt {\sin(x)}}\,dx=\int _{0}^{\frac {\pi }{2}}{\sqrt {\cos(x)}}\,dx}

ϖπ=0dxcosh(πx){\displaystyle {\frac {\varpi }{\pi }}=\int _{0}^{\infty }{\frac {dx}{\sqrt {\cosh(\pi x)}}}}

John Todd's lemniscate constants are defined by integrals:[9]

A=01dx1x4{\displaystyle A=\int _{0}^{1}{\frac {dx}{\sqrt {1-x^{4}}}}}

B=01x2dx1x4{\displaystyle B=\int _{0}^{1}{\frac {x^{2}\,dx}{\sqrt {1-x^{4}}}}}

Circumference of an ellipse

[edit]

The lemniscate constant satisfies the equation[49]

πϖ=201x2dx1x4{\displaystyle {\frac {\pi }{\varpi }}=2\int _{0}^{1}{\frac {x^{2}\,dx}{\sqrt {1-x^{4}}}}}

Euler discovered in 1738 that for the rectangular elastica (first and second lemniscate constants)[50][49]

arc lengthheight=AB=01dx1x401x2dx1x4=ϖ2π2ϖ=π4{\displaystyle {\textrm {arc}}\ {\textrm {length}}\cdot {\textrm {height}}=A\cdot B=\int _{0}^{1}{\frac {\mathrm {d} x}{\sqrt {1-x^{4}}}}\cdot \int _{0}^{1}{\frac {x^{2}\mathop {\mathrm {d} x} }{\sqrt {1-x^{4}}}}={\frac {\varpi }{2}}\cdot {\frac {\pi }{2\varpi }}={\frac {\pi }{4}}}

Now considering the circumferenceC{\displaystyle C} of the ellipse with axes2{\displaystyle {\sqrt {2}}} and1{\displaystyle 1}, satisfying2x2+4y2=1{\displaystyle 2x^{2}+4y^{2}=1}, Stirling noted that[51]

C2=01dx1x4+01x2dx1x4{\displaystyle {\frac {C}{2}}=\int _{0}^{1}{\frac {dx}{\sqrt {1-x^{4}}}}+\int _{0}^{1}{\frac {x^{2}\,dx}{\sqrt {1-x^{4}}}}}

Hence the full circumference is

C=πϖ+ϖ=3.820197789{\displaystyle C={\frac {\pi }{\varpi }}+\varpi =3.820197789\ldots }

This is also the arc length of thesine curve on half a period:[52]

C=0π1+cos2(x)dx{\displaystyle C=\int _{0}^{\pi }{\sqrt {1+\cos ^{2}(x)}}\,dx}

Other limits

[edit]

Analogously to2π=limn|(2n)!B2n|12n{\displaystyle 2\pi =\lim _{n\to \infty }\left|{\frac {(2n)!}{\mathrm {B} _{2n}}}\right|^{\frac {1}{2n}}}whereBn{\displaystyle \mathrm {B} _{n}} areBernoulli numbers, we have2ϖ=limn((4n)!H4n)14n{\displaystyle 2\varpi =\lim _{n\to \infty }\left({\frac {(4n)!}{\mathrm {H} _{4n}}}\right)^{\frac {1}{4n}}}whereHn{\displaystyle \mathrm {H} _{n}} areHurwitz numbers.

Notes

[edit]
  1. ^See:
  2. ^See:
  3. ^"A064853 - Oeis".
  4. ^"Lemniscate Constant".
  5. ^"Records set by y-cruncher".numberworld.org. Retrieved2024-08-20.
  6. ^"A014549 - Oeis".
  7. ^Finch 2003, p. 420.
  8. ^Neither of these proofs was rigorous from the modern point of view. SeeCox 1984, p. 281
  9. ^abcTodd, John (January 1975)."The lemniscate constants".Communications of the ACM.18 (1):14–19.doi:10.1145/360569.360580.S2CID 85873.
  10. ^ab"A085565 - Oeis". and"A076390 - Oeis".
  11. ^Carlson, B. C. (2010),"Elliptic Integrals", inOlver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),NIST Handbook of Mathematical Functions, Cambridge University Press,ISBN 978-0-521-19225-5,MR 2723248.
  12. ^ In particular, Siegel proved that ifG4(ω1,ω2){\displaystyle \operatorname {G} _{4}(\omega _{1},\omega _{2})} andG6(ω1,ω2){\displaystyle \operatorname {G} _{6}(\omega _{1},\omega _{2})} withIm(ω2/ω1)>0{\displaystyle \operatorname {Im} (\omega _{2}/\omega _{1})>0} are algebraic, thenω1{\displaystyle \omega _{1}} orω2{\displaystyle \omega _{2}} is transcendental. Here,G4{\displaystyle \operatorname {G} _{4}} andG6{\displaystyle \operatorname {G} _{6}} areEisenstein series. The fact thatϖ{\displaystyle \varpi } is transcendental follows fromG4(ϖ,ϖi)=1/15{\displaystyle \operatorname {G} _{4}(\varpi ,\varpi i)=1/15} andG6(ϖ,ϖi)=0.{\displaystyle \operatorname {G} _{6}(\varpi ,\varpi i)=0.}
    Apostol, T. M. (1990).Modular Functions and Dirichlet Series in Number Theory (Second ed.). Springer. p. 12.ISBN 0-387-97127-0.
    Siegel, C. L. (1932)."Über die Perioden elliptischer Funktionen".Journal für die reine und angewandte Mathematik (in German).167:62–69.doi:10.1515/crll.1932.167.62.
  13. ^In particular, Schneider proved that thebeta functionB(a,b){\displaystyle \mathrm {B} (a,b)} is transcendental for alla,bQZ{\displaystyle a,b\in \mathbb {Q} \setminus \mathbb {Z} } such thata+bZ0{\displaystyle a+b\notin \mathbb {Z} _{0}^{-}}. The fact thatϖ{\displaystyle \varpi } is transcendental follows fromϖ=12B(14,12){\displaystyle \varpi ={\tfrac {1}{2}}\mathrm {B} {\bigl (}{\tfrac {1}{4}},{\tfrac {1}{2}}{\bigr )}} and similarly forB andG fromB(12,34).{\displaystyle \mathrm {B} {\bigl (}{\tfrac {1}{2}},{\tfrac {3}{4}}{\bigr )}.}
    Schneider, Theodor (1941)."Zur Theorie der Abelschen Funktionen und Integrale".Journal für die reine und angewandte Mathematik.183 (19):110–128.doi:10.1515/crll.1941.183.110.S2CID 118624331.
  14. ^G. V. Choodnovsky:Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486
  15. ^G. V. Chudnovsky:Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6
  16. ^In fact,π=22M3(1,12)M(1,12)=1G3M(1,12).{\displaystyle \pi =2{\sqrt {2}}{\frac {M^{3}\left(1,{\frac {1}{\sqrt {2}}}\right)}{M'\left(1,{\frac {1}{\sqrt {2}}}\right)}}={\frac {1}{G^{3}M'\left(1,{\frac {1}{\sqrt {2}}}\right)}}.}
    Borwein, Jonathan M.; Borwein, Peter B. (1987).Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience.ISBN 0-471-83138-7. p. 45
  17. ^Nesterenko, Y. V.; Philippon, P. (2001).Introduction to Algebraic Independence Theory. Springer. p. 27.ISBN 3-540-41496-7.
  18. ^See:
  19. ^Cox 1984, p. 277.
  20. ^"A113847 - Oeis".
  21. ^Cremona, J. E. (1997).Algorithms for Modular Elliptic Curves (2nd ed.).Cambridge University Press.ISBN 0521598206. p. 31, formula (2.8.10)
  22. ^In fact, the seriesn=1ν(n)ns{\textstyle \sum _{n=1}^{\infty }{\frac {\nu (n)}{n^{s}}}} converges fors>5/6{\displaystyle \operatorname {\Re } s>5/6}.
  23. ^Murty, Vijaya Kumar (1995).Seminar on Fermat's Last Theorem.American Mathematical Society. p. 16.ISBN 9780821803134.
  24. ^Cohen, Henri (1993).A Course in Computational Algebraic Number Theory. Springer-Verlag. pp. 382–406.ISBN 978-3-642-08142-2.
  25. ^"Elliptic curve with LMFDB label 32.a3 (Cremona label 32a2)".The L-functions and modular forms database.
  26. ^The functionF{\displaystyle F} is the unique weight2{\displaystyle 2} level32{\displaystyle 32}new form and it satisfies the functional equation
    F(1τ)=τ232F(τ132).{\displaystyle F\left(-{\frac {1}{\tau }}\right)=-{\frac {\tau ^{2}}{32}}F\left({\frac {\tau {\vphantom {1}}}{32}}\right).}
  27. ^Theν{\displaystyle \nu } function is closely related to theξ{\displaystyle \xi } function which is the multiplicative function defined by
    ξ(pn)={Np,pP,n=1ξ(pn1)+χ(p)n,pP,n2{\displaystyle \xi (p^{n})={\begin{cases}{\mathcal {N}}_{p}',&p\in \mathbb {P} ,\,n=1\\[5mu]\xi (p^{n-1})+\chi (p)^{n},&p\in \mathbb {P} ,\,n\geq 2\end{cases}}}
    whereNp{\displaystyle {\mathcal {N}}_{p}'} is the number of solutions of the equation
    a2+b2=p,pP{\displaystyle a^{2}+b^{2}=p,\quad p\in \mathbb {P} }
    in variablesa,b{\displaystyle a,b} that are non-negative integers (seeFermat's theorem on sums of two squares) andχ{\displaystyle \chi } is theDirichlet character from the Leibniz formula for π; also
    d|nχ(d)=ξ(n){\displaystyle \sum _{d|n}\chi (d)=\xi (n)}
    for any positive integern{\displaystyle n} where the sum extends only over positive divisors; the relation betweenν{\displaystyle \nu } andξ{\displaystyle \xi } is
    k=0n(1)kξ(4k+1)ξ(4n4k+1)=ν(2n+1){\displaystyle \sum _{k=0}^{n}(-1)^{k}\xi (4k+1)\xi (4n-4k+1)=\nu (2n+1)}
    wheren{\displaystyle n} is any non-negative integer.
  28. ^Theν{\displaystyle \nu } function also appears in
    zG;zz¯=nz=ν(n){\displaystyle \sum _{z\in \mathbb {G} ;\,z{\overline {z}}=n}z=\nu (n)}
    wheren{\displaystyle n} is any positive integer andG{\displaystyle \operatorname {\mathbb {G} } } is the set of allGaussian integers of the form
    (1)a±b12(a±bi){\displaystyle (-1)^{\frac {a\pm b-1}{2}}(a\pm bi)}
    wherea{\displaystyle a} is odd andb{\displaystyle b} is even. Theξ{\displaystyle \xi } function from the previous note satisfies
    |{z:zGzz¯=n}|=ξ(n){\displaystyle \left|\{z:z\in \mathbb {G} \land z{\overline {z}}=n\}\right|=\xi (n)}
    wheren{\displaystyle n} is positive odd.
  29. ^Rubin, Karl (1987)."Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication".Inventiones Mathematicae.89 (3): 528.Bibcode:1987InMat..89..527R.doi:10.1007/BF01388984.
  30. ^"Newform orbit 1.12.a.a".The L-functions and modular forms database.
  31. ^Levin (2006)
  32. ^Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity.
  33. ^Hyde, Trevor (2014)."A Wallis product on clovers"(PDF).The American Mathematical Monthly.121 (3):237–243.doi:10.4169/amer.math.monthly.121.03.237.S2CID 34819500.
  34. ^Bottazzini, Umberto;Gray, Jeremy (2013).Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory. Springer.doi:10.1007/978-1-4614-5725-1.ISBN 978-1-4614-5724-4. p. 60
  35. ^Todd (1975)
  36. ^Cox 1984, p. 307, eq. 2.21 for the first equality. The second equality can be proved by using thepentagonal number theorem.
  37. ^Berndt, Bruce C. (1998).Ramanujan's Notebooks Part V. Springer.ISBN 978-1-4612-7221-2. p. 326
  38. ^This formula can be proved byhypergeometric inversion: Let
    a(q)=m,nZqm2+mn+n2{\displaystyle \operatorname {a} (q)=\sum _{m,n\in \mathbb {Z} }q^{m^{2}+mn+n^{2}}}
    whereqC{\displaystyle q\in \mathbb {C} } with|q|<1{\displaystyle \left|q\right|<1}. Then
    a(q)=2F1(13,23,1,z){\displaystyle \operatorname {a} (q)={}_{2}F_{1}\left({\frac {1}{3}},{\frac {2}{3}},1,z\right)}
    where
    q=exp(2π32F1(1/3,2/3,1,1z)2F1(1/3,2/3,1,z)){\displaystyle q=\exp \left(-{\frac {2\pi }{\sqrt {3}}}{\frac {{}_{2}F_{1}(1/3,2/3,1,1-z)}{{}_{2}F_{1}(1/3,2/3,1,z)}}\right)}
    wherezC{0,1}{\displaystyle z\in \mathbb {C} \setminus \{0,1\}}. The formula in question follows from settingz=14(335){\textstyle z={\tfrac {1}{4}}{\bigl (}3{\sqrt {3}}-5{\bigr )}}.
  39. ^Eymard, Pierre; Lafon, Jean-Pierre (2004).The Number Pi. American Mathematical Society.ISBN 0-8218-3246-8. p. 232
  40. ^Garrett, Paul."Level-one elliptic modular forms"(PDF).University of Minnesota. p. 11—13
  41. ^The formula follows from thehypergeometric transformation
    3F2(14,12,34,1,1,16z(1z)2(1+z)4)=(1+z)2F1(12,12,1,z)2{\displaystyle {}_{3}F_{2}\left({\frac {1}{4}},{\frac {1}{2}},{\frac {3}{4}},1,1,16z{\frac {(1-z)^{2}}{(1+z)^{4}}}\right)=(1+z)\,{}_{2}F_{1}\left({\frac {1}{2}},{\frac {1}{2}},1,z\right)^{2}}
    wherez=λ(1+5i){\displaystyle z=\lambda (1+5i)} andλ{\displaystyle \lambda } is themodular lambda function.
  42. ^Khrushchev, Sergey (2008).Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press.ISBN 978-0-521-85419-1. p. 140 (eq. 3.34), p. 153. There's an error on p. 153:4[Γ(3+s/4)/Γ(1+s/4)]2{\displaystyle 4[\Gamma (3+s/4)/\Gamma (1+s/4)]^{2}} should be4[Γ((3+s)/4)/Γ((1+s)/4)]2{\displaystyle 4[\Gamma ((3+s)/4)/\Gamma ((1+s)/4)]^{2}}.
  43. ^Khrushchev, Sergey (2008).Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press.ISBN 978-0-521-85419-1. p. 146, 155
  44. ^Perron, Oskar (1957).Die Lehre von den Kettenbrüchen: Band II (in German) (Third ed.). B. G. Teubner. p. 36, eq. 24
  45. ^"A062540 - OEIS".oeis.org. Retrieved2022-09-14.
  46. ^"A053002 - OEIS".oeis.org.
  47. ^Blagouchine, Iaroslav V. (2014)."Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results".The Ramanujan Journal.35 (1):21–110.doi:10.1007/s11139-013-9528-5.S2CID 120943474.
  48. ^"A068467 - Oeis".
  49. ^abCox 1984, p. 313.
  50. ^Levien (2008)
  51. ^Cox 1984, p. 312.
  52. ^Adlaj, Semjon (2012)."An Eloquent Formula for the Perimeter of an Ellipse"(PDF).American Mathematical Society. p. 1097.One might also observe that the length of the "sine" curve over half a period, that is, the length of the graph of the functionsin(t){\displaystyle \sin(t)} from the point wheret=0{\displaystyle t=0} to the point wheret=π{\displaystyle t=\pi } , is2l(1/2)=L+M{\displaystyle {\sqrt {2}}l(1/{\sqrt {2}})=L+M}. In this paperM=1/G=π/ϖ{\displaystyle M=1/G=\pi /\varpi } andL=π/M=Gπ=ϖ{\displaystyle L=\pi /M=G\pi =\varpi }.

References

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lemniscate_constant&oldid=1268934616"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp