Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lehmann–Scheffé theorem

From Wikipedia, the free encyclopedia
Theorem in statistics
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Lehmann–Scheffé theorem" – news ·newspapers ·books ·scholar ·JSTOR
(April 2011) (Learn how and when to remove this message)

Instatistics, theLehmann–Scheffé theorem ties together completeness, sufficiency, uniqueness, and best unbiased estimation.[1] The theorem states that anyestimator that isunbiased for a given unknown quantity and that depends on the data only through acomplete,sufficient statistic is the uniquebest unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named afterErich Leo Lehmann andHenry Scheffé, given their two early papers.[2][3]

IfT{\displaystyle T} is a complete sufficient statistic forθ{\displaystyle \theta } andE[g(T)]=τ(θ){\displaystyle \operatorname {E} [g(T)]=\tau (\theta )} theng(T){\displaystyle g(T)} is theuniformly minimum-variance unbiased estimator (UMVUE) ofτ(θ){\displaystyle \tau (\theta )}.

Statement

[edit]

LetX=X1,X2,,Xn{\displaystyle {\vec {X}}=X_{1},X_{2},\dots ,X_{n}} be a random sample from a distribution that has p.d.f (or p.m.f in the discrete case)f(x:θ){\displaystyle f(x:\theta )} whereθΩ{\displaystyle \theta \in \Omega } is a parameter in the parameter space. SupposeY=u(X){\displaystyle Y=u({\vec {X}})} is a sufficient statistic forθ, and let{fY(y:θ):θΩ}{\displaystyle \{f_{Y}(y:\theta ):\theta \in \Omega \}} be a complete family. Ifφ:E[φ(Y)]=θ{\displaystyle \varphi :\operatorname {E} [\varphi (Y)]=\theta } thenφ(Y){\displaystyle \varphi (Y)} is the unique MVUE ofθ.

Proof

[edit]

By theRao–Blackwell theorem, ifZ{\displaystyle Z} is an unbiased estimator ofθ thenφ(Y):=E[ZY]{\displaystyle \varphi (Y):=\operatorname {E} [Z\mid Y]} defines an unbiased estimator ofθ with the property that its variance is not greater than that ofZ{\displaystyle Z}.

Now we show that this function is unique. SupposeW{\displaystyle W} is another candidate MVUE estimator ofθ. Then againψ(Y):=E[WY]{\displaystyle \psi (Y):=\operatorname {E} [W\mid Y]} defines an unbiased estimator ofθ with the property that its variance is not greater than that ofW{\displaystyle W}. Then

E[φ(Y)ψ(Y)]=0,θΩ.{\displaystyle \operatorname {E} [\varphi (Y)-\psi (Y)]=0,\theta \in \Omega .}

Since{fY(y:θ):θΩ}{\displaystyle \{f_{Y}(y:\theta ):\theta \in \Omega \}} is a complete family

E[φ(Y)ψ(Y)]=0φ(y)ψ(y)=0,θΩ{\displaystyle \operatorname {E} [\varphi (Y)-\psi (Y)]=0\implies \varphi (y)-\psi (y)=0,\theta \in \Omega }

and therefore the functionφ{\displaystyle \varphi } is the unique function of Y with variance not greater than that of any other unbiased estimator. We conclude thatφ(Y){\displaystyle \varphi (Y)} is the MVUE.

Example for when using a non-complete minimal sufficient statistic

[edit]

An example of an improvable Rao–Blackwell improvement, when using a minimal sufficient statistic that isnot complete, was provided by Galili and Meilijson in 2016.[4] LetX1,,Xn{\displaystyle X_{1},\ldots ,X_{n}} be a random sample from a scale-uniform distributionXU((1k)θ,(1+k)θ),{\displaystyle X\sim U((1-k)\theta ,(1+k)\theta ),} with unknown meanE[X]=θ{\displaystyle \operatorname {E} [X]=\theta } and known design parameterk(0,1){\displaystyle k\in (0,1)}. In the search for "best" possible unbiased estimators forθ{\displaystyle \theta }, it is natural to considerX1{\displaystyle X_{1}} as an initial (crude) unbiased estimator forθ{\displaystyle \theta } and then try to improve it. SinceX1{\displaystyle X_{1}} is not a function ofT=(X(1),X(n)){\displaystyle T=\left(X_{(1)},X_{(n)}\right)}, the minimal sufficient statistic forθ{\displaystyle \theta } (whereX(1)=miniXi{\displaystyle X_{(1)}=\min _{i}X_{i}} andX(n)=maxiXi{\displaystyle X_{(n)}=\max _{i}X_{i}}), it may be improved using the Rao–Blackwell theorem as follows:

θ^RB=Eθ[X1X(1),X(n)]=X(1)+X(n)2.{\displaystyle {\hat {\theta }}_{RB}=\operatorname {E} _{\theta }[X_{1}\mid X_{(1)},X_{(n)}]={\frac {X_{(1)}+X_{(n)}}{2}}.}

However, the following unbiased estimator can be shown to have lower variance:

θ^LV=1k2n1n+1+1(1k)X(1)+(1+k)X(n)2.{\displaystyle {\hat {\theta }}_{LV}={\frac {1}{k^{2}{\frac {n-1}{n+1}}+1}}\cdot {\frac {(1-k)X_{(1)}+(1+k)X_{(n)}}{2}}.}

And in fact, it could be even further improved when using the following estimator:

θ^BAYES=n+1n[1X(1)(1+k)X(n)(1k)1(X(1)(1+k)X(n)(1k))n+11]X(n)1+k{\displaystyle {\hat {\theta }}_{\text{BAYES}}={\frac {n+1}{n}}\left[1-{\frac {{\frac {X_{(1)}(1+k)}{X_{(n)}(1-k)}}-1}{\left({\frac {X_{(1)}(1+k)}{X_{(n)}(1-k)}}\right)^{n+1}-1}}\right]{\frac {X_{(n)}}{1+k}}}

The model is ascale model. Optimalequivariant estimators can then be derived forloss functions that are invariant.[5]

See also

[edit]

References

[edit]
  1. ^Casella, George (2001).Statistical Inference. Duxbury Press. p. 369.ISBN 978-0-534-24312-8.
  2. ^Lehmann, E. L.;Scheffé, H. (1950)."Completeness, similar regions, and unbiased estimation. I."Sankhyā.10 (4):305–340.doi:10.1007/978-1-4614-1412-4_23.JSTOR 25048038.MR 0039201.
  3. ^Lehmann, E.L.;Scheffé, H. (1955)."Completeness, similar regions, and unbiased estimation. II".Sankhyā.15 (3):219–236.doi:10.1007/978-1-4614-1412-4_24.JSTOR 25048243.MR 0072410.
  4. ^Tal Galili; Isaac Meilijson (31 Mar 2016)."An Example of an Improvable Rao–Blackwell Improvement, Inefficient Maximum Likelihood Estimator, and Unbiased Generalized Bayes Estimator".The American Statistician.70 (1):108–113.doi:10.1080/00031305.2015.1100683.PMC 4960505.PMID 27499547.
  5. ^Taraldsen, Gunnar (2020)."Micha Mandel (2020), "The Scaled Uniform Model Revisited," The American Statistician, 74:1, 98–100: Comment".The American Statistician.74 (3): 315.doi:10.1080/00031305.2020.1769727.S2CID 219493070.
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis (see alsoTemplate:Least squares and regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lehmann–Scheffé_theorem&oldid=1322913367"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp