Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of lead

From Wikipedia, the free encyclopedia
(Redirected fromLead-201)

Isotopes oflead (82Pb)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
202Pbsynth5.25×104 yε202Tl
204Pb1.40%stable
205Pbtrace1.73×107 yε205Tl
206Pb24.1%stable
207Pb22.1%stable
208Pb52.4%stable
209Pbtrace3.253 hβ209Bi
210Pbtrace22.20 yβ210Bi
α206Hg
211Pbtrace36.1 minβ211Bi
212Pbtrace10.64 hβ212Bi
214Pbtrace26.8 minβ214Bi
Isotopic abundances vary greatly by sample[2]
Standard atomic weightAr°(Pb)

Lead (82Pb) has fourobservationally stableisotopes:204Pb,206Pb,207Pb,208Pb. Lead-204 is entirely aprimordial nuclide and is not aradiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of threedecay chains: theuranium series (or radium series), theactinium series, and thethorium series, respectively; a fourth decay chain, theneptunium series, terminates with thethallium isotope205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial238U,235U, and232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium. (Seelead–lead dating anduranium–lead dating.)

The longest-livedradioisotopes are205Pb with ahalf-life of 17.3 million years and202Pb with a half-life of 52,500 years. A shorter-lived naturally occurring radioisotope,210Pb with a half-life of 22.2 years, is useful for studying thesedimentation chronology of environmental samples on time scales shorter than 100 years.[5]

The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give astandard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope,208Pb. (The more massive209Bi, long considered to be stable, actually has a half-life of 2.01×1019 years.)208Pb is also adoubly magic isotope, as it has 82protons and 126neutrons.[6] It is the heaviest doubly magic nuclide known. A total of 43 lead isotopes are now known, including very unstable synthetic species.

The four primordial isotopes of lead are allobservationally stable, meaning that they are predicted to undergo radioactive decay but no decay has been observed yet. These four isotopes are predicted to undergoalpha decay and becomeisotopes of mercury which are themselves radioactive or observationally stable.

In its fully ionized state, thebeta decay of isotope210Pb does not release a free electron; the generated electron is instead captured by the atom's empty orbitals.[7]

List of isotopes

[edit]


Nuclide
[n 1]
Historic
name
ZNIsotopic mass(Da)[8]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5][n 6]
Spin and
parity[1]
[n 7][n 8]
Natural abundance(mole fraction)
Excitation energy[n 8]Normal proportion[1]Range of variation
178Pb8296178.003836(25)250(80) μsα174Hg0+
β+?178Tl
179Pb8297179.002(87)2.7(2) msα175Hg(9/2−)
180Pb8298179.997916(13)4.1(3) msα176Hg0+
181Pb8299180.996661(91)39.0(8) msα177Hg(9/2−)
β+?181Tl
182Pb82100181.992674(13)55(5) msα178Hg0+
β+?182Tl
183Pb82101182.991863(31)535(30) msα179Hg3/2−
β+?183Tl
183mPb94(8) keV415(20) msα179Hg13/2+
β+?183Tl
IT?183Pb
184Pb82102183.988136(14)490(25) msα (80%)180Hg0+
β+? (20%)184Tl
185Pb82103184.987610(17)6.3(4) sβ+ (66%)185Tl3/2−
α (34%)181Hg
185mPb[n 9]70(50) keV4.07(15) sα (50%)181Hg13/2+
β+? (50%)185Tl
186Pb82104185.984239(12)4.82(3) sβ+? (60%)186Tl0+
α (40%)182Hg
187Pb82105186.9839108(55)15.2(3) sβ+ (90.5%)187Tl3/2−
α (9.5%)183Hg
187mPb[n 9]19(10) keV18.3(3) sβ+ (88%)187Tl13/2+
α (12%)183Hg
188Pb82106187.980879(11)25.1(1) sβ+ (91.5%)188Tl0+
α (8.5%)184Hg
188m1Pb2577.2(4) keV800(20) nsIT188Pb8−
188m2Pb2709.8(5) keV94(12) nsIT188Pb12+
188m3Pb4783.4(7) keV440(60) nsIT188Pb(19−)
189Pb82107188.980844(15)39(8) sβ+ (99.58%)189Tl3/2−
α (0.42%)185Hg
189m1Pb40(4) keV50.5(21) sβ+ (99.6%)189Tl13/2+
α (0.4%)185Hg
IT?189Pb
189m2Pb2475(4) keV26(5) μsIT189Pb31/2−
190Pb82108189.978082(13)71(1) sβ+ (99.60%)190Tl0+
α (0.40%)186Hg
190m1Pb2614.8(8) keV150(14) nsIT190Pb10+
190m2Pb2665(50)# keV24.3(21) μsIT190Pb(12+)
190m3Pb2658.2(8) keV7.7(3) μsIT190Pb11−
191Pb82109190.9782165(71)1.33(8) minβ+ (99.49%)191Tl3/2−
α (0.51%)187Hg
191m1Pb58(10) keV2.18(8) minβ+ (99.98%)191Tl13/2+
α (0.02%)187Hg
191m2Pb2659(10) keV180(80) nsIT191Pb33/2+
192Pb82110191.9757896(61)3.5(1) minβ+ (99.99%)192Tl0+
α (0.0059%)188Hg
192m1Pb2581.1(1) keV166(6) nsIT192Pb10+
192m2Pb2625.1(11) keV1.09(4) μsIT192Pb12+
192m3Pb2743.5(4) keV756(14) nsIT192Pb11−
193Pb82111192.976136(11)4# minβ+?193Tl3/2−#
193m1Pb93(12) keV5.8(2) minβ+193Tl13/2+
193m2Pb2707(13) keV180(15) nsIT193Pb33/2+
194Pb82112193.974012(19)10.7(6) minβ+194Tl0+
α (7.3×10−6%)190Hg
194m1Pb2628.1(4) keV370(13) nsIT194Pb12+
194m2Pb2933.0(4) keV133(7) nsIT194Pb11−
195Pb82113194.9745162(55)15.0(14) minβ+195Tl3/2-
195m1Pb202.9(7) keV15.0(12) minβ+195Tl13/2+
IT?195Pb
195m2Pb1759.0(7) keV10.0(7) μsIT195Pb21/2−
195m3Pb2901.7(8) keV95(20) nsIT195Pb33/2+
196Pb82114195.9727876(83)37(3) minβ+196Tl0+
α (<3×10−5%)192Hg
196m1Pb1797.51(14) keV140(14) nsIT196Pb5−
196m2Pb2694.6(3) keV270(4) nsIT196Pb12+
197Pb82115196.9734347(52)8.1(17) minβ+197Tl3/2−
197m1Pb319.31(11) keV42.9(9) minβ+ (81%)197Tl13/2+
IT (19%)197Pb
197m2Pb1914.10(25) keV1.15(20) μsIT197Pb21/2−
198Pb82116197.9720155(94)2.4(1) hβ+198Tl0+
198m1Pb2141.4(4) keV4.12(7) μsIT198Pb7−
198m2Pb2231.4(5) keV137(10) nsIT198Pb9−
198m3Pb2821.7(6) keV212(4) nsIT198Pb12+
199Pb82117198.9729126(73)90(10) minβ+199Tl3/2−
199m1Pb429.5(27) keV12.2(3) minIT199Pb(13/2+)
β+?199Tl
199m2Pb2563.8(27) keV10.1(2) μsIT199Pb(29/2−)
200Pb82118199.971819(11)21.5(4) hEC200Tl0+
200m1Pb2183.3(11) keV456(6) nsIT200Pb(9−)
200m2Pb3005.8(12) keV198(3) nsIT200Pb12+)
201Pb82119200.972870(15)9.33(3) hβ+201Tl5/2−
201m1Pb629.1(3) keV60.8(18) sIT201Pb13/2+
β+?201Tl
201m2Pb2953(20) keV508(3) nsIT201Pb(29/2−)
202Pb82120201.9721516(41)5.25(28)×104 yEC202Tl0+
202m1Pb2169.85(8) keV3.54(2) hIT (90.5%)202Pb9−
β+ (9.5%)202Tl
202m2Pb4140(50)# keV100(3) nsIT202Pb16+
202m3Pb5300(50)# keV108(3) nsIT202Pb19−
203Pb82121202.9733906(70)51.924(15) hEC203Tl5/2−
203m1Pb825.2(3) keV6.21(8) sIT203Pb13/2+
203m2Pb2949.2(4) keV480(7) msIT203Pb29/2−
203m3Pb2970(50)# keV122(4) nsIT203Pb25/2−#
204Pb[n 10]82122203.9730435(12)Observationally stable[n 11]0+0.014(6)0.0000–0.0158[10]
204m1Pb1274.13(5) keV265(6) nsIT204Pb4+
204m2Pb2185.88(8) keV66.93(10) minIT204Pb9−
204m3Pb2264.42(6) keV490(70) nsIT204Pb7−
205Pb82123204.9744817(12)17.0(9)×107 yEC205Tl5/2−
205m1Pb2.329(7) keV24.2(4) μsIT205Pb1/2−
205m2Pb1013.85(3) keV5.55(2) msIT205Pb13/2+
205m3Pb3195.8(6) keV217(5) nsIT205Pb25/2−
206Pb[n 10][n 12]Radium G[11]82124205.9744652(12)Observationally stable[n 13]0+0.241(30)0.0190–0.8673[10]
206m1Pb2200.16(4) keV125(2) μsIT206Pb7−
206m2Pb4027.3(7) keV202(3) nsIT206Pb12+
207Pb[n 10][n 14]Actinium D82125206.9758968(12)Observationally stable[n 15]1/2−0.221(50)0.0035–0.2351[10]
207mPb1633.356(4) keV806(5) msIT207Pb13/2+
208Pb[n 16]Thorium D82126207.9766520(12)Observationally stable[n 17]0+0.524(70)0.0338–0.9775[10]
208mPb4895.23(5) keV535(35) nsIT208Pb10+
209Pb82127208.9810900(19)3.235(5) hβ209Bi9/2+Trace[n 18]
210PbRadium D
Radiolead
Radio-lead
82128209.9841884(16)22.20(22) yβ (100%)210Bi0+Trace[n 19]
α (1.9×10−6%)206Hg
210m1Pb1194.61(18) keV92(10) nsIT210Pb6+
210m2Pb1274.8(3) keV201(17) nsIT210Pb8+
211PbActinium B82129210.9887353(24)36.1628(25) minβ211Bi9/2+Trace[n 20]
211mPb1719(23) keV159(28) nsIT211Pb(27/2+)
212PbThorium B82130211.9918959(20)10.627(6) hβ212Bi0+Trace[n 21]
212mPb1335(2) keV6.0(8) μsIT212Pb8+#
213Pb82131212.9965608(75)10.2(3) minβ213Bi(9/2+)Trace[n 18]
213mPb1331.0(17) keV260(20) nsIT213Pb(21/2+)
214PbRadium B82132213.9998035(21)27.06(7) minβ214Bi0+Trace[n 19]
214mPb1420(20) keV6.2(3) μsIT214Pb8+#
215Pb82133215.004662(57)142(11) sβ215Bi9/2+#
216Pb82134216.00806(22)#1.66(20) minβ216Bi0+
216mPb1514(20) keV400(40) nsIT216Pb8+#
217Pb82135217.01316(32)#19.9(53) sβ217Bi9/2+#
218Pb82136218.01678(32)#14.8(68) sβ218Bi0+
219Pb82137219.02214(43)#3# s
[>300 ns]
β?219Bi11/2+#
220Pb82138220.02591(43)#1# s
[>300 ns]
β?220Bi0+
This table header & footer:
  1. ^mPb – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
  5. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^abOrder of ground state and isomer is uncertain.
  10. ^abcUsed inlead–lead dating
  11. ^Believed to undergo α decay to200Hg with ahalf-life over 1.4×1020 years; the theoretical lifetime is around ~1035–37 years.[9]
  12. ^Finaldecay product of 4n+2decay chain (theRadium or Uranium series)
  13. ^Believed to undergo α decay to202Hg with a half-life over 2.5×1021 years; the theoretical lifetime is ~1065–68 years.[9]
  14. ^Final decay product of 4n+3 decay chain (theActinium series)
  15. ^Believed to undergo α decay to203Hg with a half-life over 1.9×1021 years; the theoretical lifetime is ~10152–189 years.[9]
  16. ^Heaviest observationally stable nuclide; final decay product of 4n decay chain (theThorium series)
  17. ^Believed to undergo α decay to204Hg with a half-life over 2.6×1021 years; the theoretical lifetime is ~10124–132 years.[9]
  18. ^abIntermediate decay product of237Np
  19. ^abIntermediatedecay product of238U
  20. ^Intermediatedecay product of235U
  21. ^Intermediatedecay product of232Th

Lead-206

[edit]
See also:Decay chain

206Pb is the final step in the decay chain of238U, the "radium series" or "uranium series". In a closed system, over time, a given mass of238U will decay in a sequence of steps culminating in206Pb. The production of intermediate products eventually reaches an equilibrium (though this takes a long time, as the half-life of234U is 245,500 years). Once this stabilized system is reached, the ratio of238U to206Pb will steadily decrease, while the ratios of the other intermediate products to each other remain constant.

Like most radioisotopes found in the radium series,206Pb was initially named as a variation of radium, specificallyradium G. It is the decay product of both210Po (historically calledradium F) byalpha decay, and the much rarer206Tl (radium EII) bybeta decay.

Lead-206 has been proposed for use infast breeder nuclear fission reactor coolant over the use of natural lead mixture (which also includes other stable lead isotopes) as a mechanism to improveneutron economy and greatly suppress unwanted production of highly radioactive byproducts.[12]

Lead-204, -207, and -208

[edit]

204Pb is entirelyprimordial, and is thus useful for estimating the fraction of the other lead isotopes in a given sample that are also primordial, since the relative fractions of the various primordial lead isotopes is constant everywhere.[13] Any excess lead-206, -207, and -208 is thus assumed to beradiogenic in origin,[13] allowing various uranium and thorium dating schemes to be used to estimate the age of rocks (time since their formation) based on the relative abundance of lead-204 to other isotopes.207Pb is the end of theactinium series from235U.

208Pb is the end of thethorium series from232Th. While it only makes up approximately half of the composition of lead in most places on Earth, it can be found naturally enriched up to around 90% in thorium ores.[14]208Pb is the heaviest known stable nuclide and also the heaviest knowndoubly magic nucleus, asZ = 82 andN = 126 correspond to closednuclear shells.[15] As a consequence of this particularly stable configuration, its neutron capturecross section is very low (even lower than that ofdeuterium in the thermal spectrum), making it of interest forlead-cooled fast reactors.

In 2025 a published study suggested that the nucleus of208Pb is not perfectly spherical as previously believed.[16]

Lead-212

[edit]
  • Pb-212 (27.2 mCi)
    Pb-212 (27.2 mCi)
  • Pb-212 Separation from Ra-224 (19.3 mCi)
    Pb-212 Separation from Ra-224 (19.3 mCi)

212Pb-containingradiopharmaceuticals have been trialed as therapeutic agents for the experimental cancer treatmenttargeted alpha-particle therapy.[17]

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^Meija et al. 2016.
  3. ^"Standard Atomic Weights: Lead".CIAAW. 2020.
  4. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  5. ^Jeter, Hewitt W. (March 2000)."Determining the Ages of Recent Sediments Using Measurements of Trace Radioactivity"(PDF).Terra et Aqua (78):21–28. Archived fromthe original(PDF) on March 4, 2016. RetrievedOctober 23, 2019.
  6. ^Blank, B.; Regan, P.H. (2000)."Magic and doubly-magic nuclei".Nuclear Physics News.10 (4):20–27.doi:10.1080/10506890109411553.S2CID 121966707.
  7. ^Takahashi, K; Boyd, R. N.; Mathews, G. J.; Yokoi, K. (October 1987)."Bound-state beta decay of highly ionized atoms".Physical Review C.36 (4):1522–1528.Bibcode:1987PhRvC..36.1522T.doi:10.1103/PhysRevC.36.1522.ISSN 0556-2813.OCLC 1639677.PMID 9954244. Retrieved2016-11-20.As can be seen in Table I (187Re,210Pb,227Ac, and241Pu), some continuum-state decays are energetically forbidden when the atom is fully ionized. This is because the atomic binding energies liberated by ionization, i.e., the total electron binding in the neutral atom,Bn, increases withZ. If [thedecay energy]Qn<Bn(Z+1)-Bn(Z), the continuum-stateβ decay is energetically forbidden.
  8. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  9. ^abcdBeeman, J.W.; et al. (2013). "New experimental limits on the alpha decays of lead isotopes".European Physical Journal A.49 (4): 50.arXiv:1212.2422.Bibcode:2013EPJA...49...50B.doi:10.1140/epja/i2013-13050-7.S2CID 254111888.
  10. ^abcd"Standard Atomic Weights: Lead".CIAAW. 2020.
  11. ^Kuhn, W. (1929). "LXVIII. Scattering of thorium C" γ-radiation by radium G and ordinary lead".The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.8 (52): 628.doi:10.1080/14786441108564923.
  12. ^Khorasanov, G. L.; Ivanov, A. P.; Blokhin, A. I. (2002).Polonium Issue in Fast Reactor Lead Coolants and One of the Ways of Its Solution. 10th International Conference on Nuclear Engineering. pp. 711–717.doi:10.1115/ICONE10-22330.
  13. ^abWoods, G.D. (November 2014).Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode(PDF) (Report). Stockport, UK: Agilent Technologies.
  14. ^A. Yu. Smirnov; V. D. Borisevich; A. Sulaberidze (July 2012). "Evaluation of specific cost of obtainment of lead-208 isotope by gas centrifuges using various raw materials".Theoretical Foundations of Chemical Engineering.46 (4):373–378.doi:10.1134/S0040579512040161.S2CID 98821122.
  15. ^Blank, B.; Regan, P.H. (2000)."Magic and doubly-magic nuclei".Nuclear Physics News.10 (4):20–27.doi:10.1080/10506890109411553.S2CID 121966707.
  16. ^Henderson, J.; Heery, J.; Rocchini, M.; Siciliano, M.; Sensharma, N.; Ayangeakaa, A. D.; Janssens, R. V. F.; Kowalewski, T. M.; Abhishek; Stevenson, P. D.; Yüksel, E.; Brown, B. A.; Rodriguez, T. R.; Robledo, L. M.; Wu, C. Y. (2025-02-14)."Deformation and Collectivity in Doubly Magic Pb208".Physical Review Letters.134 (6): 062502.doi:10.1103/PhysRevLett.134.062502.
  17. ^Kokov, K.V.; Egorova, B.V.; German, M.N.; Klabukov, I.D.; Krasheninnikov, M.E.; Larkin-Kondrov, A.A.; Makoveeva, K.A.; Ovchinnikov, M.V.; Sidorova, M.V.; Chuvilin, D.Y. (2022)."212Pb: Production Approaches and Targeted Therapy Applications".Pharmaceutics.14 (1): 189.doi:10.3390/pharmaceutics14010189.ISSN 1999-4923.PMC 8777968.PMID 35057083.

Sources

[edit]

Isotope masses from:

Half-life, spin, and isomer data selected from the following sources.

Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_lead&oldid=1278722613#Lead-201"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp