Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lambda point

From Wikipedia, the free encyclopedia
Superfluid transition temperature of helium-4
The plot of the specific heat capacity versus temperature.

Thelambda point is thetemperature at which normal fluidhelium (helium I) makes the transition tosuperfluid state (helium II). At pressure of 1atmosphere, the transition occurs at approximately 2.17K. The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-IItriple point at 2.1768 K (−270.9732 °C) and 5.0418 kPa (0.049759 atm), which is the "saturatedvapor pressure" at that temperature (pure helium gas in thermal equilibrium over the liquid surface, in ahermetic container).[1] The highest pressure at which He-I and He-II can coexist is thebcc−He-I−He-II triple point with a helium solid at 1.762 K (−271.388 °C), 29.725 atm (3,011.9 kPa).[2]

The point's name derives from the graph (pictured) that results from plotting thespecific heat capacity as a function oftemperature (for a given pressure in the above range, in the example shown, at 1 atmosphere), which resembles theGreek letterlambdaλ{\displaystyle \lambda }. The specific heat capacity has a sharp peak as the temperature approaches the lambda point. The tip of the peak is so sharp that a critical exponent characterizing the divergence of the heat capacity can be measured precisely only in zero gravity, to provide a uniform density over a substantial volume of fluid. Hence, the heat capacity was measured within 2 nK below the transition in an experiment included in aSpace Shuttle payload in 1992.[3]

Unsolved problem in physics
Explain the discrepancy between the experimental and theoretical determinations of the heat capacity critical exponentα for the superfluid transition in helium-4.[4]
More unsolved problems in physics

Although the heat capacity has a peak, it does not tend towardsinfinity (contrary to what the graph may suggest), but has finite limiting values when approaching the transition from above and below.[3] The behavior of the heat capacity near the peak is described by the formulaCA±tα+B±{\displaystyle C\approx A_{\pm }t^{-\alpha }+B_{\pm }} wheret=|1T/Tc|{\displaystyle t=|1-T/T_{c}|} is the reduced temperature,Tc{\displaystyle T_{c}} is the Lambda point temperature,A±,B±{\displaystyle A_{\pm },B_{\pm }} are constants (different above and below the transition temperature), andα is thecritical exponent:α=0.0127(3){\displaystyle \alpha =-0.0127(3)}.[3][5] Since this exponent is negative for the superfluid transition, specific heat remains finite.[6]

The quoted experimental value ofα is in a significant disagreement[7][4] with the most precise theoretical determinations[8][9][10] coming from high temperature expansion techniques,Monte Carlo methods and theconformal bootstrap.

See also

[edit]

References

[edit]
  1. ^Donnelly, Russell J.; Barenghi, Carlo F. (1998). "The Observed Properties of Liquid Helium at the Saturated Vapor Pressure".Journal of Physical and Chemical Reference Data.27 (6):1217–1274.Bibcode:1998JPCRD..27.1217D.doi:10.1063/1.556028.
  2. ^Hoffer, J. K.; Gardner, W. R.; Waterfield, C. G.; Phillips, N. E. (April 1976). "Thermodynamic properties of4He. II. The bcc phase and the P-T and VT phase diagrams below 2 K".Journal of Low Temperature Physics.23 (1):63–102.Bibcode:1976JLTP...23...63H.doi:10.1007/BF00117245.S2CID 120473493.
  3. ^abcLipa, J.A.; Swanson, D. R.; Nissen, J. A.; Chui, T. C. P.; Israelsson, U. E. (1996). "Heat Capacity and Thermal Relaxation of Bulk Helium very near the Lambda Point".Physical Review Letters.76 (6):944–7.Bibcode:1996PhRvL..76..944L.doi:10.1103/PhysRevLett.76.944.hdl:2060/19950007794.PMID 10061591.S2CID 29876364.
  4. ^abRychkov, Slava (2020-01-31)."Conformal bootstrap and the λ-point specific heat experimental anomaly".Journal Club for Condensed Matter Physics.doi:10.36471/JCCM_January_2020_02.
  5. ^Lipa, J. A.; Nissen, J. A.; Stricker, D. A.; Swanson, D. R.; Chui, T. C. P. (2003-11-14). "Specific heat of liquid helium in zero gravity very near the lambda point".Physical Review B.68 (17) 174518.arXiv:cond-mat/0310163.Bibcode:2003PhRvB..68q4518L.doi:10.1103/PhysRevB.68.174518.S2CID 55646571.
  6. ^For other phase transitionsα{\displaystyle \alpha } may be positive (e.g.α+0.1{\displaystyle \alpha \approx +0.1} forthe liquid-vapor critical point which hasIsing critical exponents). For those phase transitions specific heat does tend to infinity.
  7. ^Vicari, Ettore (2008-03-21). "Critical phenomena and renormalization-group flow of multi-parameter Phi4 theories".Proceedings of the XXV International Symposium on Lattice Field Theory — PoS(LATTICE 2007). Vol. 42. Regensburg, Germany: Sissa Medialab. p. 023.doi:10.22323/1.042.0023.
  8. ^Campostrini, Massimo; Hasenbusch, Martin; Pelissetto, Andrea; Vicari, Ettore (2006-10-06). "Theoretical estimates of the critical exponents of the superfluid transition in $^{4}\mathrm{He}$ by lattice methods".Physical Review B.74 (14) 144506.arXiv:cond-mat/0605083.doi:10.1103/PhysRevB.74.144506.S2CID 118924734.
  9. ^Hasenbusch, Martin (2019-12-26). "Monte Carlo study of an improved clock model in three dimensions".Physical Review B.100 (22) 224517.arXiv:1910.05916.Bibcode:2019PhRvB.100v4517H.doi:10.1103/PhysRevB.100.224517.ISSN 2469-9950.S2CID 204509042.
  10. ^Chester, Shai M.; Landry, Walter; Liu, Junyu; Poland, David; Simmons-Duffin, David; Su, Ning; Vichi, Alessandro (2020). "Carving out OPE space and precise O(2) model critical exponents".Journal of High Energy Physics.2020 (6): 142.arXiv:1912.03324.Bibcode:2020JHEP...06..142C.doi:10.1007/JHEP06(2020)142.S2CID 208910721.

External links

[edit]
State
Low energy
High energy
Other states
Phase transitions
Quantities
Concepts
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lambda_point&oldid=1314306379"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp