Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Krichevsky–Trofimov estimator

From Wikipedia, the free encyclopedia
icon
This articlerelies largely or entirely on asingle source. Relevant discussion may be found on thetalk page. Please helpimprove this article byintroducing citations to additional sources.
Find sources: "Krichevsky–Trofimov estimator" – news ·newspapers ·books ·scholar ·JSTOR
(March 2024)

Ininformation theory, given an unknownstationary sourceπ with alphabetA and a samplew fromπ, theKrichevsky–Trofimov (KT) estimator produces an estimatepi(w) of the probability of each symboli ∈ A. This estimator is optimal in the sense that it minimizes the worst-caseregret asymptotically.

For a binary alphabet and a stringw withm zeroes andn ones, the KT estimatorpi(w) is defined as:[1]

p0(w)=m+1/2m+n+1,p1(w)=n+1/2m+n+1.{\displaystyle {\begin{aligned}p_{0}(w)&={\frac {m+1/2}{m+n+1}},\\[5pt]p_{1}(w)&={\frac {n+1/2}{m+n+1}}.\end{aligned}}}

This corresponds to the posterior mean of aBeta-Bernoulli posterior distribution with prior1/2{\displaystyle 1/2}.For the general case the estimate is made using aDirichlet-Categorical distribution.

See also

[edit]

References

[edit]
  1. ^Krichevsky, R. E.; Trofimov, V. K. (1981). "The Performance of Universal Encoding".IEEE Trans. Inf. Theory. IT-27 (2):199–207.doi:10.1109/TIT.1981.1056331.


Stub icon

Thisprobability-related article is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Krichevsky–Trofimov_estimator&oldid=1213447472"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp