Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Knuth's up-arrow notation

From Wikipedia, the free encyclopedia
Method of notation of very large integers

Inmathematics,Knuth's up-arrow notation is a method of notation forvery largeintegers, introduced byDonald Knuth in 1976.[1]

In his 1947 paper,[2]R. L. Goodstein introduced the specific sequence of operations that are now calledhyperoperations. Goodstein also suggested the Greek namestetration,pentation, etc., for the extended operations beyondexponentiation. The sequence starts with aunary operation (thesuccessor function withn = 0), and continues with thebinary operations ofaddition (n = 1),multiplication (n = 2),exponentiation (n = 3),tetration (n = 4),pentation (n = 5), etc.Various notations have been used to represent hyperoperations. One such notation isHn(a,b){\displaystyle H_{n}(a,b)}.Knuth's up-arrow notation{\displaystyle \uparrow } is another. For example:

The general definition of the up-arrow notation is as follows (fora0,n1,b0{\displaystyle a\geq 0,n\geq 1,b\geq 0}):anb=Hn+2(a,b)=a[n+2]b.{\displaystyle a\uparrow ^{n}b=H_{n+2}(a,b)=a[n+2]b.}Here,n{\displaystyle \uparrow ^{n}} stands forn arrows, so for example2↑↑↑↑3=243,{\displaystyle 2\uparrow \uparrow \uparrow \uparrow 3=2\uparrow ^{4}3,}and the square brackets used in the far rhs. expression is another notation for hyperoperations.

Introduction

[edit]

Thehyperoperations naturally extend thearithmetic operations ofaddition andmultiplication as follows.Addition by anatural number is defined as iterated incrementation:

H1(a,b)=a+b=a+1+1++1b copies of 1{\displaystyle {\begin{matrix}H_{1}(a,b)=a+b=&a+\underbrace {1+1+\dots +1} \\&b{\mbox{ copies of }}1\end{matrix}}}

Multiplication by anatural number is defined as iteratedaddition:

H2(a,b)=a×b=a+a++ab copies of a{\displaystyle {\begin{matrix}H_{2}(a,b)=a\times b=&\underbrace {a+a+\dots +a} \\&b{\mbox{ copies of }}a\end{matrix}}}

For example,

4×3=4+4+4=123 copies of 4{\displaystyle {\begin{matrix}4\times 3&=&\underbrace {4+4+4} &=&12\\&&3{\mbox{ copies of }}4\end{matrix}}}

Exponentiation for a natural powerb{\displaystyle b} is defined as iterated multiplication, which Knuth denoted by a single up-arrow:

ab=H3(a,b)=ab=a×a××ab copies of a{\displaystyle {\begin{matrix}a\uparrow b=H_{3}(a,b)=a^{b}=&\underbrace {a\times a\times \dots \times a} \\&b{\mbox{ copies of }}a\end{matrix}}}

For example,

43=43=4×4×4=643 copies of 4{\displaystyle {\begin{matrix}4\uparrow 3=4^{3}=&\underbrace {4\times 4\times 4} &=&64\\&3{\mbox{ copies of }}4\end{matrix}}}

Tetration is defined as iterated exponentiation, which Knuth denoted by a “double arrow”:

a↑↑b=H4(a,b)=aa...a=a(a(a))b copies of ab copies of a{\displaystyle {\begin{matrix}a\uparrow \uparrow b=H_{4}(a,b)=&\underbrace {a^{a^{{}^{.\,^{.\,^{.\,^{a}}}}}}} &=&\underbrace {a\uparrow (a\uparrow (\cdots \uparrow a))} \\&b{\mbox{ copies of }}a&&b{\mbox{ copies of }}a\end{matrix}}}

For example,

4↑↑3=444=4(44)=42563 copies of 43 copies of 4{\displaystyle {\begin{matrix}4\uparrow \uparrow 3=&\underbrace {4^{4^{4}}} &=&\underbrace {4\uparrow (4\uparrow 4)} &=&4^{256}&&\\&3{\mbox{ copies of }}4&&3{\mbox{ copies of }}4\end{matrix}}}

Expressions are evaluated from right to left, as the operators are defined to beright-associative.

According to this definition,

3↑↑2=33=27{\displaystyle 3\uparrow \uparrow 2=3^{3}=27}
3↑↑3=333=327=7,625,597,484,987{\displaystyle 3\uparrow \uparrow 3=3^{3^{3}}=3^{27}=7,625,597,484,987}
3↑↑4=3333=3327=37625597484987{\displaystyle 3\uparrow \uparrow 4=3^{3^{3^{3}}}=3^{3^{27}}=3^{7625597484987}}
3↑↑5=33333=33327=337625597484987{\displaystyle 3\uparrow \uparrow 5=3^{3^{3^{3^{3}}}}=3^{3^{3^{27}}}=3^{3^{7625597484987}}}
etc.

This already leads to some fairly large numbers, but the hyperoperator sequence does not stop here.

Pentation, defined as iterated tetration, is represented by the “triple arrow”:

a↑↑↑b=H5(a,b)=a↑↑(a↑↑(↑↑a))b copies of a{\displaystyle {\begin{matrix}a\uparrow \uparrow \uparrow b=H_{5}(a,b)=&\underbrace {a_{}\uparrow \uparrow (a\uparrow \uparrow (\cdots \uparrow \uparrow a))} \\&b{\mbox{ copies of }}a\end{matrix}}}

Hexation, defined as iterated pentation, is represented by the “quadruple arrow”:

a↑↑↑↑b=H6(a,b)=a↑↑↑(a↑↑↑(↑↑↑a))b copies of a{\displaystyle {\begin{matrix}a\uparrow \uparrow \uparrow \uparrow b=H_{6}(a,b)=&\underbrace {a_{}\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow (\cdots \uparrow \uparrow \uparrow a))} \\&b{\mbox{ copies of }}a\end{matrix}}}

and so on. The general rule is that ann{\displaystyle n}-arrow operator expands into a right-associative series of (n1{\displaystyle n-1})-arrow operators. Symbolically,

a n b=a n1 (a n1 ( n1 a))b copies of a{\displaystyle {\begin{matrix}a\ \underbrace {\uparrow _{}\uparrow \!\!\cdots \!\!\uparrow } _{n}\ b=\underbrace {a\ \underbrace {\uparrow \!\!\cdots \!\!\uparrow } _{n-1}\ (a\ \underbrace {\uparrow _{}\!\!\cdots \!\!\uparrow } _{n-1}\ (\cdots \ \underbrace {\uparrow _{}\!\!\cdots \!\!\uparrow } _{n-1}\ a))} _{b{\text{ copies of }}a}\end{matrix}}}

Examples:

3↑↑↑2=3↑↑3=333=327=7,625,597,484,987{\displaystyle 3\uparrow \uparrow \uparrow 2=3\uparrow \uparrow 3=3^{3^{3}}=3^{27}=7,625,597,484,987}
3↑↑↑3=3↑↑(3↑↑3)=3↑↑(333)=333333 copies of 3=3337,625,597,484,987 copies of 3=333337,625,597,484,987 copies of 3{\displaystyle {\begin{aligned}3\uparrow \uparrow \uparrow 3&=3\uparrow \uparrow (3\uparrow \uparrow 3)\\&=3\uparrow \uparrow (3\uparrow 3\uparrow 3)\\&={\begin{matrix}\underbrace {3\uparrow 3\uparrow \cdots \uparrow 3} \\3\uparrow 3\uparrow 3{\mbox{ copies of }}3\end{matrix}}\\&={\begin{matrix}\underbrace {3\uparrow 3\uparrow \cdots \uparrow 3} \\{\mbox{7,625,597,484,987 copies of 3}}\end{matrix}}\\&={\begin{matrix}\underbrace {3^{3^{3^{3^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{3}}}}}}}}} \\{\mbox{7,625,597,484,987 copies of 3}}\end{matrix}}\end{aligned}}}

Notation

[edit]

In expressions such asab{\displaystyle a^{b}}, the notation for exponentiation is usually to write the exponentb{\displaystyle b} as a superscript to the base numbera{\displaystyle a}. But many environments — such asprogramming languages and plain-texte-mail — do not supportsuperscript typesetting. People have adopted the linear notationab{\displaystyle a\uparrow b} for such environments; the up-arrow suggests 'raising to the power of'. If thecharacter set does not contain an up arrow, thecaret (^) is used instead.

The superscript notationab{\displaystyle a^{b}} doesn't lend itself well to generalization, which explains why Knuth chose to work from the inline notationab{\displaystyle a\uparrow b} instead.

anb{\displaystyle a\uparrow ^{n}b} is a shorter alternative notation for n uparrows. Thusa4b=a↑↑↑↑b{\displaystyle a\uparrow ^{4}b=a\uparrow \uparrow \uparrow \uparrow b}.

Writing out up-arrow notation in terms of powers

[edit]

Attempting to writea↑↑b{\displaystyle a\uparrow \uparrow b} using the familiar superscript notation gives apower tower.

For example:a↑↑4=a(a(aa))=aaaa{\displaystyle a\uparrow \uparrow 4=a\uparrow (a\uparrow (a\uparrow a))=a^{a^{a^{a}}}}

Ifb{\displaystyle b} is a variable (or is too large), the power tower might be written using dots and a note indicating the height of the tower.

a↑↑b=aa...ab{\displaystyle a\uparrow \uparrow b={}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{b}}

Continuing with this notation,a↑↑↑b{\displaystyle a\uparrow \uparrow \uparrow b} could be written with a stack of such power towers, each describing the size of the one above it.

a↑↑↑4=a↑↑(a↑↑(a↑↑a))=aa...aaa...aaa...aa{\displaystyle a\uparrow \uparrow \uparrow 4=a\uparrow \uparrow (a\uparrow \uparrow (a\uparrow \uparrow a))=\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{a}}}}

Again, ifb{\displaystyle b} is a variable or is too large, the stack might be written using dots and a note indicating its height.

a↑↑↑b=aa...aaa...aa}b{\displaystyle a\uparrow \uparrow \uparrow b=\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}b}

Furthermore,a↑↑↑↑b{\displaystyle a\uparrow \uparrow \uparrow \uparrow b} might be written using several columns of such stacks of power towers, each column describing the number of power towers in the stack to its left:

a↑↑↑↑4=a↑↑↑(a↑↑↑(a↑↑↑a))=aa...aaa...aa}aa...aaa...aa}aa...aaa...aa}a{\displaystyle a\uparrow \uparrow \uparrow \uparrow 4=a\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow a))=\left.\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}a}

And more generally:

a↑↑↑↑b=aa...aaa...aa}aa...aaa...aa}}ab{\displaystyle a\uparrow \uparrow \uparrow \uparrow b=\underbrace {\left.\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\cdots \right\}a} _{b}}

This might be carried out indefinitely to representanb{\displaystyle a\uparrow ^{n}b} as iterated exponentiation of iterated exponentiation for anya{\displaystyle a},n{\displaystyle n}, andb{\displaystyle b} (although it clearly becomes rather cumbersome).

Using tetration

[edit]

The Rudy Rucker notationba{\displaystyle ^{b}a} fortetration allows us to make these diagrams slightly simpler while still employing a geometric representation (we could call thesetetration towers).

a↑↑b=ba{\displaystyle a\uparrow \uparrow b={}^{b}a}
a↑↑↑b=a...aab{\displaystyle a\uparrow \uparrow \uparrow b=\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{b}}
a↑↑↑↑b=a...aaa...aaa}b{\displaystyle a\uparrow \uparrow \uparrow \uparrow b=\left.\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{\underbrace {\vdots } _{a}}}\right\}b}

Finally, as an example, the fourth Ackermann number444{\displaystyle 4\uparrow ^{4}4} could be represented as:

4...444...444...444=4...444...444444{\displaystyle \underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{4}}}=\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{^{^{^{4}4}4}4}}}

Generalizations

[edit]

Some numbers are so large that multiple arrows of Knuth's up-arrow notation become too cumbersome; then ann-arrow operatorn{\displaystyle \uparrow ^{n}} is useful (and also for descriptions with a variable number of arrows), or equivalently,hyper operators.

Some numbers are so large that even that notation is not sufficient. TheConway chained arrow notation can then be used: a chain of three elements is equivalent with the other notations, but a chain of four or more is even more powerful.

anb=a[n+2]b=abn(Knuth)(hyperoperation)(Conway){\displaystyle {\begin{matrix}a\uparrow ^{n}b&=&a[n+2]b&=&a\to b\to n\\{\text{(Knuth)}}&&{\text{(hyperoperation)}}&&{\text{(Conway)}}\end{matrix}}}
6↑↑4=66...64{\displaystyle 6\uparrow \uparrow 4=\underbrace {6^{6^{.^{.^{.^{6}}}}}} _{4}}, Since6↑↑4=6666=6646,656{\displaystyle 6\uparrow \uparrow 4=6^{6^{6^{6}}}=6^{6^{46,656}}}, Thus the result comes out with66...64{\displaystyle \underbrace {6^{6^{.^{.^{.^{6}}}}}} _{4}}
10(3×10(3×1015)+3)=10000000030000000330000000015{\displaystyle 10\uparrow (3\times 10\uparrow (3\times 10\uparrow 15)+3)=\underbrace {100000\ldots 000} _{\underbrace {300000\ldots 003} _{\underbrace {300000\ldots 000} _{15}}}} or103×103×1015+3{\displaystyle 10^{3\times 10^{3\times 10^{15}}+3}}

Even faster-growing functions can be categorized using anordinal analysis called thefast-growing hierarchy. The fast-growing hierarchy uses successive function iteration and diagonalization to systematically create faster-growing functions from some base functionf(x){\displaystyle f(x)}. For the standard fast-growing hierarchy usingf0(x)=x+1{\displaystyle f_{0}(x)=x+1},f2(x){\displaystyle f_{2}(x)} already exhibits exponential growth,f3(x){\displaystyle f_{3}(x)} is comparable to tetrational growth and is upper-bounded by a function involving the first four hyperoperators;. Then,fω(x){\displaystyle f_{\omega }(x)} is comparable to theAckermann function,fω+1(x){\displaystyle f_{\omega +1}(x)} is already beyond the reach of indexed arrows but can be used to approximateGraham's number, andfω2(x){\displaystyle f_{\omega ^{2}}(x)} is comparable to arbitrarily-long Conway chained arrow notation.

These functions are all computable. Even faster computable functions, such as theGoodstein sequence and theTREE sequence require the usage of large ordinals, may occur in certain combinatorical and proof-theoretic contexts. There exist functions which grow uncomputably fast, such as theBusy Beaver, whose very nature will be completely out of reach from any up-arrow, or even any ordinal-based analysis.

Definition

[edit]

Without reference tohyperoperation the up-arrow operators can be formally defined by

anb={ab,if n=1;1,if n>1 and b=0;an1(an(b1)),otherwise {\displaystyle a\uparrow ^{n}b={\begin{cases}a^{b},&{\text{if }}n=1;\\1,&{\text{if }}n>1{\text{ and }}b=0;\\a\uparrow ^{n-1}(a\uparrow ^{n}(b-1)),&{\text{otherwise }}\end{cases}}}

for all integersa,b,n{\displaystyle a,b,n} witha0,n1,b0{\displaystyle a\geq 0,n\geq 1,b\geq 0}.[nb 1]

This definition usesexponentiation(a1b=ab=ab){\displaystyle (a\uparrow ^{1}b=a\uparrow b=a^{b})} as the base case, andtetration(a2b=a↑↑b){\displaystyle (a\uparrow ^{2}b=a\uparrow \uparrow b)} as repeated exponentiation. This is equivalent to thehyperoperation sequence except it omits the three more basic operations ofsuccession,addition andmultiplication.

One can alternatively choosemultiplication(a0b=a×b){\displaystyle (a\uparrow ^{0}b=a\times b)} as the base case and iterate from there. Thenexponentiation becomes repeated multiplication. The formal definition would be

anb={a×b,if n=0;1,if n>0 and b=0;an1(an(b1)),otherwise {\displaystyle a\uparrow ^{n}b={\begin{cases}a\times b,&{\text{if }}n=0;\\1,&{\text{if }}n>0{\text{ and }}b=0;\\a\uparrow ^{n-1}(a\uparrow ^{n}(b-1)),&{\text{otherwise }}\end{cases}}}

for all integersa,b,n{\displaystyle a,b,n} witha0,n0,b0{\displaystyle a\geq 0,n\geq 0,b\geq 0}.

Note, however, that Knuth did not define the "nil-arrow" (0{\displaystyle \uparrow ^{0}}). One could extend the notation to negative indices (n ≥ -2) in such a way as to agree with the entire hyperoperation sequence, except for the lag in the indexing:

Hn(a,b)=a[n]b=an2b for n0.{\displaystyle H_{n}(a,b)=a[n]b=a\uparrow ^{n-2}b{\text{ for }}n\geq 0.}

The up-arrow operation is aright-associative operation, that is,abc{\displaystyle a\uparrow b\uparrow c} is understood to bea(bc){\displaystyle a\uparrow (b\uparrow c)}, instead of(ab)c{\displaystyle (a\uparrow b)\uparrow c}. If ambiguity is not an issue parentheses are sometimes dropped.

Tables of values

[edit]

Computing 0↑n b

[edit]

Computing0nb=Hn+2(0,b)=0[n+2]b{\displaystyle 0\uparrow ^{n}b=H_{n+2}(0,b)=0[n+2]b} results in

0, whenn = 0 [nb 2]
1, whenn = 1 andb = 0  [nb 1][nb 3]
0, whenn = 1 andb > 0  [nb 1][nb 3]
1, whenn > 1 andb is even (including 0)
0, whenn > 1 andb is odd

Computing 2↑n b

[edit]

Computing2nb{\displaystyle 2\uparrow ^{n}b} can be restated in terms of an infinite table. We place the numbers2b{\displaystyle 2^{b}} in the top row, and fill the left column with values 2. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

Values of2nb={\displaystyle 2\uparrow ^{n}b={}}Hn+2(2,b)={\displaystyle H_{n+2}(2,b)={}}2[n+2]b={\displaystyle 2[n+2]b={}}2 → b → n
b
n
123456formula
12481632642b{\displaystyle 2^{b}}
2241665,5362655362.00353×1019728{\displaystyle 2^{65536}\approx 2.00353\times 10^{19728}}22655362.12004×106.03123×1019727{\displaystyle 2^{2^{65536}}\approx 2.12004\times 10^{6.03123\times 10^{19727}}}2↑↑b{\displaystyle 2\uparrow \uparrow b}
32465,536655362={\displaystyle {}^{65536}2=}24,636,...,948,7366553622={\displaystyle {}^{{}^{65536}2}2=}1,300,...,948,73665536222={\displaystyle {}^{{}^{{}^{65536}2}2}2=}320,146,...,948,7362↑↑↑b{\displaystyle 2\uparrow \uparrow \uparrow b}
424655362={\displaystyle {}^{65536}2=}24,636,...,948,7362↑↑↑(655362)={\displaystyle 2\uparrow \uparrow \uparrow ({}^{65536}2)=}68,225,...,948,736167,167,...,948,7363,449,...,948,7362↑↑↑↑b{\displaystyle 2\uparrow \uparrow \uparrow \uparrow b}

The table is the same asthat of the Ackermann function, except for a shift inn{\displaystyle n} andb{\displaystyle b}, and an addition of 3 to all values.

Computing 3 ↑n b

[edit]

We place the numbers3b{\displaystyle 3^{b}} in the top row, and fill the left column with values 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

Values of3nb={\displaystyle 3\uparrow ^{n}b={}}Hn+2(3,b)={\displaystyle H_{n+2}(3,b)={}}3[n+2]b={\displaystyle 3[n+2]b={}}3 → b → n
b
n
12345formula
13927812433b{\displaystyle 3^{b}}
23277,625,597,484,987376255974849871.25801×103638334640024{\displaystyle 3^{7625597484987}\approx 1.25801\times 10^{3638334640024}}337625597484987={\displaystyle 3^{3^{7625597484987}}=}338,605,...,355,3873↑↑b{\displaystyle 3\uparrow \uparrow b}
337,625,597,484,9871,945,...,195,38793,652,...,195,3874,854,...,195,3873↑↑↑b{\displaystyle 3\uparrow \uparrow \uparrow b}
431,945,...,195,387834,215,...,195,38725,653,...,195,38717,124,...,195,3873↑↑↑↑b{\displaystyle 3\uparrow \uparrow \uparrow \uparrow b}

Computing 4  ↑n b

[edit]

We place the numbers4b{\displaystyle 4^{b}} in the top row, and fill the left column with values 4. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

Values of4nb={\displaystyle 4\uparrow ^{n}b={}}Hn+2(4,b)={\displaystyle H_{n+2}(4,b)={}}4[n+2]b={\displaystyle 4[n+2]b={}}4 → b → n
b
n
12345formula
14166425610244b{\displaystyle 4^{b}}
2425625121.34078×10154{\displaystyle 2^{512}\approx 1.34078\times 10^{154}}225132.36102×108.07230×10153{\displaystyle 2^{2^{513}}\approx 2.36102\times 10^{8.07230\times 10^{153}}}222513+110108.07230×10153{\displaystyle 2^{2^{2^{513}+1}}\approx 10^{10^{8.07230\times 10^{153}}}}4↑↑b{\displaystyle 4\uparrow \uparrow b}
34225132.36102×108.07230×10153{\displaystyle 2^{2^{513}}\approx 2.36102\times 10^{8.07230\times 10^{153}}}225134{\displaystyle {}^{2^{2^{513}}}4}2251344{\displaystyle {}^{{}^{2^{2^{513}}}4}4}4↑↑↑5{\displaystyle 4\uparrow \uparrow \uparrow 5}4↑↑↑b{\displaystyle 4\uparrow \uparrow \uparrow b}
442251344{\displaystyle {}^{{}^{2^{2^{513}}}4}4}807,230,472,602,822,537,... << 118 >> ...,481,244,990,261,351,1171010153 digits101010153 digits4↑↑↑↑b{\displaystyle 4\uparrow \uparrow \uparrow \uparrow b}

Computing 10 ↑n b

[edit]

We place the numbers10b{\displaystyle 10^{b}} in the top row, and fill the left column with values 10. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

Values of10nb={\displaystyle 10\uparrow ^{n}b={}}Hn+2(10,b)={\displaystyle H_{n+2}(10,b)={}}10[n+2]b={\displaystyle 10[n+2]b={}}10 → b → n
b
n
12345formula
1101001,00010,000100,00010b{\displaystyle 10^{b}}
21010,000,000,0001010,000,000,000{\displaystyle 10^{10,000,000,000}}101010,000,000,000{\displaystyle 10^{10^{10,000,000,000}}}10101010,000,000,000{\displaystyle 10^{10^{10^{10,000,000,000}}}}10↑↑b{\displaystyle 10\uparrow \uparrow b}
3101010...1010 copies of 10{\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}}1010...101010...1010 copies of 10{\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}}1010...101010...101010...1010 copies of 10{\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}}1010...101010...101010...101010...1010 copies of 10{\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}}10↑↑↑b{\displaystyle 10\uparrow \uparrow \uparrow b}
41010...101010 copies of 10{\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}}10...101010...101010 copies of 10{\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}}10...101010...101010...101010 copies of 10{\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}}10...101010...101010...101010...101010 copies of 10{\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}}10↑↑↑↑b{\displaystyle 10\uparrow \uparrow \uparrow \uparrow b}

For 2 ≤b ≤ 9 the numerical order of the numbers10nb{\displaystyle 10\uparrow ^{n}b} is thelexicographical order withn as the most significant number, so for the numbers of these 8 columns the numerical order is simply line-by-line. The same applies for the numbers in the 97 columns with 3 ≤b ≤ 99, and if we start fromn = 1 even for 3 ≤b ≤ 9,999,999,999.

See also

[edit]

Notes

[edit]
  1. ^abcFor more details, seePowers of zero.
  2. ^Keep in mind that Knuth did not define the operator0{\displaystyle \uparrow ^{0}}.
  3. ^abFor more details, seeZero to the power of zero.

References

[edit]
  1. ^Knuth, Donald E. (1976). "Mathematics and Computer Science: Coping with Finiteness".Science.194 (4271):1235–1242.Bibcode:1976Sci...194.1235K.doi:10.1126/science.194.4271.1235.PMID 17797067.S2CID 1690489.
  2. ^R. L. Goodstein (Dec 1947). "Transfinite Ordinals in Recursive Number Theory".Journal of Symbolic Logic.12 (4):123–129.doi:10.2307/2266486.JSTOR 2266486.S2CID 1318943.

External links

[edit]
Hyper-operators:
Bowers's extensions:
  • Expansion (muiti/power/expando)
  • Explosion (multi/power/expando)
  • Detonation (multi/power)
  • Pentonation (multi)
Username's extensions:
  • Hexonation
  • Heptonation
  • Octonation
  • Ennonation
  • Dekonation
Tiaokhiao's extensions:
  • Megotion (muiti/power/tetra)
  • Megoexpansion (multi/power)
  • Megoexplosion (multi)
  • Megodetonation
  • Gigotion (expand/explod/deto)
  • Terotion (expand)
  • Petotion
  • Exotion
  • Zettotion
  • Yottotion
Saibian's extensions:
  • Powiaination (expand/explod/deto)
  • Megodaination (expand/explod)
  • Gigodaination (expand)
  • Terodaination
  • Powiairation (megod/gigod/terod)
  • Powiaintation (megod)
  • Powiairtation
Examples
in
numerical
order
Expression
methods
Notations
Operators
Related
articles
(alphabetical
order)
Publications
Software
Fonts
Literate programming
Algorithms
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Knuth%27s_up-arrow_notation&oldid=1322225860"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp