Method of notation of very large integers
Inmathematics ,Knuth's up-arrow notation is a method of notation forvery large integers , introduced byDonald Knuth in 1976.[ 1]
In his 1947 paper,[ 2] R. L. Goodstein introduced the specific sequence of operations that are now calledhyperoperations . Goodstein also suggested the Greek namestetration ,pentation , etc., for the extended operations beyondexponentiation . The sequence starts with aunary operation (thesuccessor function withn = 0), and continues with thebinary operations ofaddition (n = 1),multiplication (n = 2),exponentiation (n = 3),tetration (n = 4),pentation (n = 5), etc.Various notations have been used to represent hyperoperations. One such notation isH n ( a , b ) {\displaystyle H_{n}(a,b)} .Knuth's up-arrow notation↑ {\displaystyle \uparrow } is another. For example:
the single arrow↑ {\displaystyle \uparrow } representsexponentiation (iterated multiplication)2 ↑ 4 = H 3 ( 2 , 4 ) = 2 × ( 2 × ( 2 × 2 ) ) = 2 4 = 16 {\displaystyle 2\uparrow 4=H_{3}(2,4)=2\times (2\times (2\times 2))=2^{4}=16} the double arrow↑↑ {\displaystyle \uparrow \uparrow } representstetration (iterated exponentiation)2 ↑↑ 4 = H 4 ( 2 , 4 ) = 2 ↑ ( 2 ↑ ( 2 ↑ 2 ) ) = 2 2 2 2 = 2 16 = 65 , 536 {\displaystyle 2\uparrow \uparrow 4=H_{4}(2,4)=2\uparrow (2\uparrow (2\uparrow 2))=2^{2^{2^{2}}}=2^{16}=65,536} the triple arrow↑↑↑ {\displaystyle \uparrow \uparrow \uparrow } representspentation (iterated tetration)2 ↑↑↑ 4 = H 5 ( 2 , 4 ) = 2 ↑↑ ( 2 ↑↑ ( 2 ↑↑ 2 ) ) = 2 ↑↑ ( 2 ↑↑ ( 2 ↑ 2 ) ) = 2 ↑↑ ( 2 ↑↑ 4 ) = 2 ↑ ( 2 ↑ ( 2 ↑ ⋯ ) ) ⏟ = 2 2 ⋯ 2 ⏟ 2 ↑↑ 4 copies of 2 65,536 2s {\displaystyle {\begin{aligned}2\uparrow \uparrow \uparrow 4&=H_{5}(2,4)\\&=2\uparrow \uparrow (2\uparrow \uparrow (2\uparrow \uparrow 2))\\&=2\uparrow \uparrow (2\uparrow \uparrow (2\uparrow 2))\\&=2\uparrow \uparrow (2\uparrow \uparrow 4)\\&=\underbrace {2\uparrow (2\uparrow (2\uparrow \cdots ))} \;=\;\underbrace {\;2^{2^{\cdots ^{2}}}} \\&\;\;\;\;\;2\uparrow \uparrow 4{\text{ copies of }}2\;\;\;\;\;{\text{65,536 2s}}\\\end{aligned}}} The general definition of the up-arrow notation is as follows (fora ≥ 0 , n ≥ 1 , b ≥ 0 {\displaystyle a\geq 0,n\geq 1,b\geq 0} ):a ↑ n b = H n + 2 ( a , b ) = a [ n + 2 ] b . {\displaystyle a\uparrow ^{n}b=H_{n+2}(a,b)=a[n+2]b.} Here,↑ n {\displaystyle \uparrow ^{n}} stands forn arrows, so for example2 ↑↑↑↑ 3 = 2 ↑ 4 3 , {\displaystyle 2\uparrow \uparrow \uparrow \uparrow 3=2\uparrow ^{4}3,} and the square brackets used in the far rhs. expression is another notation for hyperoperations.
Thehyperoperations naturally extend thearithmetic operations ofaddition andmultiplication as follows.Addition by anatural number is defined as iterated incrementation:
H 1 ( a , b ) = a + b = a + 1 + 1 + ⋯ + 1 ⏟ b copies of 1 {\displaystyle {\begin{matrix}H_{1}(a,b)=a+b=&a+\underbrace {1+1+\dots +1} \\&b{\mbox{ copies of }}1\end{matrix}}} Multiplication by anatural number is defined as iteratedaddition :
H 2 ( a , b ) = a × b = a + a + ⋯ + a ⏟ b copies of a {\displaystyle {\begin{matrix}H_{2}(a,b)=a\times b=&\underbrace {a+a+\dots +a} \\&b{\mbox{ copies of }}a\end{matrix}}} For example,
4 × 3 = 4 + 4 + 4 ⏟ = 12 3 copies of 4 {\displaystyle {\begin{matrix}4\times 3&=&\underbrace {4+4+4} &=&12\\&&3{\mbox{ copies of }}4\end{matrix}}} Exponentiation for a natural powerb {\displaystyle b} is defined as iterated multiplication, which Knuth denoted by a single up-arrow:
a ↑ b = H 3 ( a , b ) = a b = a × a × ⋯ × a ⏟ b copies of a {\displaystyle {\begin{matrix}a\uparrow b=H_{3}(a,b)=a^{b}=&\underbrace {a\times a\times \dots \times a} \\&b{\mbox{ copies of }}a\end{matrix}}} For example,
4 ↑ 3 = 4 3 = 4 × 4 × 4 ⏟ = 64 3 copies of 4 {\displaystyle {\begin{matrix}4\uparrow 3=4^{3}=&\underbrace {4\times 4\times 4} &=&64\\&3{\mbox{ copies of }}4\end{matrix}}} Tetration is defined as iterated exponentiation, which Knuth denoted by a “double arrow”:
a ↑↑ b = H 4 ( a , b ) = a a . . . a ⏟ = a ↑ ( a ↑ ( ⋯ ↑ a ) ) ⏟ b copies of a b copies of a {\displaystyle {\begin{matrix}a\uparrow \uparrow b=H_{4}(a,b)=&\underbrace {a^{a^{{}^{.\,^{.\,^{.\,^{a}}}}}}} &=&\underbrace {a\uparrow (a\uparrow (\cdots \uparrow a))} \\&b{\mbox{ copies of }}a&&b{\mbox{ copies of }}a\end{matrix}}} For example,
4 ↑↑ 3 = 4 4 4 ⏟ = 4 ↑ ( 4 ↑ 4 ) ⏟ = 4 256 3 copies of 4 3 copies of 4 {\displaystyle {\begin{matrix}4\uparrow \uparrow 3=&\underbrace {4^{4^{4}}} &=&\underbrace {4\uparrow (4\uparrow 4)} &=&4^{256}&&\\&3{\mbox{ copies of }}4&&3{\mbox{ copies of }}4\end{matrix}}} Expressions are evaluated from right to left, as the operators are defined to beright-associative .
According to this definition,
3 ↑↑ 2 = 3 3 = 27 {\displaystyle 3\uparrow \uparrow 2=3^{3}=27} 3 ↑↑ 3 = 3 3 3 = 3 27 = 7 , 625 , 597 , 484 , 987 {\displaystyle 3\uparrow \uparrow 3=3^{3^{3}}=3^{27}=7,625,597,484,987} 3 ↑↑ 4 = 3 3 3 3 = 3 3 27 = 3 7625597484987 {\displaystyle 3\uparrow \uparrow 4=3^{3^{3^{3}}}=3^{3^{27}}=3^{7625597484987}} 3 ↑↑ 5 = 3 3 3 3 3 = 3 3 3 27 = 3 3 7625597484987 {\displaystyle 3\uparrow \uparrow 5=3^{3^{3^{3^{3}}}}=3^{3^{3^{27}}}=3^{3^{7625597484987}}} etc. This already leads to some fairly large numbers, but the hyperoperator sequence does not stop here.
Pentation , defined as iterated tetration, is represented by the “triple arrow”:
a ↑↑↑ b = H 5 ( a , b ) = a ↑↑ ( a ↑↑ ( ⋯ ↑↑ a ) ) ⏟ b copies of a {\displaystyle {\begin{matrix}a\uparrow \uparrow \uparrow b=H_{5}(a,b)=&\underbrace {a_{}\uparrow \uparrow (a\uparrow \uparrow (\cdots \uparrow \uparrow a))} \\&b{\mbox{ copies of }}a\end{matrix}}} Hexation , defined as iterated pentation, is represented by the “quadruple arrow”:
a ↑↑↑↑ b = H 6 ( a , b ) = a ↑↑↑ ( a ↑↑↑ ( ⋯ ↑↑↑ a ) ) ⏟ b copies of a {\displaystyle {\begin{matrix}a\uparrow \uparrow \uparrow \uparrow b=H_{6}(a,b)=&\underbrace {a_{}\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow (\cdots \uparrow \uparrow \uparrow a))} \\&b{\mbox{ copies of }}a\end{matrix}}} and so on. The general rule is that ann {\displaystyle n} -arrow operator expands into a right-associative series of (n − 1 {\displaystyle n-1} )-arrow operators. Symbolically,
a ↑ ↑ ⋯ ↑ ⏟ n b = a ↑ ⋯ ↑ ⏟ n − 1 ( a ↑ ⋯ ↑ ⏟ n − 1 ( ⋯ ↑ ⋯ ↑ ⏟ n − 1 a ) ) ⏟ b copies of a {\displaystyle {\begin{matrix}a\ \underbrace {\uparrow _{}\uparrow \!\!\cdots \!\!\uparrow } _{n}\ b=\underbrace {a\ \underbrace {\uparrow \!\!\cdots \!\!\uparrow } _{n-1}\ (a\ \underbrace {\uparrow _{}\!\!\cdots \!\!\uparrow } _{n-1}\ (\cdots \ \underbrace {\uparrow _{}\!\!\cdots \!\!\uparrow } _{n-1}\ a))} _{b{\text{ copies of }}a}\end{matrix}}} Examples:
3 ↑↑↑ 2 = 3 ↑↑ 3 = 3 3 3 = 3 27 = 7 , 625 , 597 , 484 , 987 {\displaystyle 3\uparrow \uparrow \uparrow 2=3\uparrow \uparrow 3=3^{3^{3}}=3^{27}=7,625,597,484,987} 3 ↑↑↑ 3 = 3 ↑↑ ( 3 ↑↑ 3 ) = 3 ↑↑ ( 3 ↑ 3 ↑ 3 ) = 3 ↑ 3 ↑ ⋯ ↑ 3 ⏟ 3 ↑ 3 ↑ 3 copies of 3 = 3 ↑ 3 ↑ ⋯ ↑ 3 ⏟ 7,625,597,484,987 copies of 3 = 3 3 3 3 ⋅ ⋅ ⋅ ⋅ 3 ⏟ 7,625,597,484,987 copies of 3 {\displaystyle {\begin{aligned}3\uparrow \uparrow \uparrow 3&=3\uparrow \uparrow (3\uparrow \uparrow 3)\\&=3\uparrow \uparrow (3\uparrow 3\uparrow 3)\\&={\begin{matrix}\underbrace {3\uparrow 3\uparrow \cdots \uparrow 3} \\3\uparrow 3\uparrow 3{\mbox{ copies of }}3\end{matrix}}\\&={\begin{matrix}\underbrace {3\uparrow 3\uparrow \cdots \uparrow 3} \\{\mbox{7,625,597,484,987 copies of 3}}\end{matrix}}\\&={\begin{matrix}\underbrace {3^{3^{3^{3^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{3}}}}}}}}} \\{\mbox{7,625,597,484,987 copies of 3}}\end{matrix}}\end{aligned}}} In expressions such asa b {\displaystyle a^{b}} , the notation for exponentiation is usually to write the exponentb {\displaystyle b} as a superscript to the base numbera {\displaystyle a} . But many environments — such asprogramming languages and plain-texte-mail — do not supportsuperscript typesetting. People have adopted the linear notationa ↑ b {\displaystyle a\uparrow b} for such environments; the up-arrow suggests 'raising to the power of'. If thecharacter set does not contain an up arrow, thecaret (^) is used instead.
The superscript notationa b {\displaystyle a^{b}} doesn't lend itself well to generalization, which explains why Knuth chose to work from the inline notationa ↑ b {\displaystyle a\uparrow b} instead.
a ↑ n b {\displaystyle a\uparrow ^{n}b} is a shorter alternative notation for n uparrows. Thusa ↑ 4 b = a ↑↑↑↑ b {\displaystyle a\uparrow ^{4}b=a\uparrow \uparrow \uparrow \uparrow b} .
Writing out up-arrow notation in terms of powers [ edit ] Attempting to writea ↑↑ b {\displaystyle a\uparrow \uparrow b} using the familiar superscript notation gives apower tower .
For example:a ↑↑ 4 = a ↑ ( a ↑ ( a ↑ a ) ) = a a a a {\displaystyle a\uparrow \uparrow 4=a\uparrow (a\uparrow (a\uparrow a))=a^{a^{a^{a}}}} Ifb {\displaystyle b} is a variable (or is too large), the power tower might be written using dots and a note indicating the height of the tower.
a ↑↑ b = a a . . . a ⏟ b {\displaystyle a\uparrow \uparrow b={}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{b}} Continuing with this notation,a ↑↑↑ b {\displaystyle a\uparrow \uparrow \uparrow b} could be written with a stack of such power towers, each describing the size of the one above it.
a ↑↑↑ 4 = a ↑↑ ( a ↑↑ ( a ↑↑ a ) ) = a a . . . a ⏟ a a . . . a ⏟ a a . . . a ⏟ a {\displaystyle a\uparrow \uparrow \uparrow 4=a\uparrow \uparrow (a\uparrow \uparrow (a\uparrow \uparrow a))=\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{a}}}} Again, ifb {\displaystyle b} is a variable or is too large, the stack might be written using dots and a note indicating its height.
a ↑↑↑ b = a a . . . a ⏟ a a . . . a ⏟ ⋮ ⏟ a } b {\displaystyle a\uparrow \uparrow \uparrow b=\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}b} Furthermore,a ↑↑↑↑ b {\displaystyle a\uparrow \uparrow \uparrow \uparrow b} might be written using several columns of such stacks of power towers, each column describing the number of power towers in the stack to its left:
a ↑↑↑↑ 4 = a ↑↑↑ ( a ↑↑↑ ( a ↑↑↑ a ) ) = a a . . . a ⏟ a a . . . a ⏟ ⋮ ⏟ a } a a . . . a ⏟ a a . . . a ⏟ ⋮ ⏟ a } a a . . . a ⏟ a a . . . a ⏟ ⋮ ⏟ a } a {\displaystyle a\uparrow \uparrow \uparrow \uparrow 4=a\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow a))=\left.\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}a} And more generally:
a ↑↑↑↑ b = a a . . . a ⏟ a a . . . a ⏟ ⋮ ⏟ a } a a . . . a ⏟ a a . . . a ⏟ ⋮ ⏟ a } ⋯ } a ⏟ b {\displaystyle a\uparrow \uparrow \uparrow \uparrow b=\underbrace {\left.\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\cdots \right\}a} _{b}} This might be carried out indefinitely to representa ↑ n b {\displaystyle a\uparrow ^{n}b} as iterated exponentiation of iterated exponentiation for anya {\displaystyle a} ,n {\displaystyle n} , andb {\displaystyle b} (although it clearly becomes rather cumbersome).
The Rudy Rucker notationb a {\displaystyle ^{b}a} fortetration allows us to make these diagrams slightly simpler while still employing a geometric representation (we could call thesetetration towers ).
a ↑↑ b = b a {\displaystyle a\uparrow \uparrow b={}^{b}a} a ↑↑↑ b = a . . . a a ⏟ b {\displaystyle a\uparrow \uparrow \uparrow b=\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{b}} a ↑↑↑↑ b = a . . . a a ⏟ a . . . a a ⏟ ⋮ ⏟ a } b {\displaystyle a\uparrow \uparrow \uparrow \uparrow b=\left.\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{\underbrace {^{^{^{^{^{a}.}.}.}a}a} _{\underbrace {\vdots } _{a}}}\right\}b} Finally, as an example, the fourth Ackermann number4 ↑ 4 4 {\displaystyle 4\uparrow ^{4}4} could be represented as:
4 . . . 4 4 ⏟ 4 . . . 4 4 ⏟ 4 . . . 4 4 ⏟ 4 = 4 . . . 4 4 ⏟ 4 . . . 4 4 ⏟ 4 4 4 4 {\displaystyle \underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{4}}}=\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{\underbrace {^{^{^{^{^{4}.}.}.}4}4} _{^{^{^{4}4}4}4}}} Some numbers are so large that multiple arrows of Knuth's up-arrow notation become too cumbersome; then ann -arrow operator↑ n {\displaystyle \uparrow ^{n}} is useful (and also for descriptions with a variable number of arrows), or equivalently,hyper operators .
Some numbers are so large that even that notation is not sufficient. TheConway chained arrow notation can then be used: a chain of three elements is equivalent with the other notations, but a chain of four or more is even more powerful.
a ↑ n b = a [ n + 2 ] b = a → b → n (Knuth) (hyperoperation) (Conway) {\displaystyle {\begin{matrix}a\uparrow ^{n}b&=&a[n+2]b&=&a\to b\to n\\{\text{(Knuth)}}&&{\text{(hyperoperation)}}&&{\text{(Conway)}}\end{matrix}}} 6 ↑↑ 4 = 6 6 . . . 6 ⏟ 4 {\displaystyle 6\uparrow \uparrow 4=\underbrace {6^{6^{.^{.^{.^{6}}}}}} _{4}} , Since6 ↑↑ 4 = 6 6 6 6 = 6 6 46 , 656 {\displaystyle 6\uparrow \uparrow 4=6^{6^{6^{6}}}=6^{6^{46,656}}} , Thus the result comes out with6 6 . . . 6 ⏟ 4 {\displaystyle \underbrace {6^{6^{.^{.^{.^{6}}}}}} _{4}} 10 ↑ ( 3 × 10 ↑ ( 3 × 10 ↑ 15 ) + 3 ) = 100000 … 000 ⏟ 300000 … 003 ⏟ 300000 … 000 ⏟ 15 {\displaystyle 10\uparrow (3\times 10\uparrow (3\times 10\uparrow 15)+3)=\underbrace {100000\ldots 000} _{\underbrace {300000\ldots 003} _{\underbrace {300000\ldots 000} _{15}}}} or10 3 × 10 3 × 10 15 + 3 {\displaystyle 10^{3\times 10^{3\times 10^{15}}+3}} Even faster-growing functions can be categorized using anordinal analysis called thefast-growing hierarchy . The fast-growing hierarchy uses successive function iteration and diagonalization to systematically create faster-growing functions from some base functionf ( x ) {\displaystyle f(x)} . For the standard fast-growing hierarchy usingf 0 ( x ) = x + 1 {\displaystyle f_{0}(x)=x+1} ,f 2 ( x ) {\displaystyle f_{2}(x)} already exhibits exponential growth,f 3 ( x ) {\displaystyle f_{3}(x)} is comparable to tetrational growth and is upper-bounded by a function involving the first four hyperoperators;. Then,f ω ( x ) {\displaystyle f_{\omega }(x)} is comparable to theAckermann function ,f ω + 1 ( x ) {\displaystyle f_{\omega +1}(x)} is already beyond the reach of indexed arrows but can be used to approximateGraham's number , andf ω 2 ( x ) {\displaystyle f_{\omega ^{2}}(x)} is comparable to arbitrarily-long Conway chained arrow notation.
These functions are all computable. Even faster computable functions, such as theGoodstein sequence and theTREE sequence require the usage of large ordinals, may occur in certain combinatorical and proof-theoretic contexts. There exist functions which grow uncomputably fast, such as theBusy Beaver , whose very nature will be completely out of reach from any up-arrow, or even any ordinal-based analysis.
Without reference tohyperoperation the up-arrow operators can be formally defined by
a ↑ n b = { a b , if n = 1 ; 1 , if n > 1 and b = 0 ; a ↑ n − 1 ( a ↑ n ( b − 1 ) ) , otherwise {\displaystyle a\uparrow ^{n}b={\begin{cases}a^{b},&{\text{if }}n=1;\\1,&{\text{if }}n>1{\text{ and }}b=0;\\a\uparrow ^{n-1}(a\uparrow ^{n}(b-1)),&{\text{otherwise }}\end{cases}}} for all integersa , b , n {\displaystyle a,b,n} witha ≥ 0 , n ≥ 1 , b ≥ 0 {\displaystyle a\geq 0,n\geq 1,b\geq 0} .[ nb 1]
This definition usesexponentiation ( a ↑ 1 b = a ↑ b = a b ) {\displaystyle (a\uparrow ^{1}b=a\uparrow b=a^{b})} as the base case, andtetration ( a ↑ 2 b = a ↑↑ b ) {\displaystyle (a\uparrow ^{2}b=a\uparrow \uparrow b)} as repeated exponentiation. This is equivalent to thehyperoperation sequence except it omits the three more basic operations ofsuccession ,addition andmultiplication .
One can alternatively choosemultiplication ( a ↑ 0 b = a × b ) {\displaystyle (a\uparrow ^{0}b=a\times b)} as the base case and iterate from there. Thenexponentiation becomes repeated multiplication. The formal definition would be
a ↑ n b = { a × b , if n = 0 ; 1 , if n > 0 and b = 0 ; a ↑ n − 1 ( a ↑ n ( b − 1 ) ) , otherwise {\displaystyle a\uparrow ^{n}b={\begin{cases}a\times b,&{\text{if }}n=0;\\1,&{\text{if }}n>0{\text{ and }}b=0;\\a\uparrow ^{n-1}(a\uparrow ^{n}(b-1)),&{\text{otherwise }}\end{cases}}} for all integersa , b , n {\displaystyle a,b,n} witha ≥ 0 , n ≥ 0 , b ≥ 0 {\displaystyle a\geq 0,n\geq 0,b\geq 0} .
Note, however, that Knuth did not define the "nil-arrow" (↑ 0 {\displaystyle \uparrow ^{0}} ). One could extend the notation to negative indices (n ≥ -2) in such a way as to agree with the entire hyperoperation sequence, except for the lag in the indexing:
H n ( a , b ) = a [ n ] b = a ↑ n − 2 b for n ≥ 0. {\displaystyle H_{n}(a,b)=a[n]b=a\uparrow ^{n-2}b{\text{ for }}n\geq 0.} The up-arrow operation is aright-associative operation , that is,a ↑ b ↑ c {\displaystyle a\uparrow b\uparrow c} is understood to bea ↑ ( b ↑ c ) {\displaystyle a\uparrow (b\uparrow c)} , instead of( a ↑ b ) ↑ c {\displaystyle (a\uparrow b)\uparrow c} . If ambiguity is not an issue parentheses are sometimes dropped.
Computing0 ↑ n b = H n + 2 ( 0 , b ) = 0 [ n + 2 ] b {\displaystyle 0\uparrow ^{n}b=H_{n+2}(0,b)=0[n+2]b} results in
0, whenn = 0 [ nb 2] 1, whenn = 1 andb = 0 [ nb 1] [ nb 3] 0, whenn = 1 andb > 0 [ nb 1] [ nb 3] 1, whenn > 1 andb is even (including 0) 0, whenn > 1 andb is odd Computing2 ↑ n b {\displaystyle 2\uparrow ^{n}b} can be restated in terms of an infinite table. We place the numbers2 b {\displaystyle 2^{b}} in the top row, and fill the left column with values 2. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.
Values of2 ↑ n b = {\displaystyle 2\uparrow ^{n}b={}} H n + 2 ( 2 , b ) = {\displaystyle H_{n+2}(2,b)={}} 2 [ n + 2 ] b = {\displaystyle 2[n+2]b={}} 2 → b → n b
n
1 2 3 4 5 6 formula 1 2 4 8 16 32 64 2 b {\displaystyle 2^{b}} 2 2 4 16 65,536 2 65536 ≈ 2.00353 × 10 19728 {\displaystyle 2^{65536}\approx 2.00353\times 10^{19728}} 2 2 65536 ≈ 2.12004 × 10 6.03123 × 10 19727 {\displaystyle 2^{2^{65536}}\approx 2.12004\times 10^{6.03123\times 10^{19727}}} 2 ↑↑ b {\displaystyle 2\uparrow \uparrow b} 3 2 4 65,536 65536 2 = {\displaystyle {}^{65536}2=} 24,636,...,948,73665536 2 2 = {\displaystyle {}^{{}^{65536}2}2=} 1,300,...,948,73665536 2 2 2 = {\displaystyle {}^{{}^{{}^{65536}2}2}2=} 320,146,...,948,7362 ↑↑↑ b {\displaystyle 2\uparrow \uparrow \uparrow b} 4 2 4 65536 2 = {\displaystyle {}^{65536}2=} 24,636,...,948,7362 ↑↑↑ ( 65536 2 ) = {\displaystyle 2\uparrow \uparrow \uparrow ({}^{65536}2)=} 68,225,...,948,736167,167,...,948,736 3,449,...,948,736 2 ↑↑↑↑ b {\displaystyle 2\uparrow \uparrow \uparrow \uparrow b}
The table is the same asthat of the Ackermann function , except for a shift inn {\displaystyle n} andb {\displaystyle b} , and an addition of 3 to all values.
We place the numbers3 b {\displaystyle 3^{b}} in the top row, and fill the left column with values 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.
Values of3 ↑ n b = {\displaystyle 3\uparrow ^{n}b={}} H n + 2 ( 3 , b ) = {\displaystyle H_{n+2}(3,b)={}} 3 [ n + 2 ] b = {\displaystyle 3[n+2]b={}} 3 → b → n b
n
1 2 3 4 5 formula 1 3 9 27 81 243 3 b {\displaystyle 3^{b}} 2 3 27 7,625,597,484,987 3 7625597484987 ≈ 1.25801 × 10 3638334640024 {\displaystyle 3^{7625597484987}\approx 1.25801\times 10^{3638334640024}} 3 3 7625597484987 = {\displaystyle 3^{3^{7625597484987}}=} 338,605,...,355,3873 ↑↑ b {\displaystyle 3\uparrow \uparrow b} 3 3 7,625,597,484,987 1,945,...,195,387 93,652,...,195,387 4,854,...,195,387 3 ↑↑↑ b {\displaystyle 3\uparrow \uparrow \uparrow b} 4 3 1,945,...,195,387 834,215,...,195,387 25,653,...,195,387 17,124,...,195,387 3 ↑↑↑↑ b {\displaystyle 3\uparrow \uparrow \uparrow \uparrow b}
We place the numbers4 b {\displaystyle 4^{b}} in the top row, and fill the left column with values 4. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.
Values of4 ↑ n b = {\displaystyle 4\uparrow ^{n}b={}} H n + 2 ( 4 , b ) = {\displaystyle H_{n+2}(4,b)={}} 4 [ n + 2 ] b = {\displaystyle 4[n+2]b={}} 4 → b → n b
n
1 2 3 4 5 formula 1 4 16 64 256 1024 4 b {\displaystyle 4^{b}} 2 4 256 2 512 ≈ 1.34078 × 10 154 {\displaystyle 2^{512}\approx 1.34078\times 10^{154}} 2 2 513 ≈ 2.36102 × 10 8.07230 × 10 153 {\displaystyle 2^{2^{513}}\approx 2.36102\times 10^{8.07230\times 10^{153}}} 2 2 2 513 + 1 ≈ 10 10 8.07230 × 10 153 {\displaystyle 2^{2^{2^{513}+1}}\approx 10^{10^{8.07230\times 10^{153}}}} 4 ↑↑ b {\displaystyle 4\uparrow \uparrow b} 3 4 2 2 513 ≈ 2.36102 × 10 8.07230 × 10 153 {\displaystyle 2^{2^{513}}\approx 2.36102\times 10^{8.07230\times 10^{153}}} 2 2 513 4 {\displaystyle {}^{2^{2^{513}}}4} 2 2 513 4 4 {\displaystyle {}^{{}^{2^{2^{513}}}4}4} 4 ↑↑↑ 5 {\displaystyle 4\uparrow \uparrow \uparrow 5} 4 ↑↑↑ b {\displaystyle 4\uparrow \uparrow \uparrow b} 4 4 2 2 513 4 4 {\displaystyle {}^{{}^{2^{2^{513}}}4}4} 807,230,472,602,822,537,... << 118 >> ...,481,244,990,261,351,117 1010153 digits 101010153 digits 4 ↑↑↑↑ b {\displaystyle 4\uparrow \uparrow \uparrow \uparrow b}
We place the numbers10 b {\displaystyle 10^{b}} in the top row, and fill the left column with values 10. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.
Values of10 ↑ n b = {\displaystyle 10\uparrow ^{n}b={}} H n + 2 ( 10 , b ) = {\displaystyle H_{n+2}(10,b)={}} 10 [ n + 2 ] b = {\displaystyle 10[n+2]b={}} 10 → b → n b
n
1 2 3 4 5 formula 1 10 100 1,000 10,000 100,000 10 b {\displaystyle 10^{b}} 2 10 10,000,000,000 10 10 , 000 , 000 , 000 {\displaystyle 10^{10,000,000,000}} 10 10 10 , 000 , 000 , 000 {\displaystyle 10^{10^{10,000,000,000}}} 10 10 10 10 , 000 , 000 , 000 {\displaystyle 10^{10^{10^{10,000,000,000}}}} 10 ↑↑ b {\displaystyle 10\uparrow \uparrow b} 3 10 10 10 . . . 10 ⏟ 10 copies of 10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 10 . . . 10 ⏟ 10 10 . . . 10 ⏟ 10 copies of 10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 10 . . . 10 ⏟ 10 10 . . . 10 ⏟ 10 10 . . . 10 ⏟ 10 copies of 10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 10 . . . 10 ⏟ 10 10 . . . 10 ⏟ 10 10 . . . 10 ⏟ 10 10 . . . 10 ⏟ 10 copies of 10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 ↑↑↑ b {\displaystyle 10\uparrow \uparrow \uparrow b} 4 10 10 . . . 10 10 ⏟ 10 copies of 10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 . . . 10 10 ⏟ 10 . . . 10 10 ⏟ 10 copies of 10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 . . . 10 10 ⏟ 10 . . . 10 10 ⏟ 10 . . . 10 10 ⏟ 10 copies of 10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 . . . 10 10 ⏟ 10 . . . 10 10 ⏟ 10 . . . 10 10 ⏟ 10 . . . 10 10 ⏟ 10 copies of 10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 ↑↑↑↑ b {\displaystyle 10\uparrow \uparrow \uparrow \uparrow b}
For 2 ≤b ≤ 9 the numerical order of the numbers10 ↑ n b {\displaystyle 10\uparrow ^{n}b} is thelexicographical order withn as the most significant number, so for the numbers of these 8 columns the numerical order is simply line-by-line. The same applies for the numbers in the 97 columns with 3 ≤b ≤ 99, and if we start fromn = 1 even for 3 ≤b ≤ 9,999,999,999.
Hyper-operators: Bowers's extensions: Expansion (muiti/power/expando) Explosion (multi/power/expando) Detonation (multi/power) Pentonation (multi) Username's extensions: Hexonation Heptonation Octonation Ennonation Dekonation Tiaokhiao's extensions: Megotion (muiti/power/tetra) Megoexpansion (multi/power) Megoexplosion (multi) Megodetonation Gigotion (expand/explod/deto) Terotion (expand) Petotion Exotion Zettotion Yottotion Saibian's extensions: Powiaination (expand/explod/deto) Megodaination (expand/explod) Gigodaination (expand) Terodaination Powiairation (megod/gigod/terod) Powiaintation (megod) Powiairtation
Examples in numerical order Expression methods
Related articles (alphabetical order)