Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Kaprekar number

From Wikipedia, the free encyclopedia
Base-dependent property of integers
Not to be confused withKaprekar's constant.

Inmathematics, anatural number in a givennumber base is ap{\displaystyle p}-Kaprekar number if the representation of its square in that base can be split into two parts, where the second part hasp{\displaystyle p} digits, that add up to the original number. For example, inbase 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 + 25 = 45. The numbers are named afterD. R. Kaprekar.

Definition and properties

[edit]

Letn{\displaystyle n} be a natural number. Then theKaprekar function for baseb>1{\displaystyle b>1} and powerp>0{\displaystyle p>0}Fp,b:NN{\displaystyle F_{p,b}:\mathbb {N} \rightarrow \mathbb {N} } is defined to be the following:

Fp,b(n)=α+β{\displaystyle F_{p,b}(n)=\alpha +\beta },

whereβ=n2modbp{\displaystyle \beta =n^{2}{\bmod {b}}^{p}} and

α=n2βbp{\displaystyle \alpha ={\frac {n^{2}-\beta }{b^{p}}}}

A natural numbern{\displaystyle n} is ap{\displaystyle p}-Kaprekar number if it is afixed point forFp,b{\displaystyle F_{p,b}}, which occurs ifFp,b(n)=n{\displaystyle F_{p,b}(n)=n}.0{\displaystyle 0} and1{\displaystyle 1} aretrivial Kaprekar numbers for allb{\displaystyle b} andp{\displaystyle p}, all other Kaprekar numbers arenontrivial Kaprekar numbers.

The earlier example of 45 satisfies this definition withb=10{\displaystyle b=10} andp=2{\displaystyle p=2}, because

β=n2modbp=452mod102=25{\displaystyle \beta =n^{2}{\bmod {b}}^{p}=45^{2}{\bmod {1}}0^{2}=25}
α=n2βbp=45225102=20{\displaystyle \alpha ={\frac {n^{2}-\beta }{b^{p}}}={\frac {45^{2}-25}{10^{2}}}=20}
F2,10(45)=α+β=20+25=45{\displaystyle F_{2,10}(45)=\alpha +\beta =20+25=45}

A natural numbern{\displaystyle n} is asociable Kaprekar number if it is aperiodic point forFp,b{\displaystyle F_{p,b}}, whereFp,bk(n)=n{\displaystyle F_{p,b}^{k}(n)=n} for a positiveintegerk{\displaystyle k} (whereFp,bk{\displaystyle F_{p,b}^{k}} is thek{\displaystyle k}thiterate ofFp,b{\displaystyle F_{p,b}}), and forms acycle of periodk{\displaystyle k}. A Kaprekar number is a sociable Kaprekar number withk=1{\displaystyle k=1}, and aamicable Kaprekar number is a sociable Kaprekar number withk=2{\displaystyle k=2}.

The number of iterationsi{\displaystyle i} needed forFp,bi(n){\displaystyle F_{p,b}^{i}(n)} to reach a fixed point is the Kaprekar function'spersistence ofn{\displaystyle n}, and undefined if it never reaches a fixed point.

There are only a finite number ofp{\displaystyle p}-Kaprekar numbers and cycles for a given baseb{\displaystyle b}, because ifn=bp+m{\displaystyle n=b^{p}+m}, wherem>0{\displaystyle m>0} then

n2=(bp+m)2=b2p+2mbp+m2=(bp+2m)bp+m2{\displaystyle {\begin{aligned}n^{2}&=(b^{p}+m)^{2}\\&=b^{2p}+2mb^{p}+m^{2}\\&=(b^{p}+2m)b^{p}+m^{2}\\\end{aligned}}}

andβ=m2{\displaystyle \beta =m^{2}},α=bp+2m{\displaystyle \alpha =b^{p}+2m}, andFp,b(n)=bp+2m+m2=n+(m2+m)>n{\displaystyle F_{p,b}(n)=b^{p}+2m+m^{2}=n+(m^{2}+m)>n}. Only whennbp{\displaystyle n\leq b^{p}} do Kaprekar numbers and cycles exist.

Ifd{\displaystyle d} is any divisor ofp{\displaystyle p}, thenn{\displaystyle n} is also ap{\displaystyle p}-Kaprekar number for basebp{\displaystyle b^{p}}.

In baseb=2{\displaystyle b=2}, all evenperfect numbers are Kaprekar numbers. More generally, any numbers of the form2n(2n+11){\displaystyle 2^{n}(2^{n+1}-1)} or2n(2n+1+1){\displaystyle 2^{n}(2^{n+1}+1)} for natural numbern{\displaystyle n} are Kaprekar numbers inbase 2.

Set-theoretic definition and unitary divisors

[edit]

The setK(N){\displaystyle K(N)} for a given integerN{\displaystyle N} can be defined as the set of integersX{\displaystyle X} for which there exist natural numbersA{\displaystyle A} andB{\displaystyle B} satisfying theDiophantine equation[1]

X2=AN+B{\displaystyle X^{2}=AN+B}, where0B<N{\displaystyle 0\leq B<N}
X=A+B{\displaystyle X=A+B}

Ann{\displaystyle n}-Kaprekar number for baseb{\displaystyle b} is then one which lies in the setK(bn){\displaystyle K(b^{n})}.

It was shown in 2000[1] that there is abijection between theunitary divisors ofN1{\displaystyle N-1} and the setK(N){\displaystyle K(N)} defined above. LetInv(a,c){\displaystyle \operatorname {Inv} (a,c)} denote themultiplicative inverse ofa{\displaystyle a} moduloc{\displaystyle c}, namely the least positive integerm{\displaystyle m} such thatam=1modc{\displaystyle am=1{\bmod {c}}}, and for each unitary divisord{\displaystyle d} ofN1{\displaystyle N-1} lete=N1d{\displaystyle e={\frac {N-1}{d}}} andζ(d)=d Inv(d,e){\displaystyle \zeta (d)=d\ {\text{Inv}}(d,e)}. Then the functionζ{\displaystyle \zeta } is a bijection from the set of unitary divisors ofN1{\displaystyle N-1} onto the setK(N){\displaystyle K(N)}. In particular, a numberX{\displaystyle X} is in the setK(N){\displaystyle K(N)} if and only ifX=d Inv(d,e){\displaystyle X=d\ {\text{Inv}}(d,e)} for some unitary divisord{\displaystyle d} ofN1{\displaystyle N-1}.

The numbers inK(N){\displaystyle K(N)} occur in complementary pairs,X{\displaystyle X} andNX{\displaystyle N-X}. Ifd{\displaystyle d} is a unitary divisor ofN1{\displaystyle N-1} then so ise=N1d{\displaystyle e={\frac {N-1}{d}}}, and ifX=dInv(d,e){\displaystyle X=d\operatorname {Inv} (d,e)} thenNX=eInv(e,d){\displaystyle N-X=e\operatorname {Inv} (e,d)}.

Kaprekar numbers forFp,b{\displaystyle F_{p,b}}

[edit]

b = 4k + 3 andp = 2n + 1

[edit]

Letk{\displaystyle k} andn{\displaystyle n} be natural numbers, the number baseb=4k+3=2(2k+1)+1{\displaystyle b=4k+3=2(2k+1)+1}, andp=2n+1{\displaystyle p=2n+1}. Then:

Proof

Let

X1=bp12=b12i=0p1bi=4k+312i=02n+11bi=(2k+1)i=02nbi{\displaystyle {\begin{aligned}X_{1}&={\frac {b^{p}-1}{2}}\\&={\frac {b-1}{2}}\sum _{i=0}^{p-1}b^{i}\\&={\frac {4k+3-1}{2}}\sum _{i=0}^{2n+1-1}b^{i}\\&=(2k+1)\sum _{i=0}^{2n}b^{i}\end{aligned}}}

Then,

X12=(bp12)2=b2p2bp+14=bp(bp2)+14=(4k+3)2n+1(bp2)+14=(4k+3)2n(bp2)(4k+4)(4k+3)2n(bp2)+14=(4k+3)2n(bp2)+14+(k+1)(4k+3)2n(bp2)=(4k+3)2n1(bp2)(4k+4)+(4k+3)2n1(bp2)+14+(k+1)b2n(b2n+12)=(4k+3)2n1(bp2)+14+(k+1)b2n(bp2)(k+1)b2n1(b2n+12)=(4k+3)p2(bp2)+14+i=p2p1(1)i(k+1)bi(bp2)=(4k+3)p2(bp2)+14+(bp2)(k+1)i=p2p1(1)ibi=(4k+3)1(bp2)+14+(bp2)(k+1)i=1p1(1)ibi=(bp2)+14+(bp2)(k+1)i=0p1(1)ibi=(bp2)(k+1)(i=02n(1)ibi)+b2n+1+34=(bp2)(k+1)(i=02n(1)ibi)+4b2n+1+3b2n+1+34=(bp2)(k+1)(i=02n(1)ibi)bp+3b2n+1+34=(bp2)(k+1)(i=02n(1)ibi)bp+3(4k+3)p2+34+3(k+1)i=p2p1(1)ibi=(bp2)(k+1)(i=02n(1)ibi)bp+3(4k+3)1+34+3(k+1)i=1p1(1)ibi=(bp2)(k+1)(i=02n(1)ibi)bp+3+34+3(k+1)i=0p1(1)ibi=(bp2)(k+1)(i=02n(1)ibi)+3(k+1)(i=02n(1)ibi)bp=(bp2+3)(k+1)(i=02n(1)ibi)bp=(bp+1)(k+1)(i=02n(1)ibi)bp=(bp+1)(1+(k+1)i=02n(1)ibi)+1=(bp+1)(k+(k+1)i=12n(1)ibi)+1=(bp+1)(k+(k+1)i=1nb2ib2i1)+1=(bp+1)(k+(k+1)i=1n(b1)b2i1)+1=(bp+1)(k+i=1n((k+1)bk1)b2i1)+1=(bp+1)(k+i=1n(kb+(4k+3)k1)b2i1)+1=(bp+1)(k+i=1n(kb+(3k+2))b2i1)+1=bp(k+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1){\displaystyle {\begin{aligned}X_{1}^{2}&=\left({\frac {b^{p}-1}{2}}\right)^{2}\\&={\frac {b^{2p}-2b^{p}+1}{4}}\\&={\frac {b^{p}(b^{p}-2)+1}{4}}\\&={\frac {(4k+3)^{2n+1}(b^{p}-2)+1}{4}}\\&={\frac {(4k+3)^{2n}(b^{p}-2)(4k+4)-(4k+3)^{2n}(b^{p}-2)+1}{4}}\\&={\frac {-(4k+3)^{2n}(b^{p}-2)+1}{4}}+(k+1)(4k+3)^{2n}(b^{p}-2)\\&={\frac {-(4k+3)^{2n-1}(b^{p}-2)(4k+4)+(4k+3)^{2n-1}(b^{p}-2)+1}{4}}+(k+1)b^{2n}(b^{2n+1}-2)\\&={\frac {(4k+3)^{2n-1}(b^{p}-2)+1}{4}}+(k+1)b^{2n}(b^{p}-2)-(k+1)b^{2n-1}(b^{2n+1}-2)\\&={\frac {(4k+3)^{p-2}(b^{p}-2)+1}{4}}+\sum _{i=p-2}^{p-1}(-1)^{i}(k+1)b^{i}(b^{p}-2)\\&={\frac {(4k+3)^{p-2}(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum _{i=p-2}^{p-1}(-1)^{i}b^{i}\\&={\frac {(4k+3)^{1}(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum _{i=1}^{p-1}(-1)^{i}b^{i}\\&={\frac {-(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum _{i=0}^{p-1}(-1)^{i}b^{i}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)+{\frac {-b^{2n+1}+3}{4}}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)+{\frac {-4b^{2n+1}+3b^{2n+1}+3}{4}}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{\frac {3b^{2n+1}+3}{4}}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{\frac {3(4k+3)^{p-2}+3}{4}}+3(k+1)\sum _{i=p-2}^{p-1}(-1)^{i}b^{i}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{\frac {3(4k+3)^{1}+3}{4}}+3(k+1)\sum _{i=1}^{p-1}(-1)^{i}b^{i}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{\frac {-3+3}{4}}+3(k+1)\sum _{i=0}^{p-1}(-1)^{i}b^{i}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)+3(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}\\&=(b^{p}-2+3)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}\\&=(b^{p}+1)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}\\&=(b^{p}+1)\left(-1+(k+1)\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)+1\\&=(b^{p}+1)\left(k+(k+1)\sum _{i=1}^{2n}(-1)^{i}b^{i}\right)+1\\&=(b^{p}+1)\left(k+(k+1)\sum _{i=1}^{n}b^{2i}-b^{2i-1}\right)+1\\&=(b^{p}+1)\left(k+(k+1)\sum _{i=1}^{n}(b-1)b^{2i-1}\right)+1\\&=(b^{p}+1)\left(k+\sum _{i=1}^{n}((k+1)b-k-1)b^{2i-1}\right)+1\\&=(b^{p}+1)\left(k+\sum _{i=1}^{n}(kb+(4k+3)-k-1)b^{2i-1}\right)+1\\&=(b^{p}+1)\left(k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+1\\&=b^{p}\left(k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\end{aligned}}}


The two numbersα{\displaystyle \alpha } andβ{\displaystyle \beta } are

β=X12modbp=k+1+i=1n(kb+(3k+2))b2i1{\displaystyle \beta =X_{1}^{2}{\bmod {b}}^{p}=k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}}
α=X12βbp=k+i=1n(kb+(3k+2))b2i1{\displaystyle \alpha ={\frac {X_{1}^{2}-\beta }{b^{p}}}=k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}}

and their sum is

α+β=(k+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1)=2k+1+i=1n((2k)b+2(3k+2))b2i1=2k+1+i=1n((2k)b+(6k+4))b2i1=2k+1+i=1n((2k)b+(4k+3))b2i1+(2k+1)b2i1=2k+1+i=1n((2k+1)b)b2i1+(2k+1)b2i1=2k+1+i=1n(2k+1)b2i+(2k+1)b2i1=2k+1+i=12n(2k+1)bi=i=02n(2k+1)bi=(2k+1)i=02nbi=X1{\displaystyle {\begin{aligned}\alpha +\beta &=\left(k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\\&=2k+1+\sum _{i=1}^{n}((2k)b+2(3k+2))b^{2i-1}\\&=2k+1+\sum _{i=1}^{n}((2k)b+(6k+4))b^{2i-1}\\&=2k+1+\sum _{i=1}^{n}((2k)b+(4k+3))b^{2i-1}+(2k+1)b^{2i-1}\\&=2k+1+\sum _{i=1}^{n}((2k+1)b)b^{2i-1}+(2k+1)b^{2i-1}\\&=2k+1+\sum _{i=1}^{n}(2k+1)b^{2i}+(2k+1)b^{2i-1}\\&=2k+1+\sum _{i=1}^{2n}(2k+1)b^{i}\\&=\sum _{i=0}^{2n}(2k+1)b^{i}\\&=(2k+1)\sum _{i=0}^{2n}b^{i}&=X_{1}\\\end{aligned}}}

Thus,X1{\displaystyle X_{1}} is a Kaprekar number.

Proof

Let

X2=b2n+1+12=b2n+112+1=X1+1{\displaystyle {\begin{aligned}X_{2}&={\frac {b^{2n+1}+1}{2}}\\&={\frac {b^{2n+1}-1}{2}}+1\\&=X_{1}+1\end{aligned}}}

Then,

X22=(X1+1)2=X12+2X1+1=X12+2X1+1=bp(k+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1)+bp1+1=bp(k+1+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1){\displaystyle {\begin{aligned}X_{2}^{2}&=(X_{1}+1)^{2}\\&=X_{1}^{2}+2X_{1}+1\\&=X_{1}^{2}+2X_{1}+1\\&=b^{p}\left(k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+b^{p}-1+1\\&=b^{p}\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\end{aligned}}}

The two numbersα{\displaystyle \alpha } andβ{\displaystyle \beta } are

β=X22modbp=k+1+i=1n(kb+(3k+2))b2i1{\displaystyle \beta =X_{2}^{2}{\bmod {b}}^{p}=k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}}
α=X22βbp=k+1+i=1n(kb+(3k+2))b2i1{\displaystyle \alpha ={\frac {X_{2}^{2}-\beta }{b^{p}}}=k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}}

and their sum is

α+β=(k+1+i=1n(kb+(3k+2))b2i1)+(k+1+i=1n(kb+(3k+2))b2i1)=2k+2+i=1n((2k)b+2(3k+2))b2i1=2k+2+i=1n((2k)b+(6k+4))b2i1=2k+2+i=1n((2k)b+(4k+3))b2i1+(2k+1)b2i1=2k+2+i=1n((2k+1)b)b2i1+(2k+1)b2i1=2k+2+i=1n(2k+1)b2i+(2k+1)b2i1=2k+2+i=12n(2k+1)bi=1+i=02n(2k+1)bi=1+(2k+1)i=02nbi=1+X1=X2{\displaystyle {\begin{aligned}\alpha +\beta &=\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\\&=2k+2+\sum _{i=1}^{n}((2k)b+2(3k+2))b^{2i-1}\\&=2k+2+\sum _{i=1}^{n}((2k)b+(6k+4))b^{2i-1}\\&=2k+2+\sum _{i=1}^{n}((2k)b+(4k+3))b^{2i-1}+(2k+1)b^{2i-1}\\&=2k+2+\sum _{i=1}^{n}((2k+1)b)b^{2i-1}+(2k+1)b^{2i-1}\\&=2k+2+\sum _{i=1}^{n}(2k+1)b^{2i}+(2k+1)b^{2i-1}\\&=2k+2+\sum _{i=1}^{2n}(2k+1)b^{i}\\&=1+\sum _{i=0}^{2n}(2k+1)b^{i}\\&=1+(2k+1)\sum _{i=0}^{2n}b^{i}\\&=1+X_{1}\\&=X_{2}\end{aligned}}}

Thus,X2{\displaystyle X_{2}} is a Kaprekar number.

b =m2k +m + 1 andp =mn + 1

[edit]

Letm{\displaystyle m},k{\displaystyle k}, andn{\displaystyle n} be natural numbers, the number baseb=m2k+m+1{\displaystyle b=m^{2}k+m+1}, and the powerp=mn+1{\displaystyle p=mn+1}. Then:

b =m2k +m + 1 andp =mn +m − 1

[edit]

Letm{\displaystyle m},k{\displaystyle k}, andn{\displaystyle n} be natural numbers, the number baseb=m2k+m+1{\displaystyle b=m^{2}k+m+1}, and the powerp=mn+m1{\displaystyle p=mn+m-1}. Then:

b =m2k +m2m + 1 andp =mn + 1

[edit]

Letm{\displaystyle m},k{\displaystyle k}, andn{\displaystyle n} be natural numbers, the number baseb=m2k+m2m+1{\displaystyle b=m^{2}k+m^{2}-m+1}, and the powerp=mn+m1{\displaystyle p=mn+m-1}. Then:

b =m2k +m2m + 1 andp =mn +m − 1

[edit]

Letm{\displaystyle m},k{\displaystyle k}, andn{\displaystyle n} be natural numbers, the number baseb=m2k+m2m+1{\displaystyle b=m^{2}k+m^{2}-m+1}, and the powerp=mn+m1{\displaystyle p=mn+m-1}. Then:

Kaprekar numbers and cycles ofFp,b{\displaystyle F_{p,b}} for specificp{\displaystyle p},b{\displaystyle b}

[edit]

All numbers are in baseb{\displaystyle b}.

Baseb{\displaystyle b}Powerp{\displaystyle p}Nontrivial Kaprekar numbersn0{\displaystyle n\neq 0},n1{\displaystyle n\neq 1}Cycles
2110{\displaystyle \varnothing }
312, 10{\displaystyle \varnothing }
413, 10{\displaystyle \varnothing }
514, 5, 10{\displaystyle \varnothing }
615, 6, 10{\displaystyle \varnothing }
713, 4, 6, 10{\displaystyle \varnothing }
817, 102 → 4 → 2
918, 10{\displaystyle \varnothing }
1019, 10{\displaystyle \varnothing }
1115, 6, A, 10{\displaystyle \varnothing }
121B, 10{\displaystyle \varnothing }
1314, 9, C, 10{\displaystyle \varnothing }
141D, 10{\displaystyle \varnothing }
1517, 8, E, 10

2 → 4 → 2

9 → B → 9

1616, A, F, 10{\displaystyle \varnothing }
2211{\displaystyle \varnothing }
3222, 100{\displaystyle \varnothing }
4212, 22, 33, 100{\displaystyle \varnothing }
5214, 31, 44, 100{\displaystyle \varnothing }
6223, 33, 55, 100

15 → 24 → 15

41 → 50 → 41

7222, 45, 66, 100{\displaystyle \varnothing }
8234, 44, 77, 100

4 → 20 → 4

11 → 22 → 11

45 → 56 → 45

23111, 100010 → 100 → 10
33111, 112, 222, 100010 → 100 → 10
24110, 1010, 1111, 10000{\displaystyle \varnothing }
34121, 2102, 2222, 10000{\displaystyle \varnothing }
2511111, 100000

10 → 100 → 10000 → 1000 → 10

111 → 10010 → 1110 → 1010 → 111

3511111, 22222, 10000010 → 100 → 10000 → 1000 → 10
2611100, 100100, 111111, 1000000

100 → 10000 → 100

1001 → 10010 → 1001

100101 → 101110 → 100101

3610220, 20021, 101010, 121220, 202202, 212010, 222222, 1000000

100 → 10000 → 100

122012 → 201212 → 122012

271111111, 10000000

10 → 100 → 10000 → 10

1000 → 1000000 → 100000 → 1000

100110 → 101111 → 110010 → 1010111 → 1001100 → 111101 → 100110

371111111, 1111112, 2222222, 10000000

10 → 100 → 10000 → 10

1000 → 1000000 → 100000 → 1000

1111121 → 1111211 → 1121111 → 1111121

281010101, 1111000, 10001000, 10101011, 11001101, 11111111, 100000000{\displaystyle \varnothing }
382012021, 10121020, 12101210, 21121001, 20210202, 22222222, 100000000{\displaystyle \varnothing }
2910010011, 101101101, 111111111, 1000000000

10 → 100 → 10000 → 100000000 → 10000000 → 100000 → 10

1000 → 1000000 → 1000

10011010 → 11010010 → 10011010

Extension to negative integers

[edit]

Kaprekar numbers can be extended to the negative integers by use of asigned-digit representation to represent each integer.

See also

[edit]

Notes

[edit]
  1. ^abIannucci (2000)

References

[edit]
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Kaprekar_number&oldid=1222227031"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp