Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Kaniadakis Weibull distribution

From Wikipedia, the free encyclopedia
Continuous probability distribution
The topic of this articlemay not meet Wikipedia'sgeneral notability guideline. Please help to demonstrate the notability of the topic by citingreliable secondary sources that areindependent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to bemerged,redirected, ordeleted.
Find sources: "Kaniadakis Weibull distribution" – news ·newspapers ·books ·scholar ·JSTOR
(February 2023) (Learn how and when to remove this message)
κ-Weibull distribution
Probability density function
Cumulative distribution function
Parameters0<κ<1{\displaystyle 0<\kappa <1}
α>0{\displaystyle \alpha >0}rateshape (real)
β>0{\displaystyle \beta >0}rate (real)
Supportx[0,+){\displaystyle x\in [0,+\infty )}
PDFαβxα11+κ2β2x2αexpκ(βxα){\displaystyle {\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\exp _{\kappa }(-\beta x^{\alpha })}
CDF1expκ(βxα){\displaystyle 1-\exp _{\kappa }(-\beta x^{\alpha })}
Quantileβ1/α[lnκ(11Fκ)]1/α{\displaystyle \beta ^{-1/\alpha }{\Bigg [}\ln _{\kappa }{\Bigg (}{\frac {1}{1-F_{\kappa }}}{\Bigg )}{\Bigg ]}^{1/\alpha }}
Medianβ1/α(lnκ(2))1/α{\displaystyle \beta ^{-1/\alpha }{\Bigg (}\ln _{\kappa }(2){\Bigg )}^{1/\alpha }}
Modeβ1/α(α2+2κ2(α1)2κ2(α2κ2)1+4κ2(α2κ2)(α1)2[α2+2κ2(α1)]21)1/2α{\displaystyle \beta ^{-1/\alpha }{\Bigg (}{\frac {\alpha ^{2}+2\kappa ^{2}(\alpha -1)}{2\kappa ^{2}(\alpha ^{2}-\kappa ^{2})}}{\sqrt {1+{\frac {4\kappa ^{2}(\alpha ^{2}-\kappa ^{2})(\alpha -1)^{2}}{[\alpha ^{2}+2\kappa ^{2}(\alpha -1)]^{2}}}}}-1{\Bigg )}^{1/2\alpha }}
Method of moments(2κβ)m/α1+κmαΓ(12κm2α)Γ(12κ+m2α)Γ(1+mα){\displaystyle {\frac {(2\kappa \beta )^{-m/\alpha }}{1+\kappa {\frac {m}{\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}\Gamma {\Big (}1+{\frac {m}{\alpha }}{\Big )}}

TheKaniadakis Weibull distribution (orκ-Weibull distribution) is aprobability distribution arising as a generalization of theWeibull distribution.[1][2] It is one example of aKaniadakisκ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety ofcomplex systems in seismology, economy, epidemiology, among many others.

Definitions

[edit]

Probability density function

[edit]

The Kaniadakisκ-Weibull distribution is exhibits power-law right tails, and it has the followingprobability density function:[3]

fκ(x)=αβxα11+κ2β2x2αexpκ(βxα){\displaystyle f_{_{\kappa }}(x)={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\exp _{\kappa }(-\beta x^{\alpha })}

valid forx0{\displaystyle x\geq 0}, where|κ|<1{\displaystyle |\kappa |<1} is the entropic index associated with theKaniadakis entropy,β>0{\displaystyle \beta >0} is the scale parameter, andα>0{\displaystyle \alpha >0} is the shape parameter orWeibull modulus.

TheWeibull distribution is recovered asκ0.{\displaystyle \kappa \rightarrow 0.}

Cumulative distribution function

[edit]

Thecumulative distribution function ofκ-Weibull distribution is given by

Fκ(x)=1expκ(βxα){\displaystyle F_{\kappa }(x)=1-\exp _{\kappa }(-\beta x^{\alpha })}

valid forx0{\displaystyle x\geq 0}. The cumulativeWeibull distribution is recovered in the classical limitκ0{\displaystyle \kappa \rightarrow 0}.

Survival distribution and hazard functions

[edit]

The survival distribution function ofκ-Weibull distribution is given by

Sκ(x)=expκ(βxα){\displaystyle S_{\kappa }(x)=\exp _{\kappa }(-\beta x^{\alpha })}

valid forx0{\displaystyle x\geq 0}. The survivalWeibull distribution is recovered in the classical limitκ0{\displaystyle \kappa \rightarrow 0}.

Comparison between the Kaniadakis κ-Weibull probability function and its cumulative.

The hazard function of theκ-Weibull distribution is obtained through the solution of theκ-rate equation:

Sκ(x)dx=hκSκ(x){\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)}

withSκ(0)=1{\displaystyle S_{\kappa }(0)=1}, wherehκ{\displaystyle h_{\kappa }} is the hazard function:

hκ=αβxα11+κ2β2x2α{\displaystyle h_{\kappa }={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}}

The cumulativeκ-Weibull distribution is related to theκ-hazard function by the following expression:

Sκ=eHκ(x){\displaystyle S_{\kappa }=e^{-H_{\kappa }(x)}}

where

Hκ(x)=0xhκ(z)dz{\displaystyle H_{\kappa }(x)=\int _{0}^{x}h_{\kappa }(z)dz}
Hκ(x)=1κarcsinh(κβxα){\displaystyle H_{\kappa }(x)={\frac {1}{\kappa }}{\textrm {arcsinh}}\left(\kappa \beta x^{\alpha }\right)}

is the cumulativeκ-hazard function. The cumulative hazard function of theWeibull distribution is recovered in the classical limitκ0{\displaystyle \kappa \rightarrow 0}:H(x)=βxα{\displaystyle H(x)=\beta x^{\alpha }} .

Properties

[edit]

Moments, median and mode

[edit]

Theκ-Weibull distribution has moment of ordermN{\displaystyle m\in \mathbb {N} } given by

E[Xm]=|2κβ|m/α1+κmαΓ(12κm2α)Γ(12κ+m2α)Γ(1+mα){\displaystyle \operatorname {E} [X^{m}]={\frac {|2\kappa \beta |^{-m/\alpha }}{1+\kappa {\frac {m}{\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}\Gamma {\Big (}1+{\frac {m}{\alpha }}{\Big )}}

The median and the mode are:

xmedian(Fκ)=β1/α(lnκ(2))1/α{\displaystyle x_{\textrm {median}}(F_{\kappa })=\beta ^{-1/\alpha }{\Bigg (}\ln _{\kappa }(2){\Bigg )}^{1/\alpha }}
xmode=β1/α(α2+2κ2(α1)2κ2(α2κ2))1/2α(1+4κ2(α2κ2)(α1)2[α2+2κ2(α1)]21)1/2α(α>1){\displaystyle x_{\textrm {mode}}=\beta ^{-1/\alpha }{\Bigg (}{\frac {\alpha ^{2}+2\kappa ^{2}(\alpha -1)}{2\kappa ^{2}(\alpha ^{2}-\kappa ^{2})}}{\Bigg )}^{1/2\alpha }{\Bigg (}{\sqrt {1+{\frac {4\kappa ^{2}(\alpha ^{2}-\kappa ^{2})(\alpha -1)^{2}}{[\alpha ^{2}+2\kappa ^{2}(\alpha -1)]^{2}}}}}-1{\Bigg )}^{1/2\alpha }\quad (\alpha >1)}

Quantiles

[edit]

Thequantiles are given by the following expression

xquantile(Fκ)=β1/α[lnκ(11Fκ)]1/α{\displaystyle x_{\textrm {quantile}}(F_{\kappa })=\beta ^{-1/\alpha }{\Bigg [}\ln _{\kappa }{\Bigg (}{\frac {1}{1-F_{\kappa }}}{\Bigg )}{\Bigg ]}^{1/\alpha }}

with0Fκ1{\displaystyle 0\leq F_{\kappa }\leq 1}.

Gini coefficient

[edit]

TheGini coefficient is:[3]

Gκ=1α+κα+12κΓ(1κ12α)Γ(1κ+12α)Γ(12κ+12α)Γ(12κ12α){\displaystyle \operatorname {G} _{\kappa }=1-{\frac {\alpha +\kappa }{\alpha +{\frac {1}{2}}\kappa }}{\frac {\Gamma {\Big (}{\frac {1}{\kappa }}-{\frac {1}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {1}{2\alpha }}{\Big )}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{2\alpha }}{\Big )}}}}

Asymptotic behavior

[edit]

Theκ-Weibull distribution II behaves asymptotically as follows:[3]

limx+fκ(x)ακ(2κβ)1/κx1α/κ{\displaystyle \lim _{x\to +\infty }f_{\kappa }(x)\sim {\frac {\alpha }{\kappa }}(2\kappa \beta )^{-1/\kappa }x^{-1-\alpha /\kappa }}
limx0+fκ(x)=αβxα1{\displaystyle \lim _{x\to 0^{+}}f_{\kappa }(x)=\alpha \beta x^{\alpha -1}}

Related distributions

[edit]

Applications

[edit]

Theκ-Weibull distribution has been applied in several areas, such as:

  • Ineconomy, for analyzingpersonal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population.[1][4][5]
  • Inseismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing theGutenberg–Richter law,[6] and the interval distributions of seismic data, modeling extreme-event return intervals.[7][8]
  • Inepidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis.[9]

See also

[edit]

References

[edit]
  1. ^abClementi, F.; Gallegati, M.; Kaniadakis, G. (2007)."κ-generalized statistics in personal income distribution".The European Physical Journal B.57 (2):187–193.arXiv:physics/0607293.Bibcode:2007EPJB...57..187C.doi:10.1140/epjb/e2007-00120-9.ISSN 1434-6028.S2CID 15777288.
  2. ^Clementi, F.;Di Matteo, T.; Gallegati, M.; Kaniadakis, G. (2008)."The -generalized distribution: A new descriptive model for the size distribution of incomes".Physica A: Statistical Mechanics and Its Applications.387 (13):3201–3208.arXiv:0710.3645.doi:10.1016/j.physa.2008.01.109.S2CID 2590064.
  3. ^abcKaniadakis, G. (2021-01-01)."New power-law tailed distributions emerging in κ-statistics (a)".Europhysics Letters.133 (1) 10002.arXiv:2203.01743.Bibcode:2021EL....13310002K.doi:10.1209/0295-5075/133/10002.ISSN 0295-5075.S2CID 234144356.
  4. ^Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (October 2010)."A model of personal income distribution with application to Italian data".Empirical Economics.39 (2):559–591.doi:10.1007/s00181-009-0318-2.ISSN 0377-7332.S2CID 154273794.
  5. ^Clementi, F; Gallegati, M; Kaniadakis, G (2012-12-06)."A generalized statistical model for the size distribution of wealth".Journal of Statistical Mechanics: Theory and Experiment.2012 (12) P12006.arXiv:1209.4787.Bibcode:2012JSMTE..12..006C.doi:10.1088/1742-5468/2012/12/P12006.ISSN 1742-5468.S2CID 18961951.
  6. ^da Silva, Sérgio Luiz E.F. (2021)."κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes".Chaos, Solitons & Fractals.143 110622.Bibcode:2021CSF...14310622D.doi:10.1016/j.chaos.2020.110622.S2CID 234063959.
  7. ^Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014-05-28)."Finite-size effects on return interval distributions for weakest-link-scaling systems".Physical Review E.89 (5) 052142.arXiv:1308.1881.Bibcode:2014PhRvE..89e2142H.doi:10.1103/PhysRevE.89.052142.ISSN 1539-3755.PMID 25353774.S2CID 22310350.
  8. ^Hristopulos, Dionissios; Petrakis, Manolis; Kaniadakis, Giorgio (2015-03-09)."Weakest-Link Scaling and Extreme Events in Finite-Sized Systems".Entropy.17 (3):1103–1122.Bibcode:2015Entrp..17.1103H.doi:10.3390/e17031103.ISSN 1099-4300.
  9. ^Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020)."The κ-statistics approach to epidemiology".Scientific Reports.10 (1): 19949.Bibcode:2020NatSR..1019949K.doi:10.1038/s41598-020-76673-3.ISSN 2045-2322.PMC 7673996.PMID 33203913.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Kaniadakis_Weibull_distribution&oldid=1313889752"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp