Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

KVD-1

From Wikipedia, the free encyclopedia
Soviet rocket stage
KVD-1 (12KRB)
Country of originUSSR/Russia
First flight2001-04-20,GSAT-1 Mission,GSLV debut flight
Last flight2010-12-25,GSAT-5P launch, GSLV Mk I final flight
DesignerKB KhIMMASH
ApplicationUpper stage engine
AssociatedLVGSLV Mk 1
StatusRetired
Liquid-fuel engine
PropellantLiquid oxygen /liquid hydrogen
Mixture ratio6
CycleStaged combustion
Configuration
Chamber1 + 2 verniers
Performance
Thrust, vacuum69.6 kN (15,600 lbf)
Chamberpressure5.6 MPa (810 psi)
Specific impulse, vacuum462 s
Burn time800 s (600 s in a single burn)
Gimbal rangeNone; uses 2 vernier engines for attitude control[1]
Dimensions
Length2.14 m (7 ft 0 in)
Diameter1.58 m (5 ft 2 in)
Dry mass282 kg (622 lb)
References
References[2][3][4]

KVD-1 was an upper stage LOX/LH2 cryogenic engine developed by the Isayev Design Bureau (now KB KhIMMASH) ofRussia in the early 1960s. It is a modified version of theRD-56, developed for a never-completed cryogenic upper stage of theN-1 super-heavy lift rocket, with the goal of enabling crewed lunar missions by the USSR.[5] The KVD-1 produces a thrust of 7.5 tonnes.

Initial development

[edit]

KVD-1 was originated from the RD-56 engine which were intended to be used for theSoviet crewed lunar programs.[6] RD-56 (11D56) engines were developed for N1M rocket programme, the planned derivative of N1, but later they were abandoned due to four successive launch failures of N1.[7] Later the design of the engine was sold to ISRO under the name "KVD-1" under a deal worth $120 million with the Soviet agencyGlavkosmos which enabled ISRO to import 2 KVD-1 engines and an agreement for transfer of technology from Russia.[8]

ISRO programme

[edit]

The engines were proven to be inefficient because of their low thrust-to-weight ratio. Later the Russian space agency optimised the engine to launch payloads with a mass of 2.5 tonnes or less. TheINSAT-4CR satellite with a mass of 2,140 kg was launched in 2007 but reached a lower than planned orbit due to the poor performance of the third stage's single KVD-1 engine. The satellite subsequently used its own propulsion to get to the planned orbit. Because of this the useful life of the satellite was shortened.[7]

Sanctions imposed by United States

[edit]

In 1991, an agreement was signed between India and Russia for technology transfer to India so that KVD-1 engines can be built indigenously in India. But later in July 1993, US imposed sanctions on ISRO and Glavkosmos saying it voids theMissile Technology Control Regime. This forcedISRO to develop its own cryogenic programme.[9]

Features

[edit]

The engine was single chamber fueled rocket which could be used as cryogenic engines for launching of spacecraft that could be put in elliptical and geostationary orbits.

  • Unfueled mass: 282 kg (621 lb)
  • Height: 2.14 m
  • Diameter: 1.56 m
  • Specific impulse: 462 seconds
  • Thrust: 69.60 kN (15,647 lbf)
  • Burn time: 800 seconds[2]
  • Nozzle ratio:200

Use

[edit]

KVD-1 was used in following launch vehicles

References

[edit]
  1. ^Brügge, Norbert."Geosynchronous Satellite Launch Vehicle (GSLV)". b14643.eu.Archived from the original on August 3, 2009. Retrieved2015-06-01.
  2. ^abWade, Mark."RD-56".astronautix.com. Encyclopedia Astronautica. Archived fromthe original on 2013-11-20. Retrieved2014-01-07.
  3. ^"Двигатель КВД1. Кислородно-водородный блок 12КРБ" [Engine KVD-1. Hydrogen Oxygen unit 12KRB].kbhmisaeva.ru (in Russian).KB KhIMMASH. Archived fromthe original on 2016-03-04. Retrieved2015-08-03.
  4. ^"KVD-1 & S5.92 Brochure"(PDF).KB KhIMMASH. 1998-10-13. Retrieved2015-08-03.
  5. ^"KVD-1 (left) with its precursor 11D56". ESA. Retrieved13 May 2023.
  6. ^Rachuk, V.; Titkov, N. (2006).The First Russian LOX-LH 2 Expander Cycle LRE: RD0146(PDF). 42nd Joint Propulsion Conference. Sacramento, California: AIAA/ASME/SAE/ASEE.doi:10.2514/6.2006-4904. AIAA 2006-4904.
  7. ^ab"The long road to cryogenic technology".The Hindu. Chennai. April 21, 2011. RetrievedJanuary 7, 2014.
  8. ^"Cryogenic Upper Stage (CUS)". justthe80.com. Archived fromthe original on February 23, 2014. RetrievedJanuary 7, 2014.
  9. ^Laxman, Srinivas (Jan 6, 2014)."India overcame US sanctions to develop cryogenic engine".The Times of India.Archived from the original on January 8, 2014. RetrievedJanuary 22, 2014.

External links

[edit]
Active
Planned
Retired
Liquid
fuel
Cryogenic
Hydrolox
(LH2 /LOX)
Methalox
(CH4 /LOX)
Semi-
cryogenic
Kerolox
(RP-1 /LOX)
Storable
Hypergolic (Aerozine,
UH 25,MMH, orUDMH
/N2O4,MON, orHNO3)
Other
Solid
fuel
  • * Different versions of the engine use different propellant combinations
  • Engines initalics are/were under development
Retrieved from "https://en.wikipedia.org/w/index.php?title=KVD-1&oldid=1325537247"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp