Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

KPNO-Tau 12

From Wikipedia, the free encyclopedia
Young substellar object
KPNO-Tau 12

KPNO-Tau 12 (red object in the center)
Credit:PanSTARRS & Meli thev
Observation data
Epoch J2000      Equinox J2000
ConstellationTaurus[1]
Right ascension04h 19m 01.28s[2]
Declination+28° 02′ 48.1″[2]
Apparent magnitude (V)23.228±0.023[3]
Characteristics
Evolutionary stagelow-mass brown dwarf or planetary-mass object
Spectral typeM9.25±0.5[4]
Astrometry
Proper motion (μ)RA: 7.09±5.60mas/yr[5]
Dec.: −28.41±5.27mas/yr[5]
Distance473 ± 49 ly
(145±15 pc)[5]
Details
Mass12.7+1.6
−1.8
[6] MJup
Radius2.22+0.11
−0.17
[6] RJup
Luminosity (bolometric)10−2.99±0.16[5] L
Temperature2170±200[5] K
Rotational velocity (v sin i)5.0[7] km/s
Age1-10[5] Myr
Other designations
KPNO-Tau 12, 2MASS J04190126+2802487, SSTtau 041901.2+280248,TIC 58285609, UGCS J041901.27+280248.3,WISE J041901.26+280248.2,Gaia DR2 164487734085116800
Database references
SIMBADdata

KPNO-Tau 12 (also called2MASS J0419012+280248) is a low-massbrown dwarf orfree-floating planetary-mass object that is surrounded by a protoplanetary disk, actively accreting material from it.[8]

Discovery

[edit]

KPNO-Tau 12 was identified in 2003 in data from a survey of theTaurus Molecular Clouds taken with a telescope at theKitt Peak National Observatory (KPNO) and2MASS. The object was observed with theMMT Observatory/Blue Channel spectrometer and withKeck/LRIS. KPNO-Tau 12 showed a spectral type of M9 and also showed strongHydrogen-alpha emission. At the time its mass was estimated to be around 0.02M (or 21MJ), which would make it a brown dwarf.[8] Since then several works found that it likely has a mass near or below thedeuterium-burning limit, which makes this object a low-mass brown dwarf or planetary-mass object (e.g. 14.6MJ,[3] 13.6MJ,[9] 6-7MJ,[4] 16.5MJ,[10]17.8+6.7
−4.6
MJ,[11]12.7+1.6
−1.8
MJ[6]).

A few other free-floating planetary-mass objects are known in the Taurus Clouds.[12][13] These include three other objects with possible disks around them.[13]

Atmosphere

[edit]

Observations with Keck/LRIS showed several absorption features. These aretitanium oxide,calcium hydride,vanadium oxide,sodium andpotassium.[8] A spectrum with Keck/NIRSPEC was interpreted to be consistent with very lowgravity. This is typical for young sources.[14] Several re-classifications of the spectral type were made over the years. In 2013 it was re-classified as a M9.25±0.5.[4] In 2018 it was re-classified as a L0.7±1.1, which could make this object an earlyL-dwarf.[5] A spectrum observed withVLT/SINFONI was published in 2022, estimating a spectral type of M9.8.[15]

Protoplanetary disk

[edit]

KPNO-Tau 12 showed strongest H-alpha emission in both the MMT and Keck optical spectra. It also showedhelium (He I) andcalcium (Ca II IR triplet) emission in the Keck spectrum, which are usually seen in stars that undergo intenseaccretion of material from a surroundingprotoplanetary disk.[8] Additionally a Keck infrared spectrum shows a prominent emission line (see figure 10 of their work), which is described asPaschen β at 1.28 μm in the appendix of the paper.[14] Paschen lines can be used as additional accretion indicators.[16] In 2010 two works used observations with theSpitzer Space Telescope. These two works first identifiedinfrared excess around KPNO-Tau 12 and classified it as a class II disk. A class II disk is composed of both a gaseous and a dusty part and belongs to the protoplanetary disks.[17][18] Observation with the Spitzer Infrared Spectrograph showed that thesilicate emission feature is likely missing.[19] The dust mass of the disk was estimated to be1.223 M🜨[10] or0.6–1.1 M🜨,[20] depending on the work. The total (gas+dust) mass was estimated to be0.66 MJ[11] or0.095 MJ,[21] depending on the work. The dust temperature was estimated to be7.0±13.8Kelvin and the dust grains are smaller than 27.5millimeters.[20]

KPNO-Tau-12's protoplanetary disk[20]
Disks
(in order from star/planet)
Periapsis
(AU)
Apoapsis
(AU)
InclinationMass
protoplanetary disk0.0036.4–95.525.50°–26.30°30[21]–210[11] M🜨

See also

[edit]

Other free-floating planetary-mass objects with disks:

Other planetary-mass objects with disks that bound to a star:

References

[edit]
  1. ^Roman, Nancy G. (1987)."Identification of a constellation from a position".Publications of the Astronomical Society of the Pacific.99 (617): 695.Bibcode:1987PASP...99..695R.doi:10.1086/132034. Constellation record for this object atVizieR.
  2. ^abVallenari, A.; et al. (Gaia collaboration) (2023)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy and Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.S2CID 244398875. Gaia DR3 record for this source atVizieR.
  3. ^abKraus, Adam L.; White, Russel J.; Hillenbrand, Lynne A. (September 2006). "Multiplicity and Optical Excess across the Substellar Boundary in Taurus".The Astrophysical Journal.649 (1):306–318.arXiv:astro-ph/0602449.Bibcode:2006ApJ...649..306K.doi:10.1086/503665.ISSN 0004-637X.
  4. ^abcCanty, J. I.; Lucas, P. W.; Roche, P. F.; Pinfield, D. J. (November 2013)."Towards precise ages and masses of Free Floating Planetary Mass Brown Dwarfs".Monthly Notices of the Royal Astronomical Society.435 (3):2650–2664.arXiv:1308.1296.Bibcode:2013MNRAS.435.2650C.doi:10.1093/mnras/stt1477.ISSN 0035-8711.
  5. ^abcdefZhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene A.; Aller, Kimberly M.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C. (May 2018)."The Pan-STARRS1 Proper-motion Survey for Young Brown Dwarfs in Nearby Star-forming Regions. I. Taurus Discoveries and a Reddening-free Classification Method for Ultracool Dwarfs".The Astrophysical Journal.858 (1): 41.arXiv:1804.01533.Bibcode:2018ApJ...858...41Z.doi:10.3847/1538-4357/aab269.ISSN 0004-637X.
  6. ^abcBryan, Marta L.; Ginzburg, Sivan; Chiang, Eugene; Morley, Caroline; Bowler, Brendan P.; Xuan, Jerry W.; Knutson, Heather A. (December 2020)."As the Worlds Turn: Constraining Spin Evolution in the Planetary-mass Regime".The Astrophysical Journal.905 (1): 37.arXiv:2010.07315.Bibcode:2020ApJ...905...37B.doi:10.3847/1538-4357/abc0ef.ISSN 0004-637X.
  7. ^Mohanty, Subhanjoy; Jayawardhana, Ray; Basri, Gibor (June 2005). "The T Tauri Phase Down to Nearly Planetary Masses: Echelle Spectra of 82 Very Low Mass Stars and Brown Dwarfs".The Astrophysical Journal.626 (1):498–522.arXiv:astro-ph/0502155.Bibcode:2005ApJ...626..498M.doi:10.1086/429794.ISSN 0004-637X.
  8. ^abcdLuhman, K. L.; Briceño, César; Stauffer, John R.; Hartmann, Lee; Barrado y Navascués, D.; Caldwell, Nelson (July 2003). "New Low-Mass Members of the Taurus Star-forming Region".The Astrophysical Journal.590 (1):348–356.arXiv:astro-ph/0304414.Bibcode:2003ApJ...590..348L.doi:10.1086/374983.ISSN 0004-637X.
  9. ^Kirk, Helen; Myers, Philip C. (February 2011). "Young Stellar Groups and Their Most Massive Stars".The Astrophysical Journal.727 (2): 64.arXiv:1011.1416.Bibcode:2011ApJ...727...64K.doi:10.1088/0004-637X/727/2/64.ISSN 0004-637X.
  10. ^abPascucci, I.; Testi, L.; Herczeg, G. J.; Long, F.; Manara, C. F.; Hendler, N.; Mulders, G. D.; Krijt, S.; Ciesla, F.; Henning, Th; Mohanty, S.; Drabek-Maunder, E.; Apai, D.; Szűcs, L.; Sacco, G. (November 2016)."A Steeper than Linear Disk Mass-Stellar Mass Scaling Relation".The Astrophysical Journal.831 (2): 125.arXiv:1608.03621.Bibcode:2016ApJ...831..125P.doi:10.3847/0004-637X/831/2/125.ISSN 0004-637X.
  11. ^abcAkeson, Rachel L.; Jensen, Eric L. N.; Carpenter, John; Ricci, Luca; Laos, Emily; Nogueira, Natasha F.; Suen-Lewis, Emma M. (February 2019)."Resolved Young Binary Systems and Their Disks".The Astrophysical Journal.872 (2): 158.arXiv:1901.05029.Bibcode:2019ApJ...872..158A.doi:10.3847/1538-4357/aaff6a.ISSN 0004-637X.
  12. ^Quanz, Sascha P.; Goldman, Bertrand; Henning, Thomas; Brandner, Wolfgang; Burrows, Adam; Hofstetter, Lorne W. (January 2010). "Search for Very Low-Mass Brown Dwarfs and Free-Floating Planetary-Mass Objects in Taurus".The Astrophysical Journal.708 (1):770–784.arXiv:0911.1925.Bibcode:2010ApJ...708..770Q.doi:10.1088/0004-637X/708/1/770.ISSN 0004-637X.
  13. ^abBest, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Aller, Kimberly M.; Zhang, Zhoujian; Kotson, Michael C.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Metcalfe, N.; Wainscoat, R. J. (March 2017)."A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius-Centaurus".The Astrophysical Journal.837 (1): 95.arXiv:1702.00789.Bibcode:2017ApJ...837...95B.doi:10.3847/1538-4357/aa5df0.ISSN 0004-637X.
  14. ^abMartin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.; Rice, Emily L.; Kirkpatrick, J. Davy; Burgasser, Adam J.; McGovern, Mark R.; Prato, Lisa (March 2017)."Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey".The Astrophysical Journal.838 (1): 73.arXiv:1703.03811.Bibcode:2017ApJ...838...73M.doi:10.3847/1538-4357/aa6338.ISSN 0004-637X.
  15. ^Almendros-Abad, V.; Mužić, K.; Moitinho, A.; Krone-Martins, A.; Kubiak, K. (2022-01-01). "Youth analysis of near-infrared spectra of young low-mass stars and brown dwarfs".Astronomy & Astrophysics.657: A129.arXiv:2110.06368.Bibcode:2022A&A...657A.129A.doi:10.1051/0004-6361/202142050.ISSN 0004-6361.
  16. ^Betti, S. K.; Follette, K. B.; Ward-Duong, K.; Aoyama, Y.; Marleau, G.-D.; Bary, J.; Robinson, C.; Janson, M.; Balmer, W.; Chauvin, G.; Palma-Bifani, P. (August 2022)."Near-infrared Accretion Signatures from the Circumbinary Planetary-mass Companion Delorme 1 (AB)b".The Astrophysical Journal.935 (1): L18.arXiv:2208.05016.Bibcode:2022ApJ...935L..18B.doi:10.3847/2041-8213/ac85ef.ISSN 0004-637X.
  17. ^Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N. (January 2010). "The Disk Population of the Taurus Star-Forming Region".The Astrophysical Journal Supplement Series.186 (1):111–174.arXiv:0911.5457.Bibcode:2010ApJS..186..111L.doi:10.1088/0067-0049/186/1/111.ISSN 0067-0049.
  18. ^Rebull, L. M.; Padgett, D. L.; McCabe, C.-E.; Hillenbrand, L. A.; Stapelfeldt, K. R.; Noriega-Crespo, A.; Carey, S. J.; Brooke, T.; Huard, T.; Terebey, S.; Audard, M.; Monin, J.-L.; Fukagawa, M.; Güdel, M.; Knapp, G. R. (February 2010). "The Taurus Spitzer Survey: New Candidate Taurus Members Selected Using Sensitive Mid-Infrared Photometry".The Astrophysical Journal Supplement Series.186 (2):259–307.arXiv:0911.3176.Bibcode:2010ApJS..186..259R.doi:10.1088/0067-0049/186/2/259.ISSN 0067-0049.
  19. ^Furlan, E.; Luhman, K. L.; Espaillat, C.; D'Alessio, P.; Adame, L.; Manoj, P.; Kim, K. H.; Watson, Dan M.; Forrest, W. J.; McClure, M. K.; Calvet, N.; Sargent, B. A.; Green, J. D.; Fischer, W. J. (July 2011). "The Spitzer Infrared Spectrograph Survey of T Tauri Stars in Taurus".The Astrophysical Journal Supplement Series.195 (1): 3.Bibcode:2011ApJS..195....3F.doi:10.1088/0067-0049/195/1/3.ISSN 0067-0049.
  20. ^abcBallering, Nicholas P.; Eisner, Josh A. (April 2019)."Protoplanetary Disk Masses from Radiative Transfer Modeling: A Case Study in Taurus".The Astronomical Journal.157 (4): 144.arXiv:1903.08283.Bibcode:2019AJ....157..144B.doi:10.3847/1538-3881/ab0a56.ISSN 0004-6256.
  21. ^abRilinger, Anneliese M.; Espaillat, Catherine C. (November 2021)."Disk Masses and Dust Evolution of Protoplanetary Disks around Brown Dwarfs".The Astrophysical Journal.921 (2): 182.arXiv:2106.05247.Bibcode:2021ApJ...921..182R.doi:10.3847/1538-4357/ac09e5.ISSN 0004-637X.
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Star
clusters
NGC
Other
Nebulae
NGC
Other
Galaxies
NGC
Other
Galaxy clusters
Astronomical events
Retrieved from "https://en.wikipedia.org/w/index.php?title=KPNO-Tau_12&oldid=1329889818"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp