Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

July 2047 lunar eclipse

From Wikipedia, the free encyclopedia
Central lunar eclipse
July 2047 lunar eclipse
Total eclipse
The Moon's hourly motion shown right to left
DateJuly 7, 2047
Gamma−0.0636
Magnitude1.7529
Saros cycle130 (36 of 72)
Totality100 minutes, 49 seconds
Partiality218 minutes, 31 seconds
Penumbral333 minutes, 27 seconds
Contacts (UTC)
P17:37:44
U18:44:58
U29:43:49
Greatest10:34:15
U311:24:39
U412:23:29
P413:21:01

A totallunar eclipse will occur at the Moon’sascending node of orbit on Sunday, July 7, 2047,[1] with an umbralmagnitude of 1.7529. It will be acentral lunar eclipse, in which part of theMoon will pass through thecenter of theEarth's shadow. A lunar eclipse occurs when theMoon moves into theEarth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike asolar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on thenight side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon'sshadow is smaller. Occurring about 3.4 days afterperigee (on July 4, 2047, at 0:55 UTC), the Moon's apparent diameter will be larger.[2]

Totality will last 100 minutes 49 seconds, the second longest for thisSaros series.

Visibility

[edit]

The eclipse will be completely visible over easternAustralia,Antarctica, and the central and easternPacific Ocean, seen rising overeast Asia and western Australia and setting overNorth andSouth America.[3]

Eclipse details

[edit]

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

July 7, 2047 Lunar Eclipse Parameters
ParameterValue
Penumbral Magnitude2.73257
Umbral Magnitude1.75293
Gamma−0.06362
Sun Right Ascension07h06m19.6s
Sun Declination+22°33'30.9"
Sun Semi-Diameter15'43.9"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension19h06m23.0s
Moon Declination-22°37'10.8"
Moon Semi-Diameter16'03.5"
Moon Equatorial Horizontal Parallax0°58'56.1"
ΔT83.5 s

Eclipse season

[edit]
See also:Eclipse cycle

This eclipse is part of aneclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by afortnight. The first and last eclipse in this sequence is separated by onesynodic month.

Eclipse season of June–July 2047
June 23
Descending node (new moon)
July 7
Ascending node (full moon)
July 22
Descending node (new moon)
Partial solar eclipse
Solar Saros 118
Total lunar eclipse
Lunar Saros 130
Partial solar eclipse
Solar Saros 156

Related eclipses

[edit]

Eclipses in 2047

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Lunar Saros 130

[edit]

Inex

[edit]

Triad

[edit]

Lunar eclipses of 2046–2049

[edit]

This eclipse is a member of asemester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternatingnodes of the Moon's orbit.[5]

The penumbral lunar eclipses onMay 17, 2049 andNovember 9, 2049 occur in the next lunar year eclipse set.

Lunar eclipse series sets from 2046 to 2049
Descending node Ascending node
SarosDate
Viewing
Type
Chart
GammaSarosDate
Viewing
Type
Chart
Gamma
1152046 Jan 22
Partial
0.98851202046 Jul 18
Partial
−0.8691
1252047 Jan 12
Total
0.33171302047 Jul 07
Total
−0.0636
1352048 Jan 01
Total
−0.37451402048 Jun 26
Partial
0.6796
1452048 Dec 20
Penumbral
−1.06241502049 Jun 15
Penumbral
1.4068

Saros 130

[edit]

This eclipse is a part ofSaros series 130, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 1416. It contains partial eclipses from September 4, 1560 throughApril 12, 1903; total eclipses fromApril 22, 1921 through September 11, 2155; and a second set of partial eclipses from September 21, 2173 through May 10, 2552. The series ends at member 71 as a penumbral eclipse on July 26, 2678.

The longest duration of totality will be produced by member 35 at 101 minutes, 53 seconds onJune 26, 2029. All eclipses in this series occur at the Moon’sascending node of orbit.[6]

GreatestFirst

The greatest eclipse of the series will occur on2029 Jun 26, lasting 101 minutes, 53 seconds.[7]
PenumbralPartialTotalCentral
1416 Jun 10
1560 Sep 04
1921 Apr 22
1975 May 25
Last
CentralTotalPartialPenumbral
2083 Jul 29
2155 Sep 11
2552 May 10
2678 Jul 26

Eclipses are tabulated in three columns; every third eclipse in the same column is oneexeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Series members 23–44 occur between 1801 and 2200:
232425
1813 Feb 151831 Feb 261849 Mar 09
262728
1867 Mar 201885 Mar 301903 Apr 12
293031
1921 Apr 221939 May 031957 May 13
323334
1975 May 251993 Jun 042011 Jun 15
353637
2029 Jun 262047 Jul 072065 Jul 17
383940
2083 Jul 292101 Aug 092119 Aug 20
414243
2137 Aug 302155 Sep 112173 Sep 21
44
2191 Oct 02

Tritos series

[edit]

This eclipse is a part of atritos cycle, repeating at alternating nodes every 135synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with theanomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1807 May 21
(Saros 108)
1818 Apr 21
(Saros 109)
1829 Mar 20
(Saros 110)
1840 Feb 17
(Saros 111)
1851 Jan 17
(Saros 112)
1861 Dec 17
(Saros 113)
1872 Nov 15
(Saros 114)
1883 Oct 16
(Saros 115)
1894 Sep 15
(Saros 116)
1905 Aug 15
(Saros 117)
1916 Jul 15
(Saros 118)
1927 Jun 15
(Saros 119)
1938 May 14
(Saros 120)
1949 Apr 13
(Saros 121)
1960 Mar 13
(Saros 122)
1971 Feb 10
(Saros 123)
1982 Jan 09
(Saros 124)
1992 Dec 09
(Saros 125)
2003 Nov 09
(Saros 126)
2014 Oct 08
(Saros 127)
2025 Sep 07
(Saros 128)
2036 Aug 07
(Saros 129)
2047 Jul 07
(Saros 130)
2058 Jun 06
(Saros 131)
2069 May 06
(Saros 132)
2080 Apr 04
(Saros 133)
2091 Mar 05
(Saros 134)
2102 Feb 03
(Saros 135)
2113 Jan 02
(Saros 136)
2123 Dec 03
(Saros 137)
2134 Nov 02
(Saros 138)
2145 Sep 30
(Saros 139)
2156 Aug 30
(Saros 140)
2167 Aug 01
(Saros 141)
2178 Jun 30
(Saros 142)
2189 May 29
(Saros 143)
2200 Apr 30
(Saros 144)

Inex series

[edit]

This eclipse is a part of the long periodinex cycle, repeating at alternating nodes, every 358synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with theanomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1815 Dec 16
(Saros 122)
1844 Nov 24
(Saros 123)
1873 Nov 04
(Saros 124)
1902 Oct 17
(Saros 125)
1931 Sep 26
(Saros 126)
1960 Sep 05
(Saros 127)
1989 Aug 17
(Saros 128)
2018 Jul 27
(Saros 129)
2047 Jul 07
(Saros 130)
2076 Jun 17
(Saros 131)
2105 May 28
(Saros 132)
2134 May 08
(Saros 133)
2163 Apr 19
(Saros 134)
2192 Mar 28
(Saros 135)

Half-Saros cycle

[edit]

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (ahalf saros).[8] This lunar eclipse is related to two annular solar eclipses ofSolar Saros 137.

July 2, 2038July 12, 2056

See also

[edit]

Notes

[edit]
  1. ^"July 6–7, 2047 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved11 December 2024.
  2. ^"Moon Distances for London, United Kingdom, England". timeanddate. Retrieved11 December 2024.
  3. ^"Total Lunar Eclipse of 2047 Jul 07"(PDF). NASA. Retrieved11 December 2024.
  4. ^"Total Lunar Eclipse of 2047 Jul 07". EclipseWise.com. Retrieved11 December 2024.
  5. ^van Gent, R.H."Solar- and Lunar-Eclipse Predictions from Antiquity to the Present".A Catalogue of Eclipse Cycles. Utrecht University. Retrieved6 October 2018.
  6. ^"NASA - Catalog of Lunar Eclipses of Saros 130".eclipse.gsfc.nasa.gov.
  7. ^Listing of Eclipses of series 130
  8. ^Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18,The half-saros

External links

[edit]
Lists of lunar eclipses
Lunar eclipses
by era
Lunar eclipses
bysaros series
August 2017 lunar eclipse
Partial eclipses
May 2022 lunar eclipse
Total eclipses
February 2017 lunar eclipse
Penumbral eclipses
Partial
Total
Related
  • Category
  • symbol denotes next eclipse in series
Retrieved from "https://en.wikipedia.org/w/index.php?title=July_2047_lunar_eclipse&oldid=1321551804"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp