Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of ytterbium

From Wikipedia, the free encyclopedia

Isotopes ofytterbium (70Yb)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
166Ybsynth56.7 hε166Tm
168Yb0.126%stable
169Ybsynth32.014 dε169Tm
170Yb3.02%stable
171Yb14.2%stable
172Yb21.8%stable
173Yb16.1%stable
174Yb31.9%stable
175Ybsynth4.185 dβ175Lu
176Yb12.9%stable
Standard atomic weightAr°(Yb)

Naturally occurringytterbium (70Yb) is composed of seven stableisotopes:[n 1]168Yb,170Yb–174Yb, and176Yb, with174Yb being the most abundant (31.90%natural abundance). 30radioisotopes have been characterized, with the most stable being169Yb with ahalf-life of 32.014 days,175Yb with a half-life of 4.185 days, and166Yb with a half-life of 56.7 hours. All of the remainingradioactive isotopes have half-lives that are less than 2 hours, with the majority of them being less than 20 minutes. This element also has 18meta states, with the most stable being169mYb (half-life 46 seconds).

The known isotopes of ytterbium range from149Yb to187Yb. The primarydecay mode before the most abundant stable isotope,174Yb iselectron capture givingthulium isotopes; the primary mode after isbeta emission givinglutetium isotopes. Of interest[why?] to modernquantum optics, the different ytterbium isotopes follow eitherBose–Einstein statistics orFermi–Dirac statistics, leading to different behavior inoptical lattices.

List of isotopes

[edit]


Nuclide
[n 2]
ZNIsotopic mass(Da)[4]
[n 3][n 4]
Half-life[1]
[n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity[1]
[n 5]
Natural abundance(mole fraction)
Excitation energy[n 5]Normal proportion[1]Range of variation
148Yb7078
149Yb7079148.96422(32)#0.7(2) sβ+, p148Er(1/2+)
β+ (rare)149Tm
150Yb7080149.95831(32)#700# ms [>200 ns]β+?150Tm0+
151Yb7081150.95540(32)1.6(5) sβ+151Tm(1/2+)
β+,p (rare)150Er
151m1Yb740(100)# keV1.6(5) sβ+151Tm(11/2−)
β+, p (rare)150Er
151m2Yb2630(141)# keV2.6(7) μsIT151Yb19/2−#
151m3Yb3287(141)# keV20(1) μsIT151Yb27/2−#
152Yb7082151.95033(16)3.03(6) sβ+152Tm0+
152mYb2744.5(10) keV30(1) μsIT152Yb(10+)
153Yb7083152.94937(22)#4.2(2) sβ+153Tm7/2−
β+, p (0.008%)152Er
153mYb2630(50)# keV15(1) μsIT153Yb27/2−
154Yb7084153.946396(19)0.409(2) sα (92.6%)150Er0+
β+ (7.4%)154Tm
155Yb7085154.945783(18)1.793(20) sα (89%)151Er(7/2−)
β+ (11%)155Tm
156Yb7086155.942817(10)26.1(7) sβ+ (90%)156Tm0+
α (10%)152Er
157Yb7087156.942651(12)38.6(10) sβ+157Tm7/2−
α (rare)153Er
158Yb7088157.939871(9)1.49(13) minβ+ (99.99%)158Tm0+
α (.0021%)154Er
159Yb7089158.940060(19)1.67(9) minβ+159Tm5/2−
160Yb7090159.937559(6)4.8(2) minβ+160Tm0+
161Yb7091160.937912(16)4.2(2) minβ+161Tm3/2−
162Yb7092161.935779(16)18.87(19) minβ+162Tm0+
163Yb7093162.936345(16)11.05(35) minβ+163Tm3/2−
164Yb7094163.934501(16)75.8(17) minEC164Tm0+
165Yb7095164.935270(28)9.9(3) minβ+165Tm5/2−
165mYb126.80(9) keV300(30) nsIT165Yb9/2+
166Yb7096165.933876(8)56.7(1) hEC166Tm0+
167Yb7097166.934954(4)17.5(2) minβ+167Tm5/2−
167mYb571.548(22) keV~180 nsIT167Yb11/2−
168Yb7098167.93389130(10)Observationally Stable[n 8]0+0.00123(3)
169Yb7099168.93518421(19)32.014(5) dEC169Tm7/2+
169mYb24.1999(16) keV46(2) sIT169Yb1/2−
170Yb70100169.934767243(11)Observationally Stable[n 9]0+0.02982(39)
170mYb1258.46(14) keV370(15) nsIT170Yb4−
171Yb70101170.936331515(14)Observationally Stable[n 10]1/2−0.14086(140)
171m1Yb95.282(2) keV5.25(24) msIT171Yb7/2+
171m2Yb122.416(2) keV265(20) nsIT171Yb5/2−
172Yb70102171.936386654(15)Observationally Stable[n 11]0+0.21686(130)
172mYb1550.43(6) keV3.6(1) μsIT172Yb6−
173Yb70103172.938216212(12)Observationally Stable[n 12]5/2−0.16103(63)
173mYb398.9(5) keV2.9(1) μsIT173Yb1/2−
174Yb70104173.938867546(12)Observationally Stable[n 13]0+0.32025(80)
174m1Yb1518.148(13) keV830(40) μsIT174Yb6+
174m2Yb1765.2(5) keV256(11) nsIT174Yb7−
175Yb70105174.94128191(8)4.185(1) dβ175Lu7/2−
175mYb514.866(4) keV68.2(3) msIT175Yb1/2−
176Yb70106175.942574706(16)Observationally Stable[n 14]0+0.12995(83)
176mYb1049.8(6) keV11.4(3) sIT176Yb8−
β (<10#%)176Lu
177Yb70107176.94526385(24)1.911(3) hβ177Lu9/2+
177mYb331.5(3) keV6.41(2) sIT177Yb1/2−
178Yb70108177.946669(7)74(3) minβ178Lu0+
179Yb70109178.94993(22)#8.0(4) minβ179Lu(1/2−)
180Yb70110179.95199(32)#2.4(5) minβ180Lu0+
181Yb70111180.95589(32)#1# min [>300 ns]β?181Lu3/2−#
182Yb70112181.95824(43)#30# s [>300 ns]β?182Lu0+
183Yb70113182.96243(43)#30# s [>300 ns]β?183Lu3/2−#
184Yb70114183.96500(54)#7# s [>300 ns]β?184Lu0+
185Yb70115184.96943(54)#5# s [>300 ns]β?185Lu9/2−#
186Yb[5]701160+
187Yb[5]70117
This table header & footer:
  1. ^However, all seven of the isotopes areobservationally stable, meaning that they are predicted to be radioactive but decay has not been observed yet.
  2. ^mYb – Excitednuclear isomer.
  3. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  4. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  5. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^Believed to undergo α decay to164Er or β+β+ decay to168Er with ahalf-life over 130×1012 years
  9. ^Believed to undergo α decay to166Er
  10. ^Believed to undergo α decay to167Er
  11. ^Believed to undergo α decay to168Er
  12. ^Believed to undergo α decay to169Er
  13. ^Believed to undergo α decay to170Er
  14. ^Believed to undergo α decay to172Er or ββ decay to176Hf with a half-life over 160×1015 years

See also

[edit]

Daughter products other than ytterbium

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Ytterbium".CIAAW. 2015.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  5. ^abTarasov, O. B.; Gade, A.; Fukushima, K.; et al. (2024). "Observation of New Isotopes in the Fragmentation of198Pt at FRIB".Physical Review Letters.132 (72501) 072501.Bibcode:2024PhRvL.132g2501T.doi:10.1103/PhysRevLett.132.072501.OSTI 2309727.PMID 38427880.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_ytterbium&oldid=1314496551"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp