Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of xenon

From Wikipedia, the free encyclopedia

Isotopes ofxenon (54Xe)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
124Xe0.095%1.1×1022 y[2]εε124Te
125Xesynth16.87 hβ+125I
126Xe0.089%stable
127Xesynth36.342 dε127I
128Xe1.91%stable
129Xe26.4%stable
130Xe4.07%stable
131Xe21.2%stable
132Xe26.9%stable
133Xesynth5.2474 dβ133Cs
134Xe10.4%stable
135Xesynth9.14 hβ135Cs
136Xe8.86%2.18×1021 yββ136Ba
Standard atomic weightAr°(Xe)

Naturally occurringxenon (54Xe) consists of nine isotopes: sevenstableisotopes and two very long-livedradioactive isotopes:double electron capture has been observed in124Xe (half-life 1.1 ± 0.2stat ± 0.1sys×1022 years),[2] anddouble beta decay in136Xe (half-life2.18×1021 years), which are among the longest measured half-lives of all nuclides. The isotopes126Xe and134Xe are also predicted to undergo double beta decay, but they are considered to be stable until the decay processes are actually observed.[5][6] Artificialunstable isotopes have been prepared from108Xe to150Xe, the longest-lived of which is127Xe with ahalf-life of 36.342 days. All other nuclides have half-lives less than 12 days, most less than one hour. The shortest-lived isotope,108Xe,[7] has a half-life of 58 μs, and is the heaviest known nuclide with equal numbers of protons and neutrons. Of known isomers, the longest-lived is131mXe with a half-life of 11.95 days, the second longest of all xenon's nuclides.

129Xe is produced bybeta decay of natural or artificial129I (half-life 16.1 million years);131mXe,133Xe,133mXe, and135Xe are some of thefission products of both235U and239Pu, so are used as indicators ofnuclear explosions.

The artificial isotope135Xe is of considerable significance in the operation ofnuclear fission reactors.135Xe has a hugecross section forthermal neutrons, 2.65 millionbarns, so it acts as aneutron absorber or "poison" that canslow or stop the chain reaction after a period of operation. This was discovered in theearliest nuclear reactors built by the AmericanManhattan Project forplutonium production. Because of this effect, designers must make provisions to increase the reactor'sreactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel) over the initial value needed to start the chain reaction. For the same reason, the xenon fission products produced in anuclear explosion and a power plant differ significantly as a large share of135
Xe
will absorb neutrons in a steady state reactor, while in a bomb it can be assumed that none of the135
I
will have had time to decay to xenon before the explosion disperses it, removing it from theneutron radiation.

Relatively high concentrations of radioactive xenon isotopes are also found emanating from nuclear reactors due to the release of this fission gas from crackedfuel rods or fissioning of uranium in cooling water.[citation needed] The concentrations of these isotopes are still usually low compared to the naturally occurring radioactivenoble gas222Rn.

Because xenon is atracer for twoparent isotopes, Xeisotope ratios inmeteorites are a powerful tool for studying theformation of the Solar System. TheI-Xe method ofdating gives the time elapsed betweennucleosynthesis and the condensation of a solid object from thesolar nebula (xenon being a gas, only that part of it that formed after condensation will be present inside the object). Xenon isotopes are also a powerful tool for understandingterrestrial differentiation. Excess129Xe found incarbon dioxide well gases fromNew Mexico was believed to be from the decay ofmantle-derived gases soon after Earth's formation.[8] It has been suggested[clarification needed] that the isotopic composition of atmospheric xenon fluctuated prior to theGOE before stabilizing, perhaps as a result of the rise in atmospheric O2.[9]

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[10]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 8]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
108Xe[n 9]5454107.95423(41)72(35) μsα104Te0+
109Xe5455108.95076(32)#[11]13(2) msα105Te(7/2+)
110Xe5456109.94426(11)93(3) msα (64%)106Te0+
β+ (36%)110I
111Xe5457110.941460(64)[11]740(200) msβ+ (89.6%)111I5/2+#
α (10.4%)107Te
112Xe5458111.9355591(89)2.7(8) sβ+ (98.8%)112I0+
α (1.2%)108Te
113Xe5459112.9332217(73)2.74(8) sβ+ (92.98%)113I5/2+#
β+,p (7%)112Te
α (?%)109Te
β+, α (~0.007%)109Sb
113mXe403.6(14) keV6.9(3) μsIT113Xe(11/2−)
114Xe5460113.927980(12)10.0(4) sβ+114I0+
115Xe5461114.926294(13)18(3) sβ+ (99.66%)115I(5/2+)
β+, p (0.34%)114Te
116Xe5462115.921581(14)59(2) sβ+116I0+
117Xe5463116.920359(11)61(2) sβ+117I5/2+
β+, p (0.0029%)116Te
118Xe5464117.916179(11)3.8(9) minβ+118I0+
119Xe5465118.915411(11)5.8(3) minβ+ (79%)119I5/2+
EC (21%)119I
120Xe5466119.911784(13)46.0(6) minβ+120I0+
121Xe5467120.911453(11)40.1(20) minβ+121I5/2+
122Xe5468121.908368(12)20.1(1) hEC122I0+
123Xe5469122.908482(10)2.08(2) hβ+123I1/2+
123mXe185.18(11) keV5.49(26) μsIT123Xe7/2−
124Xe[n 10]5470123.9058852(15)1.1(2)×1022 y[2]Double EC124Te0+9.5(5)×10−4
125Xe5471124.9063876(15)16.87(8) hEC / β+125I1/2+
125m1Xe252.61(14) keV56.9(9) sIT125Xe9/2−
125m2Xe295.89(15) keV0.14(3) μsIT125Xe7/2+
126Xe5472125.904297422(6)Observationally Stable[n 11]0+8.9(3)×10−4
127Xe5473126.9051836(44)36.342(3) dEC127I1/2+
127mXe297.10(8) keV69.2(9) sIT127Xe9/2−
128Xe5474127.9035307534(56)Stable0+0.01910(13)
128mXe2787.2(3) keV83(2) nsIT128Xe8−
129Xe[n 12]5475128.9047808574(54)Stable1/2+0.26401(138)
129mXe236.14(3) keV8.88(2) dIT129Xe11/2−
130Xe5476129.903509346(10)Stable0+0.04071(22)
131Xe[n 13]5477130.9050841281(55)Stable3/2+0.21232(51)
131mXe[n 13]163.930(8) keV11.948(12) dIT131Xe11/2−
132Xe[n 13]5478131.9041550835(54)Stable0+0.26909(55)
132mXe2752.21(17) keV8.39(11) msIT132Xe(10+)
133Xe[n 13][n 14]5479132.9059107(26)5.2474(5) dβ133Cs3/2+
133m1Xe[n 13]233.221(15) keV2.198(13) dIT133Xe11/2−
133m2Xe2147(20)# keV8.64(13) msIT133Xe(23/2+)
134Xe[n 13]5480133.905393030(6)Observationally Stable[n 15]0+0.10436(35)
134m1Xe1965.5(5) keV290(17) msIT134Xe7−
134m2Xe3025.2(15) keV5(1) μsIT134Xe(10+)
135Xe[n 16]5481134.9072314(39)9.14(2) hβ135Cs3/2+
135mXe[n 13]526.551(13) keV15.29(5) minIT (99.70%)135Xe11/2−
β (0.30%)135Cs
136Xe[n 13][n 10]5482135.907214474(7)2.18(5)×1021 yββ136Ba0+0.08857(72)
136mXe1891.74(7) keV2.92(3) μsIT136Xe6+
137Xe5483136.91155777(11)3.818(13) minβ137Cs7/2−
138Xe5484137.9141463(30)14.14(7) minβ138Cs0+
139Xe5485138.9187922(23)39.68(14) sβ139Cs3/2−
140Xe5486139.9216458(25)13.60(10) sβ140Cs0+
141Xe5487140.9267872(31)1.73(1) sβ (99.96%)141Cs5/2−
β,n (0.044%)140Cs
142Xe5488141.9299731(29)1.23(2) sβ (99.63%)142Cs0+
β, n (0.37%)141Cs
143Xe5489142.9353696(50)511(6) msβ (99.00%)143Cs5/2−
β, n (1.00%)142Cs
144Xe5490143.9389451(57)0.388(7) sβ (97.0%)144Cs0+
β, n (3.0%)143Cs
145Xe5491144.944720(12)188(4) msβ (95.0%)145Cs3/2−#
β, n (5.0%)144Cs
146Xe5492145.948518(26)146(6) msβ146Cs0+
β, n (6.9%)145Cs
147Xe5493146.95448(22)#88(14) msβ (>92%)147Cs3/2−#
β, n (<8%)146Cs
148Xe5494147.95851(32)#85(15) msβ148Cs0+
149Xe5495148.96457(32)#50# ms
[>550 ms]
3/2−#
150Xe5496149.96888(32)#40# ms
[>550 ns]
0+
This table header & footer:
  1. ^mXe – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^Heaviest known isotope with equal numbers of protons and neutrons
  10. ^abPrimordialradionuclide
  11. ^Theoretically capable of 2EC decay to126Te
  12. ^Used in a method ofradiodating groundwater and to infer certain events in the Solar System's history
  13. ^abcdefghFission product
  14. ^Hasmedical uses
  15. ^Theoretically capable of ββ decay to134Ba with a half-life over2.8×1022 years[6]
  16. ^Most powerful knownneutron absorber, produced in nuclear power plants as adecay product of135I, itself a decay product of135Te, afission product. Normally absorbs neutrons in the highneutron flux environments to become136Xe; seeiodine pit for more information
  • The isotopic composition refers to that in air.

Xenon-124

[edit]

Xenon-124 is an isotope of xenon that undergoes double electron capture totellurium-124 with a very long half-life of1.1×1022 years, approximately 12 orders of magnitude longer than the age of the universe. This decay was observed in theXENON1T detector in 2019, and is the slowest one ever directly observed.[12] (Even slower decays of other nuclei have been measured, but by detecting decay products that have accumulated over billions of years rather than observing them directly.[13])

Xenon-129

[edit]
MRI with inhaled Xe-129 shows improved ventilation over[14] time. H(grayscale)+129Xe MRI (cyan) slices at day 0, day 28, 1-y and 2.5-y follow-up, Anti-IL-5Rα (benralizumab)-treatedEosinophilic Asthma

Xenon-129 is a stable nuclide that isinhaled to assess pulmonary function, and to image thelungs by xenon NMR (see image).

Xenon-133

[edit]

Xenon-133 is a radioisotope of xenon,beta decaying to stablecaesium-133 with half-life 5.2474 days.Sold as a drug under the brand nameXeneisol, (ATC codeV09EX03 (WHO)) it isinhaled to assess pulmonary function, and to image thelungs.[15] It is also used to image blood flow, particularly in thebrain.[16]133Xe is afission product produced by fission ofuranium-235.[17] It is discharged to the atmosphere in small quantities by some nuclear power plants.[18]

Xenon-135

[edit]
Main article:Xenon-135

Xenon-135 is aradioactive isotope ofxenon, produced as afission product of uranium. It has ahalf-life of 9.14 hours and is the most powerful knownneutron-absorbingnuclear poison (having aneutron absorption cross-section of about 2 millionbarns[19]). The overallyield of xenon-135 from fission is 6.3%, without considering any loss by neutron capture. Xe-135 exerts a significant effect onnuclear reactor operation (xenon pit). It is discharged to the atmosphere in small quantities by some nuclear power plants.[18]

Xenon-136

[edit]

Xenon-136 is an isotope of xenon that undergoesdouble beta decay tobarium-136 with a very long half-life of2.18×1021 years, approximately 11 orders of magnitude longer than the age of the universe. It is being used in theEnriched Xenon Observatory experiment to search forneutrinoless double beta decay.

See also

[edit]

Daughter products other than xenon

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^abcAprile, E.; Abe, K.; Agostini, F.; et al. (26 August 2022). "Double-weak decays of Xe 124 and Xe 136 in the XENON1T and XENONnT experiments".Physical Review C.106 (2).doi:10.1103/PhysRevC.106.024328.
  3. ^"Standard Atomic Weights: Xenon".CIAAW. 1999.
  4. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  5. ^Barros, N.; Thurn, J.; Zuber, K. (2014). "Double beta decay searches of134Xe,126Xe, and124Xe with large scale Xe detectors".Journal of Physics G.41 (11): 115105–1–115105–12.arXiv:1409.8308.Bibcode:2014JPhG...41k5105B.doi:10.1088/0954-3899/41/11/115105.S2CID 116264328.
  6. ^abYan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of134Xe with the PandaX-4T experiment".Physical Review Letters.132 (152502) 152502.arXiv:2312.15632.Bibcode:2024PhRvL.132o2502Y.doi:10.1103/PhysRevLett.132.152502.
  7. ^Auranen, K.; et al. (2018)."Superallowed α decay to doubly magic100Sn"(PDF).Physical Review Letters.121 (18) 182501.Bibcode:2018PhRvL.121r2501A.doi:10.1103/PhysRevLett.121.182501.PMID 30444390.
  8. ^Boulos, M. S.; Manuel, O. K. (1971). "The xenon record of extinct radioactivities in the Earth".Science.174 (4016):1334–1336.Bibcode:1971Sci...174.1334B.doi:10.1126/science.174.4016.1334.PMID 17801897.S2CID 28159702.
  9. ^Ardoin, L.; Broadley, M.W.; Almayrac, M.; Avice, G.; Byrne, D.J.; Tarantola, A.; Lepland, A.; Saito, T.; Komiya, T.; Shibuya, T.; Marty, B. (2022)."The end of the isotopic evolution of atmospheric xenon".Geochemical Perspectives Letters.20:43–47.Bibcode:2022GChPL..20...43A.doi:10.7185/geochemlet.2207.hdl:2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/342396.S2CID 247399987.
  10. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  11. ^abNies, L.; Atanasov, D.; Athanasakis-Kaklamanakis, M.; Au, M.; Bernerd, C.; Blaum, K.; Chrysalidis, K.; Fischer, P.; Heinke, R.; Klink, C.; Lange, D.; Lunney, D.; Manea, V.; Marsh, B. A.; Müller, M.; Mougeot, M.; Naimi, S.; Schweiger, Ch.; Schweikhard, L.; Wienholtz, F. (9 January 2025)."Refining the nuclear mass surface with the mass of Sn 103".Physical Review C.111 (1).doi:10.1103/PhysRevC.111.014315.
  12. ^David Nield (26 Apr 2019)."A Dark Matter Detector Just Recorded One of The Rarest Events Known to Science".
  13. ^Hennecke, Edward W.; Manuel, O. K.; Sabu, Dwarka D. (1975)."Double beta decay of Te 128".Physical Review C.11 (4):1378–1384.doi:10.1103/PhysRevC.11.1378.
  14. ^"Xenon Xe-129".
  15. ^Jones, R. L.; Sproule, B. J.; Overton, T. R. (1978). "Measurement of regional ventilation and lung perfusion with Xe-133".Journal of Nuclear Medicine.19 (10):1187–1188.PMID 722337.
  16. ^Hoshi, H.; Jinnouchi, S.; Watanabe, K.; Onishi, T.; Uwada, O.; Nakano, S.; Kinoshita, K. (1987). "Cerebral blood flow imaging in patients with brain tumor and arterio-venous malformation using Tc-99m hexamethylpropylene-amine oxime--a comparison with Xe-133 and IMP".Kaku Igaku.24 (11):1617–1623.PMID 3502279.
  17. ^Tachimori, Syoichi; Amano, Hiroshi (November 1974)."Preliminary Study on Production of Xenon-133 from Neutron-Irradiated Uranium Metal and Oxides by Oxidation".Journal of NUCLEAR SCIENCE and TECHNOLOGY.11 (11):488–494.Bibcode:1974JNST...11..488T.doi:10.1080/18811248.1974.9730699. Retrieved5 May 2025.
  18. ^abEffluent Releases from Nuclear Power Plants and Fuel-Cycle Facilities. National Academies Press (US). 2012-03-29.
  19. ^"Livechart - Table of Nuclides - Nuclear structure and decay data".
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_xenon&oldid=1323849852"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp