Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of thallium

From Wikipedia, the free encyclopedia

Isotopes ofthallium (81Tl)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
201Tlsynth3.0421 dε201Hg
202Tlsynth12.31 dβ+202Hg
203Tl29.5%stable
204Tlsynth3.78 yβ204Pb
ε204Hg
205Tl70.5%stable
Standard atomic weightAr°(Tl)

The only stable isotopes of thallium (81Tl) are203Tl and205Tl, which make up all natural thallium. The five short-lived isotopes206Tl through210Tl also occur in nature, but only as part of the naturaldecay chains of heavier elements. Synthetic radioisotopes are known from176Tl to217Tl; the most stable is204Tl with ahalf-life of 3.78 years, followed by202Tl (half-life 12.31 days) and201Tl (half-life 3.0421 days). The naturally-occurring radioisotopes live minutes only, with the longest being207Tl, with a half-life of 4.77 minutes. All isotopes of thallium are either radioactive orobservationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

The isotope204Tl is made by theneutron activation of stable thallium in anuclear reactor.[4] while202Tl can be made in a cyclotron[5] as can201Tl (see section below).

In the fully ionized state, the isotope205Tl81+ becomes unstable, undergoingbound-state β decay to205Pb81+ with a half-life of291+33
−27
days,[6][7] but203Tl remains stable.

205Tl is the decay product ofbismuth-209, an isotope that was once thought to be stable but is now known to undergoalpha decay with an extremely long half-life of 2.01×1019 y.[8] Thus205Tl is now placed at the end of theneptunium decay chain.

Theneptuniumdecay chain, ending at205Tl.

List of isotopes

[edit]


Nuclide
[n 1]
Historic
name
ZNIsotopic mass(Da)[9]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance(mole fraction)
Excitation energy[n 4]Normal proportion[1]Range of variation
176Tl[10]8195176.000628(89)2.4+1.6
−0.7
 ms
p (50%)175Hg(3−,4−)
α (50%)172Au
176mTl671 keV290+200
−80
 μs
p (50%)175Hg
α (50%)172mAu
177Tl8196176.996414(23)18(5) msα (73%)173Au(1/2+)
p (27%)176Hg
177mTl807(18) keV230(40) μsp (51%)176Hg(11/2−)
α (49%)173Au
178Tl8197177.99505(11)#255(9) msα (62%)174Au(4-,5-)
β+ (38%)178Hg
β+,SF (0.15%)(various)
179Tl8198178.991122(41)437(9) msα (60%)175Au1/2+
β+ (40%)179Hg
179m1Tl825(10)# keV1.41(2) msα175Au(11/2−)
179m2Tl904.5(9) keV119(14) nsIT179Tl(9/2−)
180Tl8199179.989919(75)1.09(1) sβ+ (93%)180Hg(4-)
α (7%)176Au
β+, SF (0.0032%)(various)
181Tl81100180.9862600(98)2.9(1) sβ+ (91.4%)181Hg1/2+
α (8.6%)177Au
181mTl835.9(4) keV1.40(3) msIT (99.60%)181Tl(9/2−)
α (0.40%)177Au
182Tl81101181.985693(13)1.9(1) sβ+ (<99.41%)182Hg(4−)
α (>0.49%)178Au
β+, SF (<3.4×10−6%)182Hg
182mTl[n 8]50(50)# keV3.1(10) sβ+ (97.5%)182Hg(7+)
α (2.5%)178Au
183Tl81102182.982193(10)6.9(7) sβ+ (?%)183Hg1/2+
α (?%)179Au
183m1Tl628.7(5) keV53.3(3) msIT (?%)183Tl(9/2−)
α (1.5%)179Au
β+ (?%)183Hg
183m2Tl975.3(6) keV1.48(10) μsIT183Tl(13/2+)
184Tl81103183.981875(11)9.5(2) sβ+ (98.78%)184Hg2−
α (1.22%)180Au
184m1Tl[n 8]−50(30) keV10.6(5) sβ+ (99.53%)184Hg(7+)
α (0.47%)180Au
184m2Tl450(30) keV47.1(7) msIT (99.91%)(10−)
α (0.089%)180Au
185Tl81104184.978789(22)19.5(5) sβ+185Hg1/2+
185mTl454.8(15) keV1.93(8) sIT185Tl9/2−
α (?%)181Au
186Tl81105185.978655(22)3.5(5) sβ+ (?%)186Hg(2−)
α (?%)182Au
186m1Tl[n 8]20(40) keV27.5(10) sβ+ (99.99%)186Hg7+
α (0.006%)182Au
186m2Tl390(40) keV3.40(9) sIT (<94.1%)186Tl10−
β+ (>5.9%)186Hg
187Tl81106186.9759047(86)~51 sβ+187Hg1/2+
187m1Tl334(3) keV15.60(12) sβ+ (?%)187Hg9/2−
IT (?%)187Tl
α (0.15%)183Au
187m2Tl1875(50)# keV1.11(7) μsIT187Tl
187m3Tl2582.5(3) keV693(38) nsIT187Tl29/2+#
188Tl81107187.976021(32)71(2) sβ+188Hg2−#
188m1Tl[n 8]30(30) keV71.5(15) sβ+188Hg7+
188m2Tl299(30) keV41(4) msIT188Tl9−
189Tl81108188.9735735(90)2.3(2) minβ+189Hg1/2+
189mTl285(6) keV1.4(1) minβ+189Hg9/2−
190Tl81109189.9738418(78)2.6(3) minβ+190Hg2−
190m1Tl70(7) keV3.6(3) minβ+190Hg7+
190m2Tl306(10) keV60# msIT190Tl(9−)
191Tl81110190.9717841(79)20# minβ+191Hg1/2+
191mTl297(7) keV5.22(16) minβ+191Hg9/2−
192Tl81111191.972225(34)9.6(4) minβ+192Hg2−
192m1Tl196(7) keV10.8(2) minβ+192Hg7+
192m2Tl447(7) keV296(5) nsIT192Tl(8−)
192m3Tl180(40) keVα188Au(3+)
193Tl81112192.9705020(72)21.6(8) minβ+193Hg1/2+
193mTl372(4) keV2.11(15) minIT (~75%)193Tl9/2−
β+ (~25%)193Hg
194Tl81113193.971081(15)33.0(5) minβ+194Hg2−
194mTl260(14) keV32.8(2) minβ+194Hg7+
195Tl81114194.969774(12)1.16(5) hβ+195Hg1/2+
195mTl482.63(17) keV3.6(4) sIT195Tl9/2−
196Tl81115195.970481(13)1.84(3) hβ+196Hg2−
196mTl394.2(5) keV1.41(2) hβ+ (96.2%)196Hg7+
IT (3.8%)196Tl
197Tl81116196.969560(15)2.84(4) hβ+197Hg1/2+
197mTl608.22(8) keV540(10) msIT197Tl9/2−
198Tl81117197.9704467(81)5.3(5) hβ+198Hg2−
198m1Tl543.6(4) keV1.87(3) hβ+ (55.9%)198Hg7+
IT (44.1%)198Tl
198m2Tl686.8(5) keV150(40) nsIT198Tl(5)+
198m3Tl742.4(4) keV32.1(10) msIT198Tl10−
199Tl81118198.969877(30)7.42(8) hβ+199Hg1/2+
199mTl748.87(6) keV28.4(2) msIT199Tl9/2−
200Tl81119199.9709636(62)26.1(1) hβ+200Hg2−
200m1Tl753.60(24) keV34.0(9) msIT200Tl7+
200m2Tl762.00(24) keV397(17) nsIT200Tl5+
201Tl[n 9]81120200.970820(15)3.0421(8) dEC201Hg1/2+
201mTl919.16(21) keV2.01(7) msIT201Tl9/2−
202Tl81121201.9721089(20)12.31(8) dEC202Hg2−
202mTl950.19(10) keV591(3) μsIT202Tl7+
203Tl81122202.9723441(13)Observationally Stable[n 10]1/2+0.29515(44)
203m1Tl1483.7(9) keV<1 μsIT203Tl(9/2−)
203m2Tl3565(50)# keV7.7(5) μsIT203Tl(25/2+)
204Tl81123203.9738634(12)3.783(12) yβ (97.08%)204Pb2−
EC (2.92%)204Hg
204m1Tl1104.1(2) keV61.7(10) μsIT204Tl7+
204m2Tl2319.0(3) keV2.6(2) μsIT204Tl12−
204m3Tl4391.6(5) keV420(30) nsIT204Tl18+
204m4Tl6239.4(5) keV90(3) nsIT204Tl22−
205Tl[n 11]81124204.9744273(13)Observationally Stable[n 12][n 13]1/2+0.70485(44)
205m1Tl3290.61(17) keV2.6(2) μsIT205Tl25/2+
205m2Tl4835.6(15) keV235(10) nsIT205Tl(35/2–)
206TlRadium E"81125205.9761101(14)4.202(11) minβ206Pb0−Trace[n 14]
206mTl2643.10(18) keV3.74(3) minIT206Tl(12)–
207TlActinium C"81126206.9774186(58)4.77(2) minβ207Pb1/2+Trace[n 15]
207mTl1348.18(16) keV1.33(11) sIT207Tl11/2–
208TlThorium C"81127207.9820180(20)3.053(4) minβ208Pb5+Trace[n 16]
208mTl1807(1) keV1.3(1) μsIT208Tl(0–)
209Tl81128208.9853517(66)2.162(7) minβ209Pb1/2+Trace[n 17]
209mTl1228.1(20) keV146(10) nsIT209Tl17/2+
210TlRadium C″81129209.990073(12)1.30(3) minβ (99.99%)210Pb5+#Trace[n 14]
β,n (0.009%)209Pb
210mTl1200(200)# keV1# min
[>3 μs]
(9+,10+)
211Tl81130210.993475(45)81(16) sβ (97.8%)211Pb1/2+
β, n (2.2%)210Pb
211mTl1244(100)# keV580(80) nsIT211Tl17/2+#
212Tl81131211.99834(22)#31(8) sβ (98.2%)212Pb(5+)
β, n (1.8%)211Pb
213Tl81132213.001915(29)23.8(44) sβ (92.4%)213Pb1/2+#
β, n (7.6%)212Pb
213m1Tl680(300)# keV4.1(5) μsIT213Tl
213m2Tl1250(100)# keV0.6(3) μsIT213Tl17/2+#
214Tl81133214.00694(21)#11.0(24) sβ (66%)214Pb5+#
β, n (34%)213Pb
215Tl81134215.01077(32)#9.7(38) sβ (95.4%)215Pb1/2+#
β, n (4.6%)214Pb
216Tl81135216.01596(32)#5.9(33) sβ (>88.5%)216Pb5+#
β, n (<11.5%)215Pb
217Tl81136217.02003(43)#2# s
[>300 ns]
1/2+#
This table header & footer:
  1. ^mTl – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    α:Alpha decay
    β+:Positron emission
    EC:Electron capture
    β:Beta decay
    IT:Isomeric transition
    SF:Spontaneous fission
    n:Neutron emission
    p:Proton emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^abcdOrder of ground state and isomer is uncertain.
  9. ^Main isotope used inscintigraphy
  10. ^Believed to undergo α decay to199Au
  11. ^Final decay product of 4n+1decay chain (theNeptunium series)
  12. ^Believed to undergo α decay to201Au
  13. ^Can undergobound-state β decay to205Pb81+ with a half-life of291+33
    −27
    days when fullyionized[7]
  14. ^abIntermediatedecay product of238U
  15. ^Intermediatedecay product of235U
  16. ^Intermediatedecay product of232Th
  17. ^Intermediate decay product of237Np

Thallium-201

[edit]

Thallium-201 (201Tl) is asynthetic radioisotope of thallium. It has a half-life of 3.0421 days and decays by electron capture, emitting photons consisting mainly of K X-rays (~70–80 keV), and gammas of 135 and 167 keV (the latter stronger, emitted in 10% of decays).[11] Thallium-201 is synthesized by theneutron activation of stable thallium in anuclear reactor,[12] or by the203Tl(p, 3n)201Pb nuclear reaction incyclotrons, as201Pb then decays to201Tl.[13] It is aradiopharmaceutical, as it has fair imaging characteristics without excessive patient radiation dose. It was the most popular isotope used for nuclearcardiac stress tests.[14]

This nuclide has largely been replaced bytechnetium-99m, which has a shorter half-life (6 hours instead of 3 days) and a single high-energy photon peak (140 keV), which is better for imaging than the 3 energy peaks of thallium-201. Thallium-201 is now mostly used for myocardial viability studies. It will redistribute in body tissues, whereas Tc will not; Tl is taken up by the cardiac muscle via Na+/K+ pumps. Delayed imaging will show uptake in damaged but still living myocardial cells, which would appear as a scar with Tc orRb-82.

See also

[edit]

Daughter products other than thallium

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Thallium".CIAAW. 2009.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Manual for reactor produced radioisotopes from theInternational Atomic Energy Agency
  5. ^"Thallium Research".doe.gov.Department of Energy. Archived fromthe original on 2006-12-09. Retrieved23 March 2018.
  6. ^"Bound-state beta decay of highly ionized atoms"(PDF). Archived fromthe original(PDF) on October 29, 2013. RetrievedJune 9, 2013.
  7. ^abBai, M.; Blaum, K.; Boev, B.; Bosch, F.; Brandau, C.; Cvetković, V.; Dickel, T.; Dillmann, I.; Dmytriiev, D.; Faestermann, T.; Forstner, O.; Franczak, B.; Geissel, H.; Gernhäuser, R.; Glorius, J.; Griffin, C. J.; Gumberidze, A.; Haettner, E.; Hillenbrand, P.-M.; Kienle, P.; Korten, W.; Kozhuharov, Ch.; Kuzminchuk, N.; Langanke, K.; Litvinov, S.; Menz, E.; Morgenroth, T.; Nociforo, C.; Nolden, F.; Pavićević, M. K.; Petridis, N.; Popp, U.; Purushothaman, S.; Reifarth, R.; Sanjari, M. S.; Scheidenberger, C.; Spillmann, U.; Steck, M.; Stöhlker, Th.; Tanaka, Y. K.; Trassinelli, M.; Trotsenko, S.; Varga, L.; Wang, M.; Weick, H.; Woods, P. J.; Yamaguchi, T.; Zhang, Y. H.; Zhao, J.; Zuber, K.; et al. (E121 Collaboration and LOREX Collaboration) (2 December 2024)."Bound-State Beta Decay of205Tl81+ Ions and the LOREX Project".Physical Review Letters.133 (23) 232701. American Physical Society.arXiv:2501.06029.doi:10.1103/PhysRevLett.133.232701.PMID 39714665.
  8. ^Marcillac, P.; Coron, N.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth".Nature.422 (6934):876–878.Bibcode:2003Natur.422..876D.doi:10.1038/nature01541.PMID 12712201.S2CID 4415582.
  9. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  10. ^Al-Aqeel, Muneerah Abdullah M."Decay Spectroscopy of the Thallium Isotopes 176,177Tl". University of Liverpool.ProQuest 2447566201. Retrieved21 June 2023.
  11. ^National Nuclear Data Center."NuDat 3.0 database".Brookhaven National Laboratory.
  12. ^"Manual for reactor produced radioisotopes"(PDF).International Atomic Energy Agency. 2003.Archived(PDF) from the original on 2011-05-21. Retrieved2010-05-13.
  13. ^Cyclotron Produced Radionuclides: Principles and Practice(PDF).International Atomic Energy Agency. 2008.ISBN 978-92-0-100208-2. Retrieved2022-07-01.
  14. ^Maddahi, Jamshid; Berman, Daniel (2001)."Detection, Evaluation, and Risk Stratification of Coronary Artery Disease by Thallium-201 Myocardial Perfusion Scintigraphy 155".Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178.ISBN 978-0-7817-2007-6. Archived fromthe original on 2017-02-22. Retrieved2016-09-26.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_thallium&oldid=1328679782"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp