This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Isotopes of sulfur" – news ·newspapers ·books ·scholar ·JSTOR(May 2018) (Learn how and when to remove this message) |
34S abundances vary greatly (between 3.96 and 4.77 percent) in natural samples. | ||||||||||||||||||||||||||||||||||||
| Standard atomic weightAr°(S) | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sulfur (16S) has 23 knownisotopes with mass numbers ranging from 27 to 49, four of which are stable:32S (94.85%),33S (0.76%),34S (4.37%), and36S (0.016%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of fivehelium-4 nuclei in thealpha process ofnucleosynthesis.
The main radioisotope35S is formed fromcosmic ray spallation of40Ar in theatmosphere. Otherradioactive isotopes of sulfur are all comparatively short-lived. The next longest-lived radioisotope is sulfur-38, with a half-life of 170 minutes. Isotopes lighter than32S mostly decay toisotopes of phosphorus orsilicon, while35S and heavier radioisotopes decay toisotopes of chlorine.
The beams of several radioactive isotopes (such as those of44S) have been studied theoretically within the framework of the synthesis of superheavy elements, especially those ones in the vicinity ofisland of stability.[4][5]
When sulfideminerals are precipitated, isotopic equilibration among solids and liquid may cause small differences in the δ34S values of co-genetic minerals. The differences between minerals can be used to estimate the temperature of equilibration. Theδ13C and δ34S of coexistingcarbonates and sulfides can be used to determine thepH andoxygenfugacity of the ore-bearing fluid during ore formation.[citation needed]
In mostforest ecosystems, sulfate is derived mostly from the atmosphere; weathering of ore minerals and evaporites also contribute some sulfur. Sulfur with a distinctive isotopic composition has been used to identify pollution sources, and enriched sulfur has been added as a tracer inhydrologic studies. Differences in thenatural abundances can also be used in systems where there is sufficient variation in the34S of ecosystem components.Rocky Mountain lakes thought to be dominated by atmospheric sources of sulfate have been found to have different δ34S values from oceans believed to be dominated by watershed sources of sulfate.[citation needed]
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[6] [n 2][n 3] | Half-life[1] | Decay mode[1] [n 4] | Daughter isotope [n 5] | Spin and parity[1] [n 6][n 7] | Natural abundance(mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
| 27S | 16 | 11 | 27.01878(43)# | 16.3(2) ms | β+, p (61%) | 26Si | (5/2+) | ||||||||||||
| β+ (36%) | 27P | ||||||||||||||||||
| β+, 2p (3.0%) | 25Al | ||||||||||||||||||
| 28S | 16 | 12 | 28.00437(17) | 125(10) ms | β+ (79.3%) | 28P | 0+ | ||||||||||||
| β+, p (20.7%) | 27Si | ||||||||||||||||||
| 29S | 16 | 13 | 28.996678(14) | 188(4) ms | β+ (53.6%) | 29P | 5/2+# | ||||||||||||
| β+, p (46.4%) | 28Si | ||||||||||||||||||
| 30S | 16 | 14 | 29.98490677(22) | 1.1798(3) s | β+ | 30P | 0+ | ||||||||||||
| 31S | 16 | 15 | 30.97955700(25) | 2.5534(18) s | β+ | 31P | 1/2+ | ||||||||||||
| 32S[n 8] | 16 | 16 | 31.9720711735(14) | Stable | 0+ | 0.9485(255) | |||||||||||||
| 33S | 16 | 17 | 32.9714589086(14) | Stable | 3/2+ | 0.00763(20) | |||||||||||||
| 34S | 16 | 18 | 33.967867011(47) | Stable | 0+ | 0.04365(235) | |||||||||||||
| 35S | 16 | 19 | 34.969032321(43) | 87.37(4) d | β− | 35Cl | 3/2+ | Trace[n 9] | |||||||||||
| 36S | 16 | 20 | 35.96708069(20) | Stable | 0+ | 1.58(17)×10−4 | |||||||||||||
| 37S | 16 | 21 | 36.97112550(21) | 5.05(2) min | β− | 37Cl | 7/2− | ||||||||||||
| 38S | 16 | 22 | 37.9711633(77) | 170.3(7) min | β− | 38Cl | 0+ | ||||||||||||
| 39S | 16 | 23 | 38.975134(54) | 11.5(5) s | β− | 39Cl | (7/2)− | ||||||||||||
| 40S | 16 | 24 | 39.9754826(43) | 8.8(22) s | β− | 40Cl | 0+ | ||||||||||||
| 41S | 16 | 25 | 40.9795935(44) | 1.99(5) s | β− | 41Cl | 7/2−# | ||||||||||||
| 42S | 16 | 26 | 41.9810651(30) | 1.016(15) s | β− (>96%) | 42Cl | 0+ | ||||||||||||
| β−, n (<1%) | 41Cl | ||||||||||||||||||
| 43S | 16 | 27 | 42.9869076(53) | 265(13) ms | β− (60%) | 43Cl | 3/2− | ||||||||||||
| β−, n (40%) | 42Cl | ||||||||||||||||||
| 43mS | 320.7(5) keV | 415.0(26) ns | IT | 43S | (7/2−) | ||||||||||||||
| 44S | 16 | 28 | 43.9901188(56) | 100(1) ms | β− (82%) | 44Cl | 0+ | ||||||||||||
| β−, n (18%) | 43Cl | ||||||||||||||||||
| 44mS | 1365.0(8) keV | 2.619(26) μs | IT | 44S | 0+ | ||||||||||||||
| 45S | 16 | 29 | 44.99641(32)# | 68(2) ms | β−, n (54%) | 44Cl | 3/2−# | ||||||||||||
| β− (46%) | 45Cl | ||||||||||||||||||
| 46S | 16 | 30 | 46.00069(43)# | 50(8) ms | β− | 46Cl | 0+ | ||||||||||||
| 47S | 16 | 31 | 47.00773(43)# | 24# ms [>200 ns] | 3/2−# | ||||||||||||||
| 48S | 16 | 32 | 48.01330(54)# | 10# ms [>200 ns] | 0+ | ||||||||||||||
| 49S | 16 | 33 | 49.02189(63)# | 4# ms [>400 ns] | 1/2−# | ||||||||||||||
| This table header & footer: | |||||||||||||||||||
| IT: | Isomeric transition |
| n: | Neutron emission |
| p: | Proton emission |
Daughter products other than sulfur