Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of sulfur

From Wikipedia, the free encyclopedia

icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of sulfur" – news ·newspapers ·books ·scholar ·JSTOR
(May 2018) (Learn how and when to remove this message)
Isotopes ofsulfur (16S)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
32S94.8%stable
33S0.760%stable
34S4.37%stable
35Strace87.37 dβ35Cl
36S0.02%stable
34S abundances vary greatly (between 3.96 and 4.77 percent) in natural samples.
Standard atomic weightAr°(S)

Sulfur (16S) has 23 knownisotopes with mass numbers ranging from 27 to 49, four of which are stable:32S (94.85%),33S (0.76%),34S (4.37%), and36S (0.016%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of fivehelium-4 nuclei in thealpha process ofnucleosynthesis.

The main radioisotope35S is formed fromcosmic ray spallation of40Ar in theatmosphere. Otherradioactive isotopes of sulfur are all comparatively short-lived. The next longest-lived radioisotope is sulfur-38, with a half-life of 170 minutes. Isotopes lighter than32S mostly decay toisotopes of phosphorus orsilicon, while35S and heavier radioisotopes decay toisotopes of chlorine.

The beams of several radioactive isotopes (such as those of44S) have been studied theoretically within the framework of the synthesis of superheavy elements, especially those ones in the vicinity ofisland of stability.[4][5]

When sulfideminerals are precipitated, isotopic equilibration among solids and liquid may cause small differences in the δ34S values of co-genetic minerals. The differences between minerals can be used to estimate the temperature of equilibration. Theδ13C and δ34S of coexistingcarbonates and sulfides can be used to determine thepH andoxygenfugacity of the ore-bearing fluid during ore formation.[citation needed]

In mostforest ecosystems, sulfate is derived mostly from the atmosphere; weathering of ore minerals and evaporites also contribute some sulfur. Sulfur with a distinctive isotopic composition has been used to identify pollution sources, and enriched sulfur has been added as a tracer inhydrologic studies. Differences in thenatural abundances can also be used in systems where there is sufficient variation in the34S of ecosystem components.Rocky Mountain lakes thought to be dominated by atmospheric sources of sulfate have been found to have different δ34S values from oceans believed to be dominated by watershed sources of sulfate.[citation needed]

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[6]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5]
Spin and
parity[1]
[n 6][n 7]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
27S161127.01878(43)#16.3(2) msβ+, p (61%)26Si(5/2+)
β+ (36%)27P
β+, 2p (3.0%)25Al
28S161228.00437(17)125(10) msβ+ (79.3%)28P0+
β+, p (20.7%)27Si
29S161328.996678(14)188(4) msβ+ (53.6%)29P5/2+#
β+, p (46.4%)28Si
30S161429.98490677(22)1.1798(3) sβ+30P0+
31S161530.97955700(25)2.5534(18) sβ+31P1/2+
32S[n 8]161631.9720711735(14)Stable0+0.9485(255)
33S161732.9714589086(14)Stable3/2+0.00763(20)
34S161833.967867011(47)Stable0+0.04365(235)
35S161934.969032321(43)87.37(4) dβ35Cl3/2+Trace[n 9]
36S162035.96708069(20)Stable0+1.58(17)×10−4
37S162136.97112550(21)5.05(2) minβ37Cl7/2−
38S162237.9711633(77)170.3(7) minβ38Cl0+
39S162338.975134(54)11.5(5) sβ39Cl(7/2)−
40S162439.9754826(43)8.8(22) sβ40Cl0+
41S162540.9795935(44)1.99(5) sβ41Cl7/2−#
42S162641.9810651(30)1.016(15) sβ (>96%)42Cl0+
β, n (<1%)41Cl
43S162742.9869076(53)265(13) msβ (60%)43Cl3/2−
β, n (40%)42Cl
43mS320.7(5) keV415.0(26) nsIT43S(7/2−)
44S162843.9901188(56)100(1) msβ (82%)44Cl0+
β, n (18%)43Cl
44mS1365.0(8) keV2.619(26) μsIT44S0+
45S162944.99641(32)#68(2) msβ, n (54%)44Cl3/2−#
β (46%)45Cl
46S163046.00069(43)#50(8) msβ46Cl0+
47S163147.00773(43)#24# ms
[>200 ns]
3/2−#
48S163248.01330(54)#10# ms
[>200 ns]
0+
49S163349.02189(63)#4# ms
[>400 ns]
1/2−#
This table header & footer:
  1. ^mS – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Modes of decay:
    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  5. ^Bold symbol as daughter – Daughter product is stable.
  6. ^( ) spin value – Indicates spin with weak assignment arguments.
  7. ^# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. ^Heaviest theoretically stable nuclide with equal numbers of protons and neutrons
  9. ^Cosmogenic

See also

[edit]

Daughter products other than sulfur

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Sulfur".CIAAW. 2009.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Zagrebaev, Valery; Greiner, Walter (2008-09-24)."Synthesis of superheavy nuclei: A search for new production reactions".Physical Review C.78 (3) 034610.arXiv:0807.2537.Bibcode:2008PhRvC..78c4610Z.doi:10.1103/PhysRevC.78.034610.S2CID 122586703.
  5. ^Zhu, Long (2019-12-01)."Possibilities of producing superheavy nuclei in multinucleon transfer reactions based on radioactive targets *".Chinese Physics C.43 (12) 124103.Bibcode:2019ChPhC..43l4103Z.doi:10.1088/1674-1137/43/12/124103.ISSN 1674-1137.S2CID 250673444.
  6. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.

External links

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_sulfur&oldid=1314105371"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp