Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of strontium

From Wikipedia, the free encyclopedia

icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of strontium" – news ·newspapers ·books ·scholar ·JSTOR
(May 2018) (Learn how and when to remove this message)
Isotopes ofstrontium (38Sr)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
82Srsynth25.35 dε82Rb
83Srsynth32.41 hβ+83Rb
84Sr0.56%stable
85Srsynth64.846 dε85Rb
86Sr9.86%stable
87Sr7%stable
88Sr82.6%stable
89Srsynth50.56 dβ89Y
90Srtrace28.91 yβ90Y
Standard atomic weightAr°(Sr)

Thealkaline earth metalstrontium (38Sr) has four stable, naturally occurringisotopes:84Sr (0.56%),86Sr (9.86%),87Sr (7.0%) and88Sr (82.58%), giving it astandard atomic weight of 87.62.

Only87Sr isradiogenic; it is produced by decay from theradioactive alkali metal87Rb, which has ahalf-life of 4.97 × 1010 years (i.e. more than three times longer than the currentage of the universe). Thus, there are two sources of87Sr in any material: primordial, formed during nucleosynthesis along with84Sr,86Sr and88Sr; and that formed by radioactive decay of87Rb. The ratio87Sr/86Sr is the parameter typically reported ingeologic investigations;[4] ratios in minerals androcks have values ranging from about 0.7 to greater than 4.0 (seerubidium–strontium dating). Because strontium has anelectron configuration similar to that ofcalcium, it readily substitutes for calcium inminerals.

In addition to the four stable isotopes, thirty-two unstable isotopes of strontium are known to exist, ranging from73Sr to108Sr. Radioactive isotopes of strontium primarily decay into the neighbouring elementsyttrium (89Sr and heavier isotopes, viabeta minus decay) andrubidium (85Sr,83Sr and lighter isotopes, viapositron emission orelectron capture). The longest-lived of these isotopes, are90Sr with a half-life of 28.91 years,85Sr at 64.846 days,89Sr at 50.56 days, and82Sr at 25.35 days. All other strontium isotopes have half-lives shorter than 10 hours, most under 10 minutes.

Strontium-89 is an artificial radioisotope used in treatment of bone cancer;[5] this application utilizes its chemical similarity to calcium, which allows it to substitute calcium in bone structures. In circumstances where cancer patients have widespread and painful bonymetastases, the administration of89Sr results in the delivery ofbeta particles directly to the cancerous portions of the bone, where calcium turnover is greatest.

Strontium-90 is a by-product ofnuclear fission, present innuclear fallout. The1986 Chernobyl nuclear accident contaminated a vast area with90Sr.[6] It causes health problems, as it substitutes for calcium inbone, giving it a long lifetime in the body. Because it is a long-lived high-energybeta emitter, it is used in SNAP (Systems for Nuclear Auxiliary Power) devices. These devices hold promise for use inspacecraft, remote weather stations, navigational buoys, etc., where a lightweight, long-lived, nuclear-electric power source is required.

In 2020, researchers have found thatmirror nuclides73Sr and73Br were found to not behave identically to each other as expected.[7]

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[8]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 4]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
73Sr383572.96570(43)#25.3(14) msβ+,p (63%)72Kr(5/2−)
β+ (37%)73Rb
74Sr383673.95617(11)#27.6(26) msβ+74Rb0+
75Sr383774.94995(24)85.2(23) msβ+ (94.8%)75Rb(3/2−)
β+, p (5.2%)74Kr
76Sr383875.941763(37)7.89(7) sβ+76Rb0+
β+, p (0.0034%)75Kr
77Sr383976.9379455(85)9.0(2) sβ+ (99.92%)77Rb5/2+
β+, p (0.08%)76Kr
78Sr384077.9321800(80)156.1(27) sβ+78Rb0+
79Sr384178.9297047(80)2.25(10) minβ+79Rb3/2−
80Sr384279.9245175(37)106.3(15) minβ+80Rb0+
81Sr384380.9232114(34)22.3(4) minβ+81Rb1/2−
81m1Sr79.23(4) keV390(50) nsIT81Sr(5/2)−
81m2Sr89.05(7) keV6.4(5) μs(7/2+)
82Sr384481.9183998(64)25.35(3) dEC82Rb0+
83Sr384582.9175544(73)32.41(3) hβ+83Rb7/2+
83mSr259.15(9) keV4.95(12) sIT83Sr1/2−
84Sr384683.9134191(13)Observationally Stable[n 9]0+0.0056(2)
85Sr384784.9129320(30)64.846(6) dEC85Rb9/2+
85mSr238.79(5) keV67.63(4) minIT (86.6%)85Sr1/2−
β+ (13.4%)85Rb
86Sr384885.9092607247(56)Stable0+0.0986(20)
86mSr2956.09(12) keV455(7) nsIT86Sr8+
87Sr[n 10]384986.9088774945(55)Stable9/2+0.0700(20)
87mSr388.5287(23) keV2.805(9) hIT (99.70%)87Sr1/2−
EC (0.30%)87Rb
88Sr[n 11]385087.905612253(6)Stable0+0.8258(35)
89Sr[n 11]385188.907450808(98)50.563(25) dβ89Y5/2+
90Sr[n 11]385289.9077279(16)28.91(3) yβ90Y0+
91Sr385390.9101959(59)9.65(6) hβ91Y5/2+
92Sr385491.9110382(37)2.611(17) hβ92Y0+
93Sr385592.9140243(81)7.43(3) minβ93Y5/2+
94Sr385693.9153556(18)75.3(2) sβ94Y0+
95Sr385794.9193583(62)23.90(14) sβ95Y1/2+
96Sr385895.9217190(91)1.059(8) sβ96Y0+
97Sr385996.9263756(36)432(4) msβ (99.98%)97Y1/2+
β,n (0.02%)96Y
97m1Sr308.13(11) keV175.2(21) nsIT97Sr7/2+
97m2Sr830.83(23) keV513(5) nsIT97Sr(9/2+)
98Sr386097.9286926(35)653(2) msβ (99.77%)98Y0+
β, n (0.23%)97Y
99Sr386198.9328836(51)269.2(10) msβ (99.90%)99Y3/2+
β, n (0.100%)98Y
100Sr386299.9357833(74)202.1(17) msβ (98.89%)100Y0+
β, n (1.11%)99Y
100mSr1618.72(20) keV122(9) nsIT100Sr(4−)
101Sr3863100.9406063(91)113.7(17) msβ (97.25%)101Y(5/2−)
β, n (2.75%)100Y
102Sr3864101.944005(72)69(6) msβ (94.5%)102Y0+
β, n (5.5%)101Y
103Sr3865102.94924(22)#53(10) msβ103Y5/2+#
104Sr3866103.95302(32)#50.6(42) msβ104Y0+
105Sr3867104.95900(54)#39(5) msβ105Y5/2+#
106Sr3868105.96318(64)#21(8) msβ106Y0+
107Sr3869106.96967(75)#25# ms
[>400 ns]
1/2+#
108Sr[9]3870
This table header & footer:
  1. ^mSr – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^( ) spin value – Indicates spin with weak assignment arguments.
  9. ^Believed to decay by β+β+ to84Kr
  10. ^Used inrubidium–strontium dating
  11. ^abcFission product

See also

[edit]

Daughter products other than strontium

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Strontium".CIAAW. 1969.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Dickin, Alan P. (2018).Radiogenic Isotope Geology (3 ed.). Cambridge: Cambridge University Press.ISBN 978-1-107-09944-9.
  5. ^Reddy, Eashwer K.; Robinson, Ralph G.; Mansfield, Carl M. (January 1986)."Strontium 89 for Palliation of Bone Metastases".Journal of the National Medical Association.78 (1):27–32.ISSN 0027-9684.PMC 2571189.PMID 2419578.
  6. ^Wilken, R.D.; Diehl, R. (1987)."Strontium-90 in environmental samples from Northern Germany before and after the Chernobyl accident".Radiochimica Acta.41 (4):157–162.doi:10.1524/ract.1987.41.4.157.S2CID 99369165.
  7. ^"Discovery by UMass Lowell-led team challenges nuclear theory".Space Daily. Retrieved2022-06-26.
  8. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  9. ^Sumikama, T.; et al. (2021)."Observation of new neutron-rich isotopes in the vicinity of110Zr".Physical Review C.103 (1) 014614.Bibcode:2021PhRvC.103a4614S.doi:10.1103/PhysRevC.103.014614.hdl:10261/260248.S2CID 234019083.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_strontium&oldid=1313776926"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp