This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Isotopes of strontium" – news ·newspapers ·books ·scholar ·JSTOR(May 2018) (Learn how and when to remove this message) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Standard atomic weightAr°(Sr) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thealkaline earth metalstrontium (38Sr) has four stable, naturally occurringisotopes:84Sr (0.56%),86Sr (9.86%),87Sr (7.0%) and88Sr (82.58%), giving it astandard atomic weight of 87.62.
Only87Sr isradiogenic; it is produced by decay from theradioactive alkali metal87Rb, which has ahalf-life of 4.97 × 1010 years (i.e. more than three times longer than the currentage of the universe). Thus, there are two sources of87Sr in any material: primordial, formed during nucleosynthesis along with84Sr,86Sr and88Sr; and that formed by radioactive decay of87Rb. The ratio87Sr/86Sr is the parameter typically reported ingeologic investigations;[4] ratios in minerals androcks have values ranging from about 0.7 to greater than 4.0 (seerubidium–strontium dating). Because strontium has anelectron configuration similar to that ofcalcium, it readily substitutes for calcium inminerals.
In addition to the four stable isotopes, thirty-two unstable isotopes of strontium are known to exist, ranging from73Sr to108Sr. Radioactive isotopes of strontium primarily decay into the neighbouring elementsyttrium (89Sr and heavier isotopes, viabeta minus decay) andrubidium (85Sr,83Sr and lighter isotopes, viapositron emission orelectron capture). The longest-lived of these isotopes, are90Sr with a half-life of 28.91 years,85Sr at 64.846 days,89Sr at 50.56 days, and82Sr at 25.35 days. All other strontium isotopes have half-lives shorter than 10 hours, most under 10 minutes.
Strontium-89 is an artificial radioisotope used in treatment of bone cancer;[5] this application utilizes its chemical similarity to calcium, which allows it to substitute calcium in bone structures. In circumstances where cancer patients have widespread and painful bonymetastases, the administration of89Sr results in the delivery ofbeta particles directly to the cancerous portions of the bone, where calcium turnover is greatest.
Strontium-90 is a by-product ofnuclear fission, present innuclear fallout. The1986 Chernobyl nuclear accident contaminated a vast area with90Sr.[6] It causes health problems, as it substitutes for calcium inbone, giving it a long lifetime in the body. Because it is a long-lived high-energybeta emitter, it is used in SNAP (Systems for Nuclear Auxiliary Power) devices. These devices hold promise for use inspacecraft, remote weather stations, navigational buoys, etc., where a lightweight, long-lived, nuclear-electric power source is required.
In 2020, researchers have found thatmirror nuclides73Sr and73Br were found to not behave identically to each other as expected.[7]
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[8] [n 2][n 3] | Half-life[1] [n 4] | Decay mode[1] [n 5] | Daughter isotope [n 6][n 7] | Spin and parity[1] [n 8][n 4] | Natural abundance(mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
| 73Sr | 38 | 35 | 72.96570(43)# | 25.3(14) ms | β+,p (63%) | 72Kr | (5/2−) | ||||||||||||
| β+ (37%) | 73Rb | ||||||||||||||||||
| 74Sr | 38 | 36 | 73.95617(11)# | 27.6(26) ms | β+ | 74Rb | 0+ | ||||||||||||
| 75Sr | 38 | 37 | 74.94995(24) | 85.2(23) ms | β+ (94.8%) | 75Rb | (3/2−) | ||||||||||||
| β+, p (5.2%) | 74Kr | ||||||||||||||||||
| 76Sr | 38 | 38 | 75.941763(37) | 7.89(7) s | β+ | 76Rb | 0+ | ||||||||||||
| β+, p (0.0034%) | 75Kr | ||||||||||||||||||
| 77Sr | 38 | 39 | 76.9379455(85) | 9.0(2) s | β+ (99.92%) | 77Rb | 5/2+ | ||||||||||||
| β+, p (0.08%) | 76Kr | ||||||||||||||||||
| 78Sr | 38 | 40 | 77.9321800(80) | 156.1(27) s | β+ | 78Rb | 0+ | ||||||||||||
| 79Sr | 38 | 41 | 78.9297047(80) | 2.25(10) min | β+ | 79Rb | 3/2− | ||||||||||||
| 80Sr | 38 | 42 | 79.9245175(37) | 106.3(15) min | β+ | 80Rb | 0+ | ||||||||||||
| 81Sr | 38 | 43 | 80.9232114(34) | 22.3(4) min | β+ | 81Rb | 1/2− | ||||||||||||
| 81m1Sr | 79.23(4) keV | 390(50) ns | IT | 81Sr | (5/2)− | ||||||||||||||
| 81m2Sr | 89.05(7) keV | 6.4(5) μs | (7/2+) | ||||||||||||||||
| 82Sr | 38 | 44 | 81.9183998(64) | 25.35(3) d | EC | 82Rb | 0+ | ||||||||||||
| 83Sr | 38 | 45 | 82.9175544(73) | 32.41(3) h | β+ | 83Rb | 7/2+ | ||||||||||||
| 83mSr | 259.15(9) keV | 4.95(12) s | IT | 83Sr | 1/2− | ||||||||||||||
| 84Sr | 38 | 46 | 83.9134191(13) | Observationally Stable[n 9] | 0+ | 0.0056(2) | |||||||||||||
| 85Sr | 38 | 47 | 84.9129320(30) | 64.846(6) d | EC | 85Rb | 9/2+ | ||||||||||||
| 85mSr | 238.79(5) keV | 67.63(4) min | IT (86.6%) | 85Sr | 1/2− | ||||||||||||||
| β+ (13.4%) | 85Rb | ||||||||||||||||||
| 86Sr | 38 | 48 | 85.9092607247(56) | Stable | 0+ | 0.0986(20) | |||||||||||||
| 86mSr | 2956.09(12) keV | 455(7) ns | IT | 86Sr | 8+ | ||||||||||||||
| 87Sr[n 10] | 38 | 49 | 86.9088774945(55) | Stable | 9/2+ | 0.0700(20) | |||||||||||||
| 87mSr | 388.5287(23) keV | 2.805(9) h | IT (99.70%) | 87Sr | 1/2− | ||||||||||||||
| EC (0.30%) | 87Rb | ||||||||||||||||||
| 88Sr[n 11] | 38 | 50 | 87.905612253(6) | Stable | 0+ | 0.8258(35) | |||||||||||||
| 89Sr[n 11] | 38 | 51 | 88.907450808(98) | 50.563(25) d | β− | 89Y | 5/2+ | ||||||||||||
| 90Sr[n 11] | 38 | 52 | 89.9077279(16) | 28.91(3) y | β− | 90Y | 0+ | ||||||||||||
| 91Sr | 38 | 53 | 90.9101959(59) | 9.65(6) h | β− | 91Y | 5/2+ | ||||||||||||
| 92Sr | 38 | 54 | 91.9110382(37) | 2.611(17) h | β− | 92Y | 0+ | ||||||||||||
| 93Sr | 38 | 55 | 92.9140243(81) | 7.43(3) min | β− | 93Y | 5/2+ | ||||||||||||
| 94Sr | 38 | 56 | 93.9153556(18) | 75.3(2) s | β− | 94Y | 0+ | ||||||||||||
| 95Sr | 38 | 57 | 94.9193583(62) | 23.90(14) s | β− | 95Y | 1/2+ | ||||||||||||
| 96Sr | 38 | 58 | 95.9217190(91) | 1.059(8) s | β− | 96Y | 0+ | ||||||||||||
| 97Sr | 38 | 59 | 96.9263756(36) | 432(4) ms | β− (99.98%) | 97Y | 1/2+ | ||||||||||||
| β−,n (0.02%) | 96Y | ||||||||||||||||||
| 97m1Sr | 308.13(11) keV | 175.2(21) ns | IT | 97Sr | 7/2+ | ||||||||||||||
| 97m2Sr | 830.83(23) keV | 513(5) ns | IT | 97Sr | (9/2+) | ||||||||||||||
| 98Sr | 38 | 60 | 97.9286926(35) | 653(2) ms | β− (99.77%) | 98Y | 0+ | ||||||||||||
| β−, n (0.23%) | 97Y | ||||||||||||||||||
| 99Sr | 38 | 61 | 98.9328836(51) | 269.2(10) ms | β− (99.90%) | 99Y | 3/2+ | ||||||||||||
| β−, n (0.100%) | 98Y | ||||||||||||||||||
| 100Sr | 38 | 62 | 99.9357833(74) | 202.1(17) ms | β− (98.89%) | 100Y | 0+ | ||||||||||||
| β−, n (1.11%) | 99Y | ||||||||||||||||||
| 100mSr | 1618.72(20) keV | 122(9) ns | IT | 100Sr | (4−) | ||||||||||||||
| 101Sr | 38 | 63 | 100.9406063(91) | 113.7(17) ms | β− (97.25%) | 101Y | (5/2−) | ||||||||||||
| β−, n (2.75%) | 100Y | ||||||||||||||||||
| 102Sr | 38 | 64 | 101.944005(72) | 69(6) ms | β− (94.5%) | 102Y | 0+ | ||||||||||||
| β−, n (5.5%) | 101Y | ||||||||||||||||||
| 103Sr | 38 | 65 | 102.94924(22)# | 53(10) ms | β− | 103Y | 5/2+# | ||||||||||||
| 104Sr | 38 | 66 | 103.95302(32)# | 50.6(42) ms | β− | 104Y | 0+ | ||||||||||||
| 105Sr | 38 | 67 | 104.95900(54)# | 39(5) ms | β− | 105Y | 5/2+# | ||||||||||||
| 106Sr | 38 | 68 | 105.96318(64)# | 21(8) ms | β− | 106Y | 0+ | ||||||||||||
| 107Sr | 38 | 69 | 106.96967(75)# | 25# ms [>400 ns] | 1/2+# | ||||||||||||||
| 108Sr[9] | 38 | 70 | |||||||||||||||||
| This table header & footer: | |||||||||||||||||||
| EC: | Electron capture |
| IT: | Isomeric transition |
| n: | Neutron emission |
| p: | Proton emission |
Daughter products other than strontium