Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of silicon

From Wikipedia, the free encyclopedia

Isotopes ofsilicon (14Si)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
28Si92.2%stable
29Si4.67%stable
30Si3.07%stable
31Sitrace2.62 hβ31P
32Sitrace157 yβ32P
Standard atomic weightAr°(Si)

Silicon (14Si) has 25 knownisotopes, withmass number ranging from 22 to 46.28Si (the most abundant isotope, at 92.24%),29Si (4.67%), and30Si (3.07%) are stable. The longest-lived radioisotope is32Si, which occurs naturally in tiny quantities fromcosmic ray spallation ofargon. Itshalf-life has been determined to be approximately 157 years; itbeta decays with energy 0.21 MeV to32P, which in turn beta-decays, with half-life 14.269 days to32S; neither step hasgamma emission. After32Si,31Si has the second longest half-life at 157.2 minutes. All others have half-lives under 7 seconds.

A chart showing the relative abundances of the naturally occurring isotopes of silicon.

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
22Si14822.03611(54)#28.7(11) msβ+,p (62%)21Mg0+
β+ (37%)22Al
β+, 2p (0.7%)20Na
23Si14923.02571(54)#42.3(4) msβ+, p (88%)22Mg3/2+#
β+ (8%)23Al
β+, 2p (3.6%)21Na
24Si141024.011535(21)143.2 (21) msβ+ (65.5%)24Al0+
β+, p (34.5%)23Mg
25Si141125.004109(11)220.6(10) msβ+ (65%)25Al5/2+
β+, p (35%)24Mg
26Si141225.99233382(12)2.2453(7) sβ+26Al0+
27Si141326.98670469(12)4.117(14) sβ+27Al5/2+
28Si141427.97692653442(55)Stable0+0.92223(19)0.92205–0.92241
29Si141528.97649466434(60)Stable1/2+0.04685(8)0.04678–0.04692
30Si141629.973770137(23)Stable0+0.03092(11)0.03082–0.03102
31Si141730.975363196(46)157.16(20) minβ31P3/2+
32Si141831.97415154(32)157(7) yβ32P0+tracecosmogenic
33Si141932.97797696(75)6.18(18) sβ33P3/2+
34Si142033.97853805(86)2.77(20) sβ34P0+
34mSi4256.1(4) keV<210 nsIT34Si(3−)
35Si142134.984550(38)780(120) msβ35P7/2−#
β,n?34P
36Si142235.986649(77)503(2) msβ (88%)36P0+
β,n (12%)35P
37Si142336.99295(12)141.0(35) msβ (83%)37P(5/2−)
β, n (17%)36P
β, 2n?35P
38Si142437.99552(11)63(8) msβ (75%)38P0+
β, n (25%)37P
39Si142539.00249(15)41.2(41) msβ (67%)39P(5/2−)
β, n (33%)38P
β, 2n?37P
40Si142640.00608(13)31.2(26) msβ (62%)40P0+
β, n (38%)39P
β, 2n?38P
41Si142741.01417(32)#20.0(25) msβ, n (>55%)40P7/2−#
β (<45%)41P
β, 2n?39P
42Si142842.01808(32)#15.5(4 (stat), 16 (sys)) ms[5]β (51%)42P0+
β, n (48%)41P
β, 2n (1%)40P
43Si142943.02612(43)#13(4 (stat), 2 (sys)) ms[5]β, n (52%)42P3/2−#
β (27%)43P
β, 2n (21%)41P
44Si143044.03147(54)#4# ms [>360 ns]β?44P0+
β, n?43P
β, 2n?42P
45Si[6]143145.03982(64)#4# ms3/2−#
46Si[6]1432
This table header & footer:
  1. ^mSi – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.

Silicon-28

[edit]

Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction ofquantum computers when highly enriched, as the presence of29Si in a sample of silicon contributes toquantum decoherence.[7] Extremely pure (>99.9998%) samples of28Si can be produced through selectiveionization anddeposition of28Si fromsilane gas.[8] Due to the extremely high purity that can be obtained in this manner, theAvogadro project sought to develop a new definition of thekilogram by making a 93.75 mm (3.691 in) sphere of the isotope and determining the exact number of atoms in the sample.[9][10]

Silicon-28 is produced in stars during thealpha process and theoxygen-burning process, and drives thesilicon-burning process in massive stars shortly before they gosupernova.[11][12]

Silicon-29

[edit]

Silicon-29 is of note as the only stable silicon isotope with a nonzeronuclear spin (I = 1/2).[13] As such, it can be employed innuclear magnetic resonance andhyperfine transition studies, for example to study the properties of the so-calledA-center defect in pure silicon.[14]

Silicon-34

[edit]

Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds.[1] In addition to the usualN = 20 closed shell, the nucleus also shows a strongZ = 14 shell closure, making it behave like adoubly magic spherical nucleus, except that it is also located two protons above anisland of inversion.[15] Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in36S where it is almost full.[16][17] Silicon-34 is one of the knowncluster decay emission particles; it is produced in the decay of242Cm with a branching ratio of approximately1×10−16.[18]

See also

[edit]

Daughter products other than silicon

References

[edit]
  1. ^abcdefKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Silicon".CIAAW. 2009.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  5. ^abCrawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022)."CrossingN = 28 toward the neutron drip line: first measurement of half-lives at FRIB".Physical Review Letters.129 (212501) 212501.Bibcode:2022PhRvL.129u2501C.doi:10.1103/PhysRevLett.129.212501.PMID 36461950.S2CID 253600995.
  6. ^abYoshimoto, Masahiro; Suzuki, Hiroshi; Fukuda, Naoki; Takeda, Hiroyuki; Shimizu, Yohei; Yanagisawa, Yoshiyuki; Sato, Hiromi; Kusaka, Kensuke; Ohtake, Masao; Yoshida, Koichi; Michimasa, Shin'ichiro (2024)."Discovery of Neutron-Rich Silicon Isotopes45,46Si".Progress of Theoretical and Experimental Physics.2024 (10). Oxford University Press (OUP).doi:10.1093/ptep/ptae155.ISSN 2050-3911.
  7. ^"Beyond Six Nines: Ultra-enriched Silicon Paves the Road to Quantum Computing".NIST. 2014-08-11.
  8. ^Dwyer, K J; Pomeroy, J M; Simons, D S; Steffens, K L; Lau, J W (2014-08-30)."Enriching 28 Si beyond 99.9998 % for semiconductor quantum computing".Journal of Physics D: Applied Physics.47 (34) 345105.doi:10.1088/0022-3727/47/34/345105.ISSN 0022-3727.
  9. ^Powell, Devin (1 July 2008)."Roundest Objects in the World Created".New Scientist. Retrieved 16 June 2015.
  10. ^Keats, Jonathon."The Search for a More Perfect Kilogram".Wired. Vol. 19, no. 10. Retrieved16 December 2023.
  11. ^Woosley, S.; Janka, T. (2006). "The physics of core collapse supernovae".Nature Physics.1 (3):147–154.arXiv:astro-ph/0601261.Bibcode:2005NatPh...1..147W.CiteSeerX 10.1.1.336.2176.doi:10.1038/nphys172.S2CID 118974639.
  12. ^Narlikar, Jayant V. (1995).From Black Clouds to Black Holes.World Scientific. p. 94.ISBN 978-981-02-2033-4.
  13. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.). Butterworth-Heinemann.ISBN 978-0-08-037941-8.
  14. ^Watkins, G. D.; Corbett, J. W. (1961-02-15)."Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si- A Center".Physical Review.121 (4):1001–1014.Bibcode:1961PhRv..121.1001W.doi:10.1103/PhysRev.121.1001.ISSN 0031-899X.
  15. ^Lică, R.; Rotaru, F.; Borge, M. J. G.; Grévy, S.; Negoiţă, F.; Poves, A.; Sorlin, O.; Andreyev, A. N.; Borcea, R.; Costache, C.; De Witte, H.; Fraile, L. M.; Greenlees, P. T.; Huyse, M.; Ionescu, A.; Kisyov, S.; Konki, J.; Lazarus, I.; Madurga, M.; Mărginean, N.; Mărginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Nowacki, F.; Page, R. D.; Pakarinen, J.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Şerban, A.; Sotty, C. O.; Stan, L.; Stănoiu, M.; Tengblad, O.; Turturică, A.; Van Duppen, P.; Warr, N.; Dessagne, Ph.; Stora, T.; Borcea, C.; Călinescu, S.; Daugas, J. M.; Filipescu, D.; Kuti, I.; Franchoo, S.; Gheorghe, I.; Morfouace, P.; Morel, P.; Mrazek, J.; Pietreanu, D.; Sohler, D.; Stefan, I.; Şuvăilă, R.; Toma, S.; Ur, C. A. (11 September 2019)."Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34".Physical Review C.100 (3) 034306.arXiv:1908.11626.doi:10.1103/PhysRevC.100.034306.
  16. ^"Physicists find atomic nucleus with a 'bubble' in the middle". 24 October 2016. Retrieved26 December 2023.
  17. ^Mutschler, A.; Lemasson, A.; Sorlin, O.; Bazin, D.; Borcea, C.; Borcea, R.; Dombrádi, Z.; Ebran, J.-P.; Gade, A.; Iwasaki, H.; Khan, E.; Lepailleur, A.; Recchia, F.; Roger, T.; Rotaru, F.; Sohler, D.; Stanoiu, M.; Stroberg, S. R.; Tostevin, J. A.; Vandebrouck, M.; Weisshaar, D.; Wimmer, K. (February 2017). "A proton density bubble in the doubly magic 34Si nucleus".Nature Physics.13 (2):152–156.arXiv:1707.03583.doi:10.1038/nphys3916.
  18. ^Bonetti, R.; Guglielmetti, A. (2007)."Cluster radioactivity: an overview after twenty years"(PDF).Romanian Reports in Physics.59:301–310. Archived fromthe original(PDF) on 19 September 2016.

External links

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_silicon&oldid=1313747304"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp