Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of samarium

From Wikipedia, the free encyclopedia

Isotopes ofsamarium (62Sm)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
144Sm3.08%stable
145Smsynth340 dε145Pm
146Smtrace9.20×107 y[2]α142Nd
147Sm15%1.066×1011 yα143Nd
148Sm11.3%6.3×1015 yα144Nd
149Sm13.8%stable
150Sm7.37%stable
151Smsynth94.6 yβ151Eu
152Sm26.7%stable
153Smsynth46.285 hβ153Eu
154Sm22.7%stable
Standard atomic weightAr°(Sm)

Naturally occurringsamarium (62Sm) is composed of five stableisotopes,144Sm,149Sm,150Sm,152Sm and154Sm, and two extremely long-livedradioisotopes,147Sm (half life: 1.066×1011 y) and148Sm (6.3×1015 y), with152Sm being the most abundant (26.75%natural abundance).146Sm (9.20×107 y)[2] is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as anextinct radionuclide.[5] It is the longest-lived nuclide that has not yet been confirmed to beprimordial. Its instability is due to having 84 neutrons (two more than 82, which is amagic number corresponding to a stable neutron configuration), and so it may emit analpha particle (which has 2 neutrons) to form neodymium-142 with 82 neutrons.

Other than those, the longest-lived radioisotopes are151Sm, which has ahalf-life of 94.6 years,[6] and145Sm, which has a half-life of 340 days. All of the remaining radioisotopes, which range from129Sm to168Sm, have half-lives that are less than two days, and the majority of these have half-lives that are less than 48 seconds. The most stable of the knownisomers is141mSm (half-life 22.6 minutes).

The long-lived isotopes,146Sm,147Sm, and148Sm, decay byalpha emission toisotopes of neodymium. Lighter unstable isotopes of samarium primarily decay byelectron capture toisotopes of promethium, while heavier ones decay bybeta decay toisotopes of europium. A 2012 paper[7] revising the estimated half-life of146Sm from 10.3(5)×107 y to 6.8(7)×107 y was retracted (due to an experimental mistake) in 2023,[7][8] and the current, more accurate, value published subsequently.

The isotope147Sm is used insamarium–neodymium dating and as mentioned theextinct146Sm can also be used for dating.

151Sm is amedium-lived fission product and acts as aneutron poison in thenuclear fuel cycle. The stablefission product149Sm is also a neutron poison.

Samarium is the lightest element with evenatomic number with no theoretically stable isotopes (all isotopes of it can energetically decay by thealpha,beta, ordouble-beta modes), other such elements are those with atomic numbers > 66 (dysprosium, which has the heaviest theoretically stable nuclide,164Dy).

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[9]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity[1]
[n 9][n 5]
Natural abundance(mole fraction)
Excitation energy[n 5]Normal proportion[1]Range of variation
129Sm6267128.95456(54)#550(100) msβ+ (?%)129Pm(1/2+,3/2+)
β+, p (?%)128Nd
130Sm6268129.94879(43)#1# s0+
131Sm6269130.94602(43)#1.2(2) sβ+131Pm5/2+#
β+, p (?%)130Nd
132Sm6270131.94081(32)#4.0(3) sβ+132Pm0+
133Sm6271132.93856(32)#2.89(16) sβ+ (?%)133Pm(5/2+)
β+, p (?%)132Nd
133mSm120(60)# keV3.5(4) sβ+133Pm(1/2−)
134Sm6272133.93411(21)#9.5(8) sβ+134Pm0+
135Sm6273134.93252(17)10.3(5) sβ+ (99.98%)135Pm(7/2+)
β+, p (0.02%)134Nd
136Sm6274135.928276(13)47(2) sβ+136Pm0+
136mSm2264.7(11) keV15(1) μsIT136Sm(8−)
137Sm6275136.927008(31)45(1) sβ+137Pm(9/2−)
138Sm6276137.923244(13)3.1(2) minβ+138Pm0+
139Sm6277138.922297(12)2.57(10) minβ+139Pm1/2+
139mSm457.38(23) keV10.7(6) sIT (93.7%)139Sm11/2−
β+ (6.3%)139Pm
140Sm6278139.918995(13)14.82(12) minβ+140Pm0+
141Sm6279140.9184815(92)10.2(2) minβ+141Pm1/2+
141mSm175.9(3) keV22.6(2) minβ+ (99.69%)141Pm11/2−
IT (0.31%)141Sm
142Sm6280141.9152094(20)72.49(5) minEC (>95%)142Pm0+
β+ (<5%)
142m1Sm2372.1(4) keV170(2) nsIT142Sm7−
142m2Sm3662.2(7) keV480(60) nsIT142Sm10+
143Sm6281142.9146348(30)8.75(6) minEC (60.0%)143Pm3/2+
β+ (40.0%)143Pm
143m1Sm753.99(16) keV66(2) sIT (99.76%)143Sm11/2−
β+ (0.24%)143Pm
143m2Sm2793.8(13) keV30(3) msIT143Sm23/2−
144Sm6282143.9120063(16)Observationally stable[n 10]0+0.0308(4)
144mSm2323.60(8) keV880(25) nsIT144Sm6+
145Sm6283144.9134172(16)340(3) dEC145Pm7/2−
145mSm8815(1) keV3.52(16) μsIT145Sm49/2+
146Sm6284145.9130468(33)9.20(26)×107 y[2]α142Nd0+Trace
147Sm[n 11][n 12][n 13]6285146.9149044(14)1.066(5)×1011 yα143Nd7/2−0.1500(14)
148Sm[n 11]6286147.9148292(13)6.3(13)×1015 yα144Nd0+0.1125(9)
149Sm[n 12][n 14]6287148.9171912(12)Observationally stable[n 15]7/2−0.1382(10)
150Sm6288149.9172820(12)Observationally stable[n 16]0+0.0737(9)
151Sm[n 12][n 14]6289150.9199389(12)94.6(6) yβ151Eu5/2−
151mSm261.13(4) keV1.4(1) μsIT151Sm(11/2)−
152Sm[n 12]6290151.9197386(11)Observationally stable[n 17]0+0.2674(9)
153Sm[n 12]6291152.9221036(11)46.2846(23) hβ153Eu3/2+
153mSm98.39(10) keV10.6(3) msIT153Sm11/2−
154Sm[n 12]6292153.9222158(14)Observationally stable[n 18]0+0.2274(14)
155Sm6293154.9246466(14)22.18(6) minβ155Eu3/2−
155m1Sm16.5467(19) keV2.8(5) μsIT155Sm5/2+
155m2Sm538.03(19) keV1.00(8) μsIT155Sm11/2−
156Sm6294155.9255382(91)9.4(2) hβ156Eu0+
156mSm1397.55(9) keV185(7) nsIT156Sm5−
157Sm6295156.9284186(48)8.03(7) minβ157Eu3/2−#
158Sm6296157.9299493(51)5.30(3) minβ158Eu0+
159Sm6297158.9332171(64)11.37(15) sβ159Eu5/2−
159mSm1276.5(8) keV116(8) nsIT159Sm(15/2+)
160Sm6298159.9353370(21)9.6(3) sβ160Eu0+
160m1Sm1361.3(4) keV120(46) nsIT160Sm(5−)
160m2Sm2757.3(4) keV1.8(4) μsIT160Sm(11+)
161Sm6299160.9391601(73)4.8(4) sβ161Eu7/2+#
161mSm1388.1(6) keV2.6(4) μsIT161Sm(17/2−)
162Sm62100161.9416217(38)2.7(3) sβ162Eu0+
162mSm1009.4(5) keV1.78(7) μsIT162Sm(4−)
163Sm62101162.9456791(79)1.744+0.180
−0.204
 s
[11]
β163Eu1/2−#
β, n (<0.1%)162Eu
164Sm62102163.9485501(44)1.422+0.54
−0.59
 s
[11]
β164Eu0+
β, n (<0.7%)163Eu
164mSm1485.5(12) keV600(140) nsIT164Sm(6−)
165Sm62103164.95329(43)#592+51
−55
 ms
[11]
β (98.64%)165Eu5/2−#
β, n (1.36%)164Eu
166Sm62104165.95658(43)#396+56
−63
 ms
[11]
β (95.62%)166Eu0+
β, n (4.38%)165Eu
167Sm62105166.96207(54)#334+83
−78
 ms
[11]
β167Eu7/2−#
β, n (<16%)166Eu
168Sm62106167.96603(32)#353+210
−164
 ms
[11]
β168Eu0+#
β, n (<21%)167Eu
This table header & footer:
  1. ^mSm – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^Modes of decay:
    IT:Isomeric transition


    p:Proton emission
  7. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^Bold symbol as daughter – Daughter product is stable.
  9. ^( ) spin value – Indicates spin with weak assignment arguments.
  10. ^Believed to undergo β+β+ decay to144Nd
  11. ^abPrimordialradioisotope
  12. ^abcdefFission product
  13. ^Used inSamarium–neodymium dating
  14. ^abNeutron poison in reactors
  15. ^Believed to undergo α decay to145Nd with a half-life over2×1015 years[10]
  16. ^Believed to undergo α decay to146Nd[10]
  17. ^Believed to undergo α decay to148Nd[10]
  18. ^Believed to undergo ββ decay to154Gd with ahalf-life over2.3×1018 years

Samarium-149

[edit]

Samarium-149 (149Sm) is an observationally stable isotope ofsamarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from thefission product149Nd (yield 1.0888%).149Sm is aneutron-absorbingnuclear poison with significant effect onnuclear reactor operation, second only to135Xe. Itsneutron cross section is 40140barns forthermal neutrons.

The equilibrium concentration (and thus the poisoning effect) builds to an equilibrium value in about 500 hours (about 20 days) of reactor operation, and since149Sm is stable, the concentration remains essentially constant during further reactor operation. This contrasts withxenon-135, which accumulates from the beta decay ofiodine-135 (a short livedfission product) and has a high neutron cross section, but itself decays with a half-life of 9.2 hours (so does not remain in constant concentration long after the reactor shutdown), causing the so-calledxenon pit.

Samarium-151

[edit]
Nuclidet12YieldQ[a 1]βγ
(a)(%)[a 2](keV)
155Eu4.74  0.0803[a 3]252βγ
85Kr10.73  0.2180[a 4]687βγ
113mCd13.9  0.0008[a 3]316β
90Sr28.914.505    2826[a 5]β
137Cs30.046.337    1176βγ
121mSn43.90.00005  390βγ
151Sm94.60.5314[a 3]77β
  1. ^Decay energy is split amongβ,neutrino, andγ if any.
  2. ^Per 65 thermal neutron fissions of235U and 35 of239Pu.
  3. ^abcNeutron poison; in thermal reactors, most is destroyed by further neutron capture.
  4. ^Less than 1/4 of mass-85 fission products as most bypass ground state:85Br →85mKr →85Rb.
  5. ^Has decay energy 546 keV; its decay product90Y has decay energy 2.28 MeV with weak gamma branching.
Yield, % perfission[12]
ThermalFast14 MeV
232Thnotfissile0.399 ± 0.0650.165 ± 0.035
233U0.333 ± 0.0170.312 ± 0.0140.49 ± 0.11
235U0.4204 ± 0.00710.431 ± 0.0150.388 ± 0.061
238Unotfissile0.810 ± 0.0120.800 ± 0.057
239Pu0.776 ± 0.0180.797 ± 0.037?
241Pu0.86 ± 0.240.910 ± 0.025?

Samarium-151 (151Sm) has ahalf-life of 94.6 years, undergoing low-energy beta decay, and has afission product yield of 0.4203% for thermal neutrons and235U, about 39% of149Sm's yield. The yield is somewhat higher for239Pu.

Itsneutron absorptioncross section forthermal neutrons is high at 15200barns, about 38% of149Sm's absorption cross section, or about 20 times that of235U. Since the ratios between the production and absorption rates of151Sm and149Sm are almost equal, the two isotopes should reach similar equilibrium concentrations. Since149Sm reaches equilibrium in about 500 hours (20 days),151Sm should reach equilibrium in about 50 days. As this is still much shorter than its radioactive half-life, decay will hardly affect this equilibrium while in the reactor.

Since nuclear fuel is used for several years (burnup) in anuclear power plant, the final amount of151Sm in thespent nuclear fuel at discharge is only a small fraction of the total151Sm produced during the use of the fuel. According to one study, the mass fraction of151Sm in spent fuel is about 0.0025 for heavy loading ofMOX fuel and about half that for uranium fuel, which is roughly two orders of magnitude less than the mass fraction of about 0.15 for themedium-lived fission product137Cs.[13] Thedecay energy of151Sm is also about an order of magnitude less than that of137Cs. The low yield, low survival rate, and lowdecay energy mean that151Sm has insignificantnuclear waste impact compared to the two mainmedium-lived fission products137Cs and90Sr.

Samarium-153

[edit]

Samarium-153 (153Sm) has a half-life of 46.285 hours, undergoing β decay into stable153Eu. As a component ofsamarium lexidronam, it is used in palliation ofbone cancer.[14] It is treated by the body in a similar manner to calcium, and it localizes selectively tobone.

See also

[edit]

Daughter products other than samarium

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^abcChiera, Nadine M.; Sprung, Peter; Amelin, Yuri; Dressler, Rugard; Schumann, Dorothea; Talip, Zeynep (1 August 2024)."The146Sm half-life re-measured: consolidating the chronometer for events in the early Solar System".Scientific Reports.14 (1).doi:10.1038/s41598-024-64104-6.PMC 11294585.
  3. ^"Standard Atomic Weights: Samarium".CIAAW. 2005.
  4. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  5. ^Samir Maji; et al. (2006). "Separation of samarium and neodymium: a prerequisite for getting signals from nuclear synthesis".Analyst.131 (12):1332–1334.Bibcode:2006Ana...131.1332M.doi:10.1039/b608157f.PMID 17124541.
  6. ^He, M.; Shen, H.; Shi, G.; Yin, X.; Tian, W.; Jiang, S. (2009). "Half-life of151Sm remeasured".Physical Review C.80 (6) 064305.Bibcode:2009PhRvC..80f4305H.doi:10.1103/PhysRevC.80.064305.
  7. ^abKinoshita, N.; Paul, M.; Kashiv, Y.; Collon, P.; Deibel, C. M.; DiGiovine, B.; Greene, J. P.; Henderson, D. J.; Jiang, C. L.; Marley, S. T.; Nakanishi, T.; Pardo, R. C.; Rehm, K. E.; Robertson, D.; Scott, R.; Schmitt, C.; Tang, X. D.; Vondrasek, R.; Yokoyama, A. (30 March 2012). "A Shorter 146Sm Half-Life Measured and Implications for 146Sm-142Nd Chronology in the Solar System".Science.335 (6076):1614–1617.arXiv:1109.4805.Bibcode:2012Sci...335.1614K.doi:10.1126/science.1215510.ISSN 0036-8075.PMID 22461609.S2CID 206538240. (Retracted, seedoi:10.1126/science.adh7739, PMID 36996231,  Retraction Watch)
  8. ^
  9. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  10. ^abcBelli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays".European Physical Journal A.55 (140):4–6.arXiv:1908.11458.Bibcode:2019EPJA...55..140B.doi:10.1140/epja/i2019-12823-2.S2CID 201664098.
  11. ^abcdefKiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022)."Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region".The Astrophysical Journal.936 (107): 107.Bibcode:2022ApJ...936..107K.doi:10.3847/1538-4357/ac80fc.hdl:2117/375253.
  12. ^https://www-nds.iaea.org/sgnucdat/c3.htm Cumulative Fission Yields,IAEA
  13. ^Christophe Demazière.Reactor Physics Calculations on MOX Fuel in Boiling Water Reactors (BWRs)(PDF) (Report). OECD Nuclear Energy Agency. Figure 2, page 6
  14. ^Ballantyne, Jane C; Fishman, Scott M; Rathmell, James P. (2009-10-01).Bonica's Management of Pain. Lippincott Williams & Wilkins. pp. 655–.ISBN 978-0-7817-6827-6. Retrieved19 July 2011.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_samarium&oldid=1314254900"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp