| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Standard atomic weightAr°(Sm) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurringsamarium (62Sm) is composed of five stableisotopes,144Sm,149Sm,150Sm,152Sm and154Sm, and two extremely long-livedradioisotopes,147Sm (half life: 1.066×1011 y) and148Sm (6.3×1015 y), with152Sm being the most abundant (26.75%natural abundance).146Sm (9.20×107 y)[2] is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as anextinct radionuclide.[5] It is the longest-lived nuclide that has not yet been confirmed to beprimordial. Its instability is due to having 84 neutrons (two more than 82, which is amagic number corresponding to a stable neutron configuration), and so it may emit analpha particle (which has 2 neutrons) to form neodymium-142 with 82 neutrons.
Other than those, the longest-lived radioisotopes are151Sm, which has ahalf-life of 94.6 years,[6] and145Sm, which has a half-life of 340 days. All of the remaining radioisotopes, which range from129Sm to168Sm, have half-lives that are less than two days, and the majority of these have half-lives that are less than 48 seconds. The most stable of the knownisomers is141mSm (half-life 22.6 minutes).
The long-lived isotopes,146Sm,147Sm, and148Sm, decay byalpha emission toisotopes of neodymium. Lighter unstable isotopes of samarium primarily decay byelectron capture toisotopes of promethium, while heavier ones decay bybeta decay toisotopes of europium. A 2012 paper[7] revising the estimated half-life of146Sm from 10.3(5)×107 y to 6.8(7)×107 y was retracted (due to an experimental mistake) in 2023,[7][8] and the current, more accurate, value published subsequently.
The isotope147Sm is used insamarium–neodymium dating and as mentioned theextinct146Sm can also be used for dating.
151Sm is amedium-lived fission product and acts as aneutron poison in thenuclear fuel cycle. The stablefission product149Sm is also a neutron poison.
Samarium is the lightest element with evenatomic number with no theoretically stable isotopes (all isotopes of it can energetically decay by thealpha,beta, ordouble-beta modes), other such elements are those with atomic numbers > 66 (dysprosium, which has the heaviest theoretically stable nuclide,164Dy).
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[9] [n 2][n 3] | Half-life[1] [n 4][n 5] | Decay mode[1] [n 6] | Daughter isotope [n 7][n 8] | Spin and parity[1] [n 9][n 5] | Natural abundance(mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 5] | Normal proportion[1] | Range of variation | |||||||||||||||||
| 129Sm | 62 | 67 | 128.95456(54)# | 550(100) ms | β+ (?%) | 129Pm | (1/2+,3/2+) | ||||||||||||
| β+, p (?%) | 128Nd | ||||||||||||||||||
| 130Sm | 62 | 68 | 129.94879(43)# | 1# s | 0+ | ||||||||||||||
| 131Sm | 62 | 69 | 130.94602(43)# | 1.2(2) s | β+ | 131Pm | 5/2+# | ||||||||||||
| β+, p (?%) | 130Nd | ||||||||||||||||||
| 132Sm | 62 | 70 | 131.94081(32)# | 4.0(3) s | β+ | 132Pm | 0+ | ||||||||||||
| 133Sm | 62 | 71 | 132.93856(32)# | 2.89(16) s | β+ (?%) | 133Pm | (5/2+) | ||||||||||||
| β+, p (?%) | 132Nd | ||||||||||||||||||
| 133mSm | 120(60)# keV | 3.5(4) s | β+ | 133Pm | (1/2−) | ||||||||||||||
| 134Sm | 62 | 72 | 133.93411(21)# | 9.5(8) s | β+ | 134Pm | 0+ | ||||||||||||
| 135Sm | 62 | 73 | 134.93252(17) | 10.3(5) s | β+ (99.98%) | 135Pm | (7/2+) | ||||||||||||
| β+, p (0.02%) | 134Nd | ||||||||||||||||||
| 136Sm | 62 | 74 | 135.928276(13) | 47(2) s | β+ | 136Pm | 0+ | ||||||||||||
| 136mSm | 2264.7(11) keV | 15(1) μs | IT | 136Sm | (8−) | ||||||||||||||
| 137Sm | 62 | 75 | 136.927008(31) | 45(1) s | β+ | 137Pm | (9/2−) | ||||||||||||
| 138Sm | 62 | 76 | 137.923244(13) | 3.1(2) min | β+ | 138Pm | 0+ | ||||||||||||
| 139Sm | 62 | 77 | 138.922297(12) | 2.57(10) min | β+ | 139Pm | 1/2+ | ||||||||||||
| 139mSm | 457.38(23) keV | 10.7(6) s | IT (93.7%) | 139Sm | 11/2− | ||||||||||||||
| β+ (6.3%) | 139Pm | ||||||||||||||||||
| 140Sm | 62 | 78 | 139.918995(13) | 14.82(12) min | β+ | 140Pm | 0+ | ||||||||||||
| 141Sm | 62 | 79 | 140.9184815(92) | 10.2(2) min | β+ | 141Pm | 1/2+ | ||||||||||||
| 141mSm | 175.9(3) keV | 22.6(2) min | β+ (99.69%) | 141Pm | 11/2− | ||||||||||||||
| IT (0.31%) | 141Sm | ||||||||||||||||||
| 142Sm | 62 | 80 | 141.9152094(20) | 72.49(5) min | EC (>95%) | 142Pm | 0+ | ||||||||||||
| β+ (<5%) | |||||||||||||||||||
| 142m1Sm | 2372.1(4) keV | 170(2) ns | IT | 142Sm | 7− | ||||||||||||||
| 142m2Sm | 3662.2(7) keV | 480(60) ns | IT | 142Sm | 10+ | ||||||||||||||
| 143Sm | 62 | 81 | 142.9146348(30) | 8.75(6) min | EC (60.0%) | 143Pm | 3/2+ | ||||||||||||
| β+ (40.0%) | 143Pm | ||||||||||||||||||
| 143m1Sm | 753.99(16) keV | 66(2) s | IT (99.76%) | 143Sm | 11/2− | ||||||||||||||
| β+ (0.24%) | 143Pm | ||||||||||||||||||
| 143m2Sm | 2793.8(13) keV | 30(3) ms | IT | 143Sm | 23/2− | ||||||||||||||
| 144Sm | 62 | 82 | 143.9120063(16) | Observationally stable[n 10] | 0+ | 0.0308(4) | |||||||||||||
| 144mSm | 2323.60(8) keV | 880(25) ns | IT | 144Sm | 6+ | ||||||||||||||
| 145Sm | 62 | 83 | 144.9134172(16) | 340(3) d | EC | 145Pm | 7/2− | ||||||||||||
| 145mSm | 8815(1) keV | 3.52(16) μs | IT | 145Sm | 49/2+ | ||||||||||||||
| 146Sm | 62 | 84 | 145.9130468(33) | 9.20(26)×107 y[2] | α | 142Nd | 0+ | Trace | |||||||||||
| 147Sm[n 11][n 12][n 13] | 62 | 85 | 146.9149044(14) | 1.066(5)×1011 y | α | 143Nd | 7/2− | 0.1500(14) | |||||||||||
| 148Sm[n 11] | 62 | 86 | 147.9148292(13) | 6.3(13)×1015 y | α | 144Nd | 0+ | 0.1125(9) | |||||||||||
| 149Sm[n 12][n 14] | 62 | 87 | 148.9171912(12) | Observationally stable[n 15] | 7/2− | 0.1382(10) | |||||||||||||
| 150Sm | 62 | 88 | 149.9172820(12) | Observationally stable[n 16] | 0+ | 0.0737(9) | |||||||||||||
| 151Sm[n 12][n 14] | 62 | 89 | 150.9199389(12) | 94.6(6) y | β− | 151Eu | 5/2− | ||||||||||||
| 151mSm | 261.13(4) keV | 1.4(1) μs | IT | 151Sm | (11/2)− | ||||||||||||||
| 152Sm[n 12] | 62 | 90 | 151.9197386(11) | Observationally stable[n 17] | 0+ | 0.2674(9) | |||||||||||||
| 153Sm[n 12] | 62 | 91 | 152.9221036(11) | 46.2846(23) h | β− | 153Eu | 3/2+ | ||||||||||||
| 153mSm | 98.39(10) keV | 10.6(3) ms | IT | 153Sm | 11/2− | ||||||||||||||
| 154Sm[n 12] | 62 | 92 | 153.9222158(14) | Observationally stable[n 18] | 0+ | 0.2274(14) | |||||||||||||
| 155Sm | 62 | 93 | 154.9246466(14) | 22.18(6) min | β− | 155Eu | 3/2− | ||||||||||||
| 155m1Sm | 16.5467(19) keV | 2.8(5) μs | IT | 155Sm | 5/2+ | ||||||||||||||
| 155m2Sm | 538.03(19) keV | 1.00(8) μs | IT | 155Sm | 11/2− | ||||||||||||||
| 156Sm | 62 | 94 | 155.9255382(91) | 9.4(2) h | β− | 156Eu | 0+ | ||||||||||||
| 156mSm | 1397.55(9) keV | 185(7) ns | IT | 156Sm | 5− | ||||||||||||||
| 157Sm | 62 | 95 | 156.9284186(48) | 8.03(7) min | β− | 157Eu | 3/2−# | ||||||||||||
| 158Sm | 62 | 96 | 157.9299493(51) | 5.30(3) min | β− | 158Eu | 0+ | ||||||||||||
| 159Sm | 62 | 97 | 158.9332171(64) | 11.37(15) s | β− | 159Eu | 5/2− | ||||||||||||
| 159mSm | 1276.5(8) keV | 116(8) ns | IT | 159Sm | (15/2+) | ||||||||||||||
| 160Sm | 62 | 98 | 159.9353370(21) | 9.6(3) s | β− | 160Eu | 0+ | ||||||||||||
| 160m1Sm | 1361.3(4) keV | 120(46) ns | IT | 160Sm | (5−) | ||||||||||||||
| 160m2Sm | 2757.3(4) keV | 1.8(4) μs | IT | 160Sm | (11+) | ||||||||||||||
| 161Sm | 62 | 99 | 160.9391601(73) | 4.8(4) s | β− | 161Eu | 7/2+# | ||||||||||||
| 161mSm | 1388.1(6) keV | 2.6(4) μs | IT | 161Sm | (17/2−) | ||||||||||||||
| 162Sm | 62 | 100 | 161.9416217(38) | 2.7(3) s | β− | 162Eu | 0+ | ||||||||||||
| 162mSm | 1009.4(5) keV | 1.78(7) μs | IT | 162Sm | (4−) | ||||||||||||||
| 163Sm | 62 | 101 | 162.9456791(79) | 1.744+0.180 −0.204 s[11] | β− | 163Eu | 1/2−# | ||||||||||||
| β−, n (<0.1%) | 162Eu | ||||||||||||||||||
| 164Sm | 62 | 102 | 163.9485501(44) | 1.422+0.54 −0.59 s[11] | β− | 164Eu | 0+ | ||||||||||||
| β−, n (<0.7%) | 163Eu | ||||||||||||||||||
| 164mSm | 1485.5(12) keV | 600(140) ns | IT | 164Sm | (6−) | ||||||||||||||
| 165Sm | 62 | 103 | 164.95329(43)# | 592+51 −55 ms[11] | β− (98.64%) | 165Eu | 5/2−# | ||||||||||||
| β−, n (1.36%) | 164Eu | ||||||||||||||||||
| 166Sm | 62 | 104 | 165.95658(43)# | 396+56 −63 ms[11] | β− (95.62%) | 166Eu | 0+ | ||||||||||||
| β−, n (4.38%) | 165Eu | ||||||||||||||||||
| 167Sm | 62 | 105 | 166.96207(54)# | 334+83 −78 ms[11] | β− | 167Eu | 7/2−# | ||||||||||||
| β−, n (<16%) | 166Eu | ||||||||||||||||||
| 168Sm | 62 | 106 | 167.96603(32)# | 353+210 −164 ms[11] | β− | 168Eu | 0+# | ||||||||||||
| β−, n (<21%) | 167Eu | ||||||||||||||||||
| This table header & footer: | |||||||||||||||||||
| IT: | Isomeric transition |
| p: | Proton emission |
Samarium-149 (149Sm) is an observationally stable isotope ofsamarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from thefission product149Nd (yield 1.0888%).149Sm is aneutron-absorbingnuclear poison with significant effect onnuclear reactor operation, second only to135Xe. Itsneutron cross section is 40140barns forthermal neutrons.
The equilibrium concentration (and thus the poisoning effect) builds to an equilibrium value in about 500 hours (about 20 days) of reactor operation, and since149Sm is stable, the concentration remains essentially constant during further reactor operation. This contrasts withxenon-135, which accumulates from the beta decay ofiodine-135 (a short livedfission product) and has a high neutron cross section, but itself decays with a half-life of 9.2 hours (so does not remain in constant concentration long after the reactor shutdown), causing the so-calledxenon pit.
| Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
|---|---|---|---|---|
| (a) | (%)[a 2] | (keV) | ||
| 155Eu | 4.74 | 0.0803[a 3] | 252 | βγ |
| 85Kr | 10.73 | 0.2180[a 4] | 687 | βγ |
| 113mCd | 13.9 | 0.0008[a 3] | 316 | β |
| 90Sr | 28.91 | 4.505 | 2826[a 5] | β |
| 137Cs | 30.04 | 6.337 | 1176 | βγ |
| 121mSn | 43.9 | 0.00005 | 390 | βγ |
| 151Sm | 94.6 | 0.5314[a 3] | 77 | β |
| ||||
| Thermal | Fast | 14 MeV | |
|---|---|---|---|
| 232Th | notfissile | 0.399 ± 0.065 | 0.165 ± 0.035 |
| 233U | 0.333 ± 0.017 | 0.312 ± 0.014 | 0.49 ± 0.11 |
| 235U | 0.4204 ± 0.0071 | 0.431 ± 0.015 | 0.388 ± 0.061 |
| 238U | notfissile | 0.810 ± 0.012 | 0.800 ± 0.057 |
| 239Pu | 0.776 ± 0.018 | 0.797 ± 0.037 | ? |
| 241Pu | 0.86 ± 0.24 | 0.910 ± 0.025 | ? |
Samarium-151 (151Sm) has ahalf-life of 94.6 years, undergoing low-energy beta decay, and has afission product yield of 0.4203% for thermal neutrons and235U, about 39% of149Sm's yield. The yield is somewhat higher for239Pu.
Itsneutron absorptioncross section forthermal neutrons is high at 15200barns, about 38% of149Sm's absorption cross section, or about 20 times that of235U. Since the ratios between the production and absorption rates of151Sm and149Sm are almost equal, the two isotopes should reach similar equilibrium concentrations. Since149Sm reaches equilibrium in about 500 hours (20 days),151Sm should reach equilibrium in about 50 days. As this is still much shorter than its radioactive half-life, decay will hardly affect this equilibrium while in the reactor.
Since nuclear fuel is used for several years (burnup) in anuclear power plant, the final amount of151Sm in thespent nuclear fuel at discharge is only a small fraction of the total151Sm produced during the use of the fuel. According to one study, the mass fraction of151Sm in spent fuel is about 0.0025 for heavy loading ofMOX fuel and about half that for uranium fuel, which is roughly two orders of magnitude less than the mass fraction of about 0.15 for themedium-lived fission product137Cs.[13] Thedecay energy of151Sm is also about an order of magnitude less than that of137Cs. The low yield, low survival rate, and lowdecay energy mean that151Sm has insignificantnuclear waste impact compared to the two mainmedium-lived fission products137Cs and90Sr.
Samarium-153 (153Sm) has a half-life of 46.285 hours, undergoing β− decay into stable153Eu. As a component ofsamarium lexidronam, it is used in palliation ofbone cancer.[14] It is treated by the body in a similar manner to calcium, and it localizes selectively tobone.
Daughter products other than samarium