Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of protactinium

From Wikipedia, the free encyclopedia

Isotopes ofprotactinium (91Pa)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
229Pasynth1.55 dε229Th
α225Ac
230Pasynth17.4 dβ+230Th
β230U
α226Ac
231Pa100%3.265×104 yα227Ac
232Pasynth1.32 dβ232U
233Patrace26.975 dβ233U
234Patrace6.70 hβ234U
234mPatrace1.159 minβ234U
Standard atomic weightAr°(Pa)

Protactinium (91Pa) has no stableisotopes. As231Pa occurs in usable quantity, and comprises virtually all of the element, it defines the standard atomic weight.

Thirtyradioisotopes of protactinium have been characterized, ranging from210Pa to239Pa. The most stable isotopes are231Pa with ahalf-life of 32,700 years,233Pa with a half-life of 26.975 days, and230Pa with a half-life of 17.4 days. All of the remainingradioactive isotopes have half-lives less than 1.6 days, and the majority of these have half-lives less than 1.8 seconds. This element also has fivemeta states,217mPa (t1/2 1.15 milliseconds),220m1Pa (t1/2 = 308 nanoseconds),220m2Pa (t1/2 = 69 nanoseconds),229mPa (t1/2 = 420 nanoseconds), and234mPa (t1/2 = 1.16 minutes).

The only naturally occurring isotopes are231Pa,233Pa,234Pa, and234mPa. The first occurs as an intermediate decay product of235U, the second of (rare)237Np, and the last two as intermediate decay products of238U.231Pa dominates solely because of its longer life.

The primarydecay mode for isotopes of Pa lighter than (and including) the most stable isotope231Pa isalpha decay toisotopes of actinium, except228Pa to230Pa, which primarily decay by electron capture toisotopes of thorium. The primary mode for the heavier isotopes isbeta minus (β) decay toisotopes of uranium.

List of isotopes

[edit]


Nuclide
[n 1]
Historic
name
ZNIsotopic mass(Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Isotopic
abundance
Excitation energy
210Pa[5]911196.0+1.5
−1.1
 ms
α206Ac3+
211Pa91120211.023674(75)6(3) msα207Ac9/2−
212Pa91121212.023185(94)5.8(19) msα208Ac3+#
213Pa91122213.021100(61)7.4(24) msα209Ac9/2−
214Pa91123214.020891(87)17(3) msα210Ac7+#
215Pa91124215.019114(89)14(2) msα211Ac9/2−
216Pa91125216.019135(26)105(12) msα212Ac5+#
217Pa91126217.018309(13)3.8(2) msα213Ac9/2−
217mPa1860(7) keV1.08(3) msα (73%)213Ac(23/2−)
IT (27%)217Pa
218Pa91127218.020021(19)108(5) μsα214Ac8−#
218mPa81(19) keV150(50) μsα214Ac
219Pa91128219.019950(75)56(9) nsα215Ac9/2−
220Pa91129220.021770(16)850(60) nsα216Ac1−#
220m1Pa[n 8]26(23) keV410(180) nsα216Ac
220m2Pa290(50) keV260(210) nsα216Ac
221Pa91130221.021873(64)5.9(17) μsα217Ac9/2−
222Pa91131222.023687(93)3.8(2) msα218Ac1−#
223Pa91132223.023980(81)5.3(3) msα219Ac9/2−
224Pa91133224.0256173(81)844(19) msα220Ac(5−)
225Pa91134225.026148(88)1.71(10) sα221Ac5/2−#
226Pa91135226.027948(12)1.8(2) minα (74%)222Ac1−#
β+ (26%)226Th
227Pa91136227.0288036(78)38.3(3) minα (85%)223Ac(5/2−)
EC (15%)227Th
228Pa91137228.0310508(47)22(1) hβ+ (98.15%)228Th3+
α (1.85%)224Ac
229Pa91138229.0320956(35)1.55(4) dEC (99.51%)229Th5/2+
α (0.49%)225Ac
229mPa12.20(4) keV420(30) nsIT229Pa3/2−
230Pa91139230.0345397(33)17.4(5) dβ+ (92.2%)230Th2−
β (7.8%)230U
α (0.0032%)226Ac
231PaProtoactinium
Protactinium[n 9]
91140231.0358825(19)3.265(20)×104 yα227Ac3/2−1.0000[n 10]
CD (1.34×10−9%)207Tl
24Ne
SF (<3×10−10%)(various)
CD (~10−12%)[6]208Pb
23F
232Pa91141232.0385902(82)1.32(2) dβ232U(2−)
233Pa91142233.0402465(14)26.975(13) dβ233U3/2−Trace[n 11]
234PaUranium Z91143234.0433056(44)6.70(5) hβ234U4+Trace[n 12]
234mPaUranium X2
Brevium
79(3) keV1.159(11) minβ (99.84%)234U(0−)Trace[n 12]
IT (0.16%)234Pa
235Pa91144235.045399(15)24.4(2) minβ235U3/2−
236Pa91145236.048668(15)9.1(1) minβ236U1(−)
β, SF (6×10−8%)(various)
237Pa91146237.051023(14)8.7(2) minβ237U1/2+
238Pa91147238.054637(17)2.28(9) minβ238U3−#
β, SF (2.6×10−6%)(various)
239Pa91148239.05726(21)#1.8(5) hβ239U1/2+#
This table header & footer:
  1. ^mPa – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture
    CD:Cluster decay
    IT:Isomeric transition
    SF:Spontaneous fission
  6. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^Order of ground state and isomer is uncertain.
  9. ^Source of element's name.
  10. ^Intermediatedecay product of235U
  11. ^Intermediate decay product of237Np
  12. ^abIntermediate decay product of238U

Actinides and fission products

[edit]

Protactinium-230

[edit]

Protactinium-230 has 139neutrons and a half-life of 17.4 days. Most of the time (92%), it undergoes beta plus decay to230Th, with a smaller (8%) beta-minus decay branch leading to230U. It also has a very rare (0.0032%) alpha decay mode leading to226Ac. It is not found in nature because its half-life is short and it is not found in thedecay chains of235U,238U, or232Th.

Protactinium-230 is of interest as a progenitor of uranium-230, an isotope that has been considered for use intargeted alpha-particle therapy (TAT). It can be produced through proton ordeuteron irradiation of natural thorium.[7]

Protactinium-231

[edit]

Protactinium-231 is the longest-lived isotope of protactinium,[8] with a half-life of 32,760 years.[9][10] In nature, it is found in trace amounts as part of theactinium series,[10][11] which starts with theprimordial isotopeuranium-235;[12] theequilibrium concentration in uranium ore is 46.5 atoms of231Pa per million of235U. Innuclear reactors, it is one of the few long-lived radioactiveactinides produced as a byproduct of the projectedthorium fuel cycle,[13] as a result of (n,2n) reactions where afast neutron removes aneutron from232Th or232U, and can also be destroyed byneutron capture, though thecross section for this reaction is also low.

A solution of protactinium-231

binding energy: 1759860 keV
beta decay energy: −382 keV

spin: 3/2−
mode of decay:alpha to227Ac, also others

possible parent nuclides:beta from231Th,EC from231U,alpha from235Np.

Protactinium-233

[edit]

Protactinium-233 is also part of the thorium fuel cycle. It is an intermediate beta decay product betweenthorium-233 (produced from natural thorium-232 by neutron capture) anduranium-233 (the fissile fuel of the thorium cycle).[14] Some thorium-cycle reactor designs try to protect Pa-233 from further neutron capture producing Pa-234 and U-234, which are not useful as fuel.

Protactinium-234

[edit]

Protactinium-234 is a member of theuranium series with a half-life of 6.70 hours. It was discovered byOtto Hahn in 1921.[15]

Protactinium-234m

[edit]

Protactinium-234m is a member of the uranium series with a half-life of 1.17 minutes. It was discovered in 1913 byKazimierz Fajans andOswald Helmuth Göhring, who named itbrevium for its short half-life.[16] It is now believed that all decays of the parentthorium-234 produce this isomer[17] and the ground state is observed because of (invisible) IT decay. Protactinium-234m has the same mass (same number of protons and neutrons) as Protactinium-234, the difference merely visible in their non-identical half-life, with Protactinium-234m having a noticeably shorter lifespan. This phenomenon is callednuclear isomerism.[18]

References

[edit]
  1. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Protactinium".CIAAW. 2017.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  5. ^Zhang, M. M.; Wang, J. G.; Ma, L.; Gan, Z. G.; Zhang, Z. Y.; Huang, M. H.; Yang, H. B.; Yang, C. L.; Andreyev, A. N.; Yuan, C. X.; Tian, Y. L.; Wang, Y. S.; Wang, J. Y.; Qiang, Y. H.; Wu, X. L.; Xu, S. Y.; Zhao, Z.; Huang, X. Y.; Li, Z. C.; Zhou, H.; Zhang, X.; Xie, G.; Zhu, L.; Guan, F.; Zheng, J. H.; Sun, L. C.; Li, Y. J.; Yang, H. R.; Duan, L. M.; Lu, Z. W.; Huang, W. X.; Sun, L. T.; He, Y.; Xu, H. S.; Niu, Y. F.; He, X. T.; Ren, Z. Z.; Zhou, S. G. (29 May 2025)."Discovery of the α-emitting isotope 210Pa".Nature Communications.16 (1): 5003.doi:10.1038/s41467-025-60047-2.ISSN 2041-1723.PMC 12123024.PMID 40442068.
  6. ^Bonetti, R.; Guglielmetti, A. (2007)."Cluster radioactivity: an overview after twenty years"(PDF).Romanian Reports in Physics.59:301–310. Archived fromthe original(PDF) on 19 September 2016.
  7. ^Mastren, T.; Stein, B.W.; Parker, T.G.; Radchenko, V.; Copping, R.; Owens, A.; Wyant, L.E.; Brugh, M.; Kozimor, S.A.; Noriter, F.M.; Birnbaum, E.R.; John, K.D.; Fassbender, M.E. (2018)."Separation of protactinium employing sulfur-based extraction chromatographic resins".Analytical Chemistry.90 (11):7012–7017.Bibcode:2018AnaCh..90.7012M.doi:10.1021/acs.analchem.8b01380.ISSN 0003-2700.OSTI 1440455.PMID 29757620.
  8. ^"Protactinium | Radioactive, Decay, Isotopes | Britannica".www.britannica.com. Retrieved2025-10-15.
  9. ^"Eigenschaften Protactinium 231 - Das Periodensystem online".www.periodensystem-online.de (in German). Retrieved2025-10-15.
  10. ^ab"Protactinium | Radioactive, Decay, Isotopes | Britannica".www.britannica.com. Retrieved2025-10-15.
  11. ^"Protactinium".www.chemie.de (in German). Retrieved2025-10-15.
  12. ^"Actinoid element | Chemical Properties & Uses | Britannica".www.britannica.com. Retrieved2025-10-15.
  13. ^"Use of Thorium in the Nuclear Fuel Cycle"(PDF). Gen IV International Forum. December 22, 2010.
  14. ^"Protactinium | Radioactive, Decay, Isotopes | Britannica".www.britannica.com. Retrieved2025-10-15.
  15. ^Fry, C., and M. Thoennessen. "Discovery of the Actinium, Thorium, Protactinium, and Uranium Isotopes." January 14, 2012. Accessed May 20, 2018.https://people.nscl.msu.edu/~thoennes/2009/ac-th-pa-u-adndt.pdf.
  16. ^"Human Health Fact Sheet - Protactinium"(PDF). Argonne National Laboratory (ANL). November 2001. Retrieved17 October 2023.
  17. ^ENSDF analysis available atNational Nuclear Data Center."NuDat 3.0 database".Brookhaven National Laboratory.
  18. ^"Protactinium".www.chemie.de (in German). Retrieved2025-10-15.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_protactinium&oldid=1329235130"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp