Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of promethium

From Wikipedia, the free encyclopedia

Isotopes ofpromethium (61Pm)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
143Pmsynth265 dε143Nd
144Pmsynth363 dε144Nd
145Pmsynth17.7 yε145Nd
α141Pr
146Pmsynth5.53 yε146Nd
β146Sm
147Pmtrace2.6234 yβ147Sm

Promethium (61Pm) is anartificial element, except in trace quantities as a product ofspontaneous fission of238U and235U and alpha decay of151Eu, and thus astandard atomic weight cannot be given. Like all artificial elements, it has nostable isotopes. It was first synthesized in 1945.

The known isotopes run from128Pm to166Pm, 39 in all; the most stable are145Pm with ahalf-life of 17.7 years,146Pm with a half-life of 5.53 years, and147Pm (the common isotope) with a half-life of 2.6234 years.143Pm and144Pm also have lengthy if poorly-known lives on the order of a year, but all the others have half-lives that are less than six days, with the majority less than a few minutes. There are also 24 knownmeta states with the most stable being148mPm at a half-life of 41.29 days.

The primarydecay mode for isotopes lighter than146Pm iselectron capture resulting inisotopes of neodymium, and the primary decay mode heavier than146Pm isbeta decay givingisotopes of samarium; promethium-146 itself decays both ways.

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[2]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 4]
Isotopic
abundance
Excitation energy[n 4]
128Pm6167127.94823(32)#1.0(3) sβ+ (?%)128Nd4+#
β+,p (?%)127Pr
129Pm6168128.94291(32)#2.4(9) sβ+129Nd5/2+#
130Pm6169129.94045(22)#2.6(2) sβ+ (?%)130Nd(5+, 6+, 4+)
β+, p (?%)129Pr
131Pm6170130.93583(22)#6.3(8) sβ+131Nd(11/2−)
132Pm6171131.93384(16)#6.2(6) sβ+132Nd(3+)
β+, p (5×10−5%)131Pr
133Pm6172132.929782(54)13.5(21) sβ+133Nd(3/2+)
133mPm129.7(7) keV8# s(11/2−)
134Pm6173133.928326(45)22(1) sβ+134Nd(5+)
134m1Pm50(50)# keV[n 9]~5 sβ+134Nd(2+)
134m2Pm120(50)# keV20(1) μsIT134Pm(7−)
135Pm6174134.924785(89)49(3) sβ+135Nd(3/2+, 5/2+)
135mPm240(100)# keV40(3) sβ+135Nd(11/2−)
136Pm6175135.923596(74)107(6) sβ+136Nd7+#
136m1Pm[n 9]100(120) keV90(35) sβ+136Nd2+#
136m2Pm42.7(2) keV1.5(1) μsIT136Pm7−#
137Pm6176136.920480(14)2# min5/2−#
137mPm160(50) keV2.4(1) minβ+137Nd11/2−
138Pm6177137.919576(12)3.24(5) minβ+138Nd3−#
139Pm6178138.916799(15)4.15(5) minβ+139Nd(5/2)+
139mPm188.7(3) keV180(20) msIT139Pm(11/2)−
140Pm6179139.916036(26)9.2(2) sβ+140Nd1+
140mPm429(28) keV5.95(5) minβ+140Nd8−
141Pm6180140.913555(15)20.90(5) minβ+141Nd5/2+
141m1Pm628.62(7) keV630(20) nsIT141Pm11/2−
141m2Pm2530.75(17) keV>2 μsIT141Pm(23/2+)
142Pm6181141.912891(25)40.5(5) sβ+ (77.1%)142Nd1+
EC (22.9%)
142m1Pm883.17(16) keV2.0(2) msIT142Pm(8)−
142m2Pm2828.7(6) keV67(5) μsIT142Pm(13−)
143Pm6182142.9109381(32)265(7) dEC143Nd5/2+
β+ (<5.7×10−6%)
144Pm6183143.9125962(31)363(14) dEC144Nd5−
β+ (<8×10−5%)
144m1Pm840.90(5) keV780(200) nsIT144Pm(9)+
144m2Pm8595.8(22) keV~2.7 μsIT144Pm(27+)
145Pm6184144.9127557(30)17.7(4) yEC145Nd5/2+
α (2.8×10−7%)141Pr
146Pm6185145.9147022(46)5.53(5) yEC (66.0%)146Nd3−
β (34.0%)146Sm
147Pm[n 10]6186146.9151449(14)2.6234(2) yβ147Sm7/2+Trace[n 11]
148Pm6187147.9174811(61)5.368(7) dβ148Sm1−
148mPm137.9(3) keV41.29(11) dβ (95.8%)148Sm5−, 6−
IT (4.2%)148Pm
149Pm[n 10]6188148.9183415(23)53.08(5) hβ149Sm7/2+
149mPm240.214(7) keV35(3) μsIT149Pm11/2−
150Pm6189149.920990(22)2.698(15) hβ150Sm(1−)
151Pm[n 10]6190150.9212166(49)28.40(4) hβ151Sm5/2+
152Pm6191151.923505(28)4.12(8) minβ152Sm1+
152mPm140(90) keV[n 9]7.52(8) minβ152Sm4(−)
153Pm6192152.9241563(97)5.25(2) minβ153Sm5/2−
154Pm6193153.926713(27)2.68(7) minβ154Sm(4+)
154mPm[n 9]−230(50) keV1.73(10) minβ154Sm(1−)
155Pm6194154.9281370(51)41.5(2) sβ155Sm(5/2−)
156Pm6195155.9311141(13)27.4(5) sβ156Sm4+
156mPm150.30(10) keV2.3(20) sIT (98%)156Pm1+#
β (2%)156Sm
157Pm6196156.9331213(75)10.56(10) sβ157Sm(5/2−)
158Pm6197157.93654695(95)4.8(5) sβ158Sm(0+,1+)#
158mPm150(50)# keV>16 μsIT158Pm5+#
159Pm6198158.939286(11)1.648+0.043
−0.042
 s
[3]
β159Sm(5/2−)
159mPm1465.0(5) keV4.42(17) μsIT159Pm17/2+#
β, n (<0.6%)[3]158Sm
160Pm6199159.9432153(22)874+16
−12
 ms
[3]
β160Sm6−#
β, n (<0.1%)[3]159Sm
160mPm191(11) keV>700 ms1−#
161Pm61100160.9462298(97)724+20
−12
 ms
[3]
β (98.91%)161Sm(5/2−)
β, n (1.09%)[3]160Sm
161mPm965.9(9) keV890(90) nsIT161Pm(13/2+)
162Pm61101161.95057(32)#467+38
−18
 ms
[3]
β (98.21%)162Sm2+#
β, n (1.79%)[3]161Sm
163Pm61102162.95388(43)#362+42
−30
 ms
[3]
β (95%)163Sm5/2−#
β, n (5.00%)[3]162Sm
164Pm61103163.95882(43)#280+38
−33
 ms
[3]
β (93.82%)164Sm5−#
β, n (6.18%)[3]163Sm
165Pm61104164.96278(54)#297+111
−101
 ms
[3]
β (86.74%)165Sm5/2−#
β, n (13.26%)[3]164Sm
166Pm61105228+131
−112
 ms
[3]
β166Sm
β, n (<52%)[3]165Sm
This table header & footer:
  1. ^mPm – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^( ) spin value – Indicates spin with weak assignment arguments.
  9. ^abcdOrder of ground state and isomer is uncertain.
  10. ^abcFission product
  11. ^Spontaneous fission product of232Th,235U,238U andalpha decay daughter of primordial151Eu

Stability of promethium isotopes

[edit]
See also:Isotopes of technetium § Stability of technetium isotopes

Promethium is one of the two elements of the first 82 elements that has no stable isotopes. This is a rarely occurring effect of theliquid drop model. Namely, promethium does not have anybeta-stable isotopes, as for anymass number, it is energetically favorable for a promethium isotope to undergopositron emission orbeta decay, respectively forming a neodymium or samarium isotope which has a higherbinding energy per nucleon. The other element for which this happens istechnetium (Z = 43).

Promethium-147

[edit]

Promethium-147beta decays to the long-livedprimordial radioisotopesamarium-147 with a half-life of 2.6234 years, emitting low-energy beta radiation without gamma emission. It is a commonfission product, produced innuclear reactors and in trace quantities in nature, where it is also produced by thealpha decay of europium-151.[4]

In the reactor environment, it is almost exclusively produced through beta decay ofneodymium-147 as usual for fission products. The isotopes142-146Nd,148Nd, and150Nd are allstable with respect to beta decay, so the isotopes of promethium with those masses are not produced by beta decay and are therefore not significant fission products (as they could only be produced directly, rather than through a beta-decay chain).149Pm and151Pm are, but have half-lives of only 53.08 and 28.40 hours, so are not found inspent nuclear fuel that has been cooled for months or years.

Promethium-147 is used as abeta particle source and aradioisotope thermoelectric generator (RTG) fuel; its power density is about 2 watts per gram. Mixed with a phosphor, it was used toilluminate theApollo Lunar Module electrical switch tips and the control panels of theLunar Roving Vehicle.[5] For luminescent applications, it has generally been replaced bytritium, which is even safer and has a longer half-life (12.32 years).

See also

[edit]

Daughter products other than promethium

References

[edit]
  1. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  3. ^abcdefghijklmnopKiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022)."Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region".The Astrophysical Journal.936 (107): 107.Bibcode:2022ApJ...936..107K.doi:10.3847/1538-4357/ac80fc.hdl:2117/375253.
  4. ^Belli, P.; Bernabei, R.; Cappella, F.; et al. (2007). "Search for α decay of natural Europium".Nuclear Physics A.789 (1–4):15–29.Bibcode:2007NuPhA.789...15B.doi:10.1016/j.nuclphysa.2007.03.001.
  5. ^"Apollo Experience Report - Protection Against Radiation"(PDF). NASA. Archived fromthe original(PDF) on 14 November 2014. Retrieved9 December 2011.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_promethium&oldid=1309269499"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp