| ||||||||||||||||||||||||||||||||||||||||
Promethium (61Pm) is anartificial element, except in trace quantities as a product ofspontaneous fission of238U and235U and alpha decay of151Eu, and thus astandard atomic weight cannot be given. Like all artificial elements, it has nostable isotopes. It was first synthesized in 1945.
The known isotopes run from128Pm to166Pm, 39 in all; the most stable are145Pm with ahalf-life of 17.7 years,146Pm with a half-life of 5.53 years, and147Pm (the common isotope) with a half-life of 2.6234 years.143Pm and144Pm also have lengthy if poorly-known lives on the order of a year, but all the others have half-lives that are less than six days, with the majority less than a few minutes. There are also 24 knownmeta states with the most stable being148mPm at a half-life of 41.29 days.
The primarydecay mode for isotopes lighter than146Pm iselectron capture resulting inisotopes of neodymium, and the primary decay mode heavier than146Pm isbeta decay givingisotopes of samarium; promethium-146 itself decays both ways.
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[2] [n 2][n 3] | Half-life[1] [n 4] | Decay mode[1] [n 5] | Daughter isotope [n 6][n 7] | Spin and parity[1] [n 8][n 4] | Isotopic abundance | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 4] | |||||||||||||||||||
| 128Pm | 61 | 67 | 127.94823(32)# | 1.0(3) s | β+ (?%) | 128Nd | 4+# | ||||||||||||
| β+,p (?%) | 127Pr | ||||||||||||||||||
| 129Pm | 61 | 68 | 128.94291(32)# | 2.4(9) s | β+ | 129Nd | 5/2+# | ||||||||||||
| 130Pm | 61 | 69 | 129.94045(22)# | 2.6(2) s | β+ (?%) | 130Nd | (5+, 6+, 4+) | ||||||||||||
| β+, p (?%) | 129Pr | ||||||||||||||||||
| 131Pm | 61 | 70 | 130.93583(22)# | 6.3(8) s | β+ | 131Nd | (11/2−) | ||||||||||||
| 132Pm | 61 | 71 | 131.93384(16)# | 6.2(6) s | β+ | 132Nd | (3+) | ||||||||||||
| β+, p (5×10−5%) | 131Pr | ||||||||||||||||||
| 133Pm | 61 | 72 | 132.929782(54) | 13.5(21) s | β+ | 133Nd | (3/2+) | ||||||||||||
| 133mPm | 129.7(7) keV | 8# s | (11/2−) | ||||||||||||||||
| 134Pm | 61 | 73 | 133.928326(45) | 22(1) s | β+ | 134Nd | (5+) | ||||||||||||
| 134m1Pm | 50(50)# keV[n 9] | ~5 s | β+ | 134Nd | (2+) | ||||||||||||||
| 134m2Pm | 120(50)# keV | 20(1) μs | IT | 134Pm | (7−) | ||||||||||||||
| 135Pm | 61 | 74 | 134.924785(89) | 49(3) s | β+ | 135Nd | (3/2+, 5/2+) | ||||||||||||
| 135mPm | 240(100)# keV | 40(3) s | β+ | 135Nd | (11/2−) | ||||||||||||||
| 136Pm | 61 | 75 | 135.923596(74) | 107(6) s | β+ | 136Nd | 7+# | ||||||||||||
| 136m1Pm[n 9] | 100(120) keV | 90(35) s | β+ | 136Nd | 2+# | ||||||||||||||
| 136m2Pm | 42.7(2) keV | 1.5(1) μs | IT | 136Pm | 7−# | ||||||||||||||
| 137Pm | 61 | 76 | 136.920480(14) | 2# min | 5/2−# | ||||||||||||||
| 137mPm | 160(50) keV | 2.4(1) min | β+ | 137Nd | 11/2− | ||||||||||||||
| 138Pm | 61 | 77 | 137.919576(12) | 3.24(5) min | β+ | 138Nd | 3−# | ||||||||||||
| 139Pm | 61 | 78 | 138.916799(15) | 4.15(5) min | β+ | 139Nd | (5/2)+ | ||||||||||||
| 139mPm | 188.7(3) keV | 180(20) ms | IT | 139Pm | (11/2)− | ||||||||||||||
| 140Pm | 61 | 79 | 139.916036(26) | 9.2(2) s | β+ | 140Nd | 1+ | ||||||||||||
| 140mPm | 429(28) keV | 5.95(5) min | β+ | 140Nd | 8− | ||||||||||||||
| 141Pm | 61 | 80 | 140.913555(15) | 20.90(5) min | β+ | 141Nd | 5/2+ | ||||||||||||
| 141m1Pm | 628.62(7) keV | 630(20) ns | IT | 141Pm | 11/2− | ||||||||||||||
| 141m2Pm | 2530.75(17) keV | >2 μs | IT | 141Pm | (23/2+) | ||||||||||||||
| 142Pm | 61 | 81 | 141.912891(25) | 40.5(5) s | β+ (77.1%) | 142Nd | 1+ | ||||||||||||
| EC (22.9%) | |||||||||||||||||||
| 142m1Pm | 883.17(16) keV | 2.0(2) ms | IT | 142Pm | (8)− | ||||||||||||||
| 142m2Pm | 2828.7(6) keV | 67(5) μs | IT | 142Pm | (13−) | ||||||||||||||
| 143Pm | 61 | 82 | 142.9109381(32) | 265(7) d | EC | 143Nd | 5/2+ | ||||||||||||
| β+ (<5.7×10−6%) | |||||||||||||||||||
| 144Pm | 61 | 83 | 143.9125962(31) | 363(14) d | EC | 144Nd | 5− | ||||||||||||
| β+ (<8×10−5%) | |||||||||||||||||||
| 144m1Pm | 840.90(5) keV | 780(200) ns | IT | 144Pm | (9)+ | ||||||||||||||
| 144m2Pm | 8595.8(22) keV | ~2.7 μs | IT | 144Pm | (27+) | ||||||||||||||
| 145Pm | 61 | 84 | 144.9127557(30) | 17.7(4) y | EC | 145Nd | 5/2+ | ||||||||||||
| α (2.8×10−7%) | 141Pr | ||||||||||||||||||
| 146Pm | 61 | 85 | 145.9147022(46) | 5.53(5) y | EC (66.0%) | 146Nd | 3− | ||||||||||||
| β− (34.0%) | 146Sm | ||||||||||||||||||
| 147Pm[n 10] | 61 | 86 | 146.9151449(14) | 2.6234(2) y | β− | 147Sm | 7/2+ | Trace[n 11] | |||||||||||
| 148Pm | 61 | 87 | 147.9174811(61) | 5.368(7) d | β− | 148Sm | 1− | ||||||||||||
| 148mPm | 137.9(3) keV | 41.29(11) d | β− (95.8%) | 148Sm | 5−, 6− | ||||||||||||||
| IT (4.2%) | 148Pm | ||||||||||||||||||
| 149Pm[n 10] | 61 | 88 | 148.9183415(23) | 53.08(5) h | β− | 149Sm | 7/2+ | ||||||||||||
| 149mPm | 240.214(7) keV | 35(3) μs | IT | 149Pm | 11/2− | ||||||||||||||
| 150Pm | 61 | 89 | 149.920990(22) | 2.698(15) h | β− | 150Sm | (1−) | ||||||||||||
| 151Pm[n 10] | 61 | 90 | 150.9212166(49) | 28.40(4) h | β− | 151Sm | 5/2+ | ||||||||||||
| 152Pm | 61 | 91 | 151.923505(28) | 4.12(8) min | β− | 152Sm | 1+ | ||||||||||||
| 152mPm | 140(90) keV[n 9] | 7.52(8) min | β− | 152Sm | 4(−) | ||||||||||||||
| 153Pm | 61 | 92 | 152.9241563(97) | 5.25(2) min | β− | 153Sm | 5/2− | ||||||||||||
| 154Pm | 61 | 93 | 153.926713(27) | 2.68(7) min | β− | 154Sm | (4+) | ||||||||||||
| 154mPm[n 9] | −230(50) keV | 1.73(10) min | β− | 154Sm | (1−) | ||||||||||||||
| 155Pm | 61 | 94 | 154.9281370(51) | 41.5(2) s | β− | 155Sm | (5/2−) | ||||||||||||
| 156Pm | 61 | 95 | 155.9311141(13) | 27.4(5) s | β− | 156Sm | 4+ | ||||||||||||
| 156mPm | 150.30(10) keV | 2.3(20) s | IT (98%) | 156Pm | 1+# | ||||||||||||||
| β− (2%) | 156Sm | ||||||||||||||||||
| 157Pm | 61 | 96 | 156.9331213(75) | 10.56(10) s | β− | 157Sm | (5/2−) | ||||||||||||
| 158Pm | 61 | 97 | 157.93654695(95) | 4.8(5) s | β− | 158Sm | (0+,1+)# | ||||||||||||
| 158mPm | 150(50)# keV | >16 μs | IT | 158Pm | 5+# | ||||||||||||||
| 159Pm | 61 | 98 | 158.939286(11) | 1.648+0.043 −0.042 s[3] | β− | 159Sm | (5/2−) | ||||||||||||
| 159mPm | 1465.0(5) keV | 4.42(17) μs | IT | 159Pm | 17/2+# | ||||||||||||||
| β−, n (<0.6%)[3] | 158Sm | ||||||||||||||||||
| 160Pm | 61 | 99 | 159.9432153(22) | 874+16 −12 ms[3] | β− | 160Sm | 6−# | ||||||||||||
| β−, n (<0.1%)[3] | 159Sm | ||||||||||||||||||
| 160mPm | 191(11) keV | >700 ms | 1−# | ||||||||||||||||
| 161Pm | 61 | 100 | 160.9462298(97) | 724+20 −12 ms[3] | β− (98.91%) | 161Sm | (5/2−) | ||||||||||||
| β−, n (1.09%)[3] | 160Sm | ||||||||||||||||||
| 161mPm | 965.9(9) keV | 890(90) ns | IT | 161Pm | (13/2+) | ||||||||||||||
| 162Pm | 61 | 101 | 161.95057(32)# | 467+38 −18 ms[3] | β− (98.21%) | 162Sm | 2+# | ||||||||||||
| β−, n (1.79%)[3] | 161Sm | ||||||||||||||||||
| 163Pm | 61 | 102 | 162.95388(43)# | 362+42 −30 ms[3] | β− (95%) | 163Sm | 5/2−# | ||||||||||||
| β−, n (5.00%)[3] | 162Sm | ||||||||||||||||||
| 164Pm | 61 | 103 | 163.95882(43)# | 280+38 −33 ms[3] | β− (93.82%) | 164Sm | 5−# | ||||||||||||
| β−, n (6.18%)[3] | 163Sm | ||||||||||||||||||
| 165Pm | 61 | 104 | 164.96278(54)# | 297+111 −101 ms[3] | β− (86.74%) | 165Sm | 5/2−# | ||||||||||||
| β−, n (13.26%)[3] | 164Sm | ||||||||||||||||||
| 166Pm | 61 | 105 | 228+131 −112 ms[3] | β− | 166Sm | ||||||||||||||
| β−, n (<52%)[3] | 165Sm | ||||||||||||||||||
| This table header & footer: | |||||||||||||||||||
| EC: | Electron capture |
| IT: | Isomeric transition |
| n: | Neutron emission |
| p: | Proton emission |
Promethium is one of the two elements of the first 82 elements that has no stable isotopes. This is a rarely occurring effect of theliquid drop model. Namely, promethium does not have anybeta-stable isotopes, as for anymass number, it is energetically favorable for a promethium isotope to undergopositron emission orbeta decay, respectively forming a neodymium or samarium isotope which has a higherbinding energy per nucleon. The other element for which this happens istechnetium (Z = 43).
Promethium-147beta decays to the long-livedprimordial radioisotopesamarium-147 with a half-life of 2.6234 years, emitting low-energy beta radiation without gamma emission. It is a commonfission product, produced innuclear reactors and in trace quantities in nature, where it is also produced by thealpha decay of europium-151.[4]
In the reactor environment, it is almost exclusively produced through beta decay ofneodymium-147 as usual for fission products. The isotopes142-146Nd,148Nd, and150Nd are allstable with respect to beta decay, so the isotopes of promethium with those masses are not produced by beta decay and are therefore not significant fission products (as they could only be produced directly, rather than through a beta-decay chain).149Pm and151Pm are, but have half-lives of only 53.08 and 28.40 hours, so are not found inspent nuclear fuel that has been cooled for months or years.
Promethium-147 is used as abeta particle source and aradioisotope thermoelectric generator (RTG) fuel; its power density is about 2 watts per gram. Mixed with a phosphor, it was used toilluminate theApollo Lunar Module electrical switch tips and the control panels of theLunar Roving Vehicle.[5] For luminescent applications, it has generally been replaced bytritium, which is even safer and has a longer half-life (12.32 years).
Daughter products other than promethium