| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Standard atomic weightAr°(Os) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Osmium (76Os) has seven naturally occurringisotopes, five of which are stable:187Os,188Os,189Os,190Os, and (most abundant)192Os. The other natural isotopes,184Os, and186Os, have extremely longhalf-lives (1.12×1013 years and 2.0×1015 years, respectively) and for practical purposes can be considered to be stable as well.187Os is the daughter of187Re (half-life 4.12×1010 years) and is most often measured by the187Os/188Os ratio. This ratio, as well as the187Re/188Os ratio, have been used extensively in dating terrestrial as well asmeteoricrocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of themantle roots of continentalcratons.
There are also 31 artificialradioisotopes,[4] the longest-lived of which are194Os with a half-life of 6.0 years,185Os with 92.95 days, and191Os with 14.99 days; others are under 30 hours, with most under seven minutes. There are also 19 listednuclear isomers, the longest-lived of which is191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive orobservationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.
The isotopic ratio of osmium-187 and osmium-188 (187Os/188Os) can be used as a window into geochemical changes throughout the ocean's history.[5] The average marine187Os/188Os ratio in oceans is 1.06.[5] This value represents a balance of the continental riverine inputs of Os with a187Os/188Os ratio of ~1.3, and themantle/extraterrestrial inputs with a187Os/188Os ratio of ~0.13.[5] The lighter isotope,187Os, is produced by beta decay of187Re.[6] This decay has actually increased the187Os/188Os ratio of thebulk silicate earth (Earth less the core) by 33%.[7] The difference between crust and mantle ratios is explained this way:crustal rocks have a much higher level of rhenium[why?], which produces an excess of187Os.[6] The combined input of the two sources to the marine environment results in the observed ratio in the oceans, and has fluctuated over the geologic history. These changes in the isotopic values of marine Os can be observed in themarine sediment that is deposited, and eventuallylithified in that time period.[8] This allows for researchers to estimate weathering fluxes, flood basalt volcanism, and impact events that may have caused some of our largest mass extinctions. The marine sediment Os isotope record has corroborated the K-T boundary impact, for example.[9] The impact of this ~10 km asteroid massively altered the187Os/188Os signature of marine sediments at that time - the average extraterrestrial187Os/188Os of ~0.13 and the huge amount of Os this impact contributed (equivalent to 600,000 years of present-day riverine inputs) lowered the global marine187Os/188Os value of ~0.45 to a minimum of ~0.2.[5]
Os isotope ratios may also be used as a signal of anthropogenic impact.[10] The same187Os/188Os ratios that are common in geological settings may be used to gauge the addition of anthropogenic Os through things likecatalytic converters.[10] While catalytic converters have been shown to drastically reduce the emission of NOx and CO, they are introducingplatinum group elements (PGE) such as Os, to the environment.[10] Other sources of anthropogenic Os include combustion offossil fuels, smeltingchromium ore, and smelting of somesulfide ores. In one study, the effect of automobile exhaust on the marine Os system was evaluated. Automobile exhaust187Os/188Os has been recorded to be ~0.2 (similar to extraterrestrial and mantle derived inputs).[10][5] The effect of anthropogenic Os can be seen best by comparing aquatic Os ratios and local sediments or deeper waters. Surface waters thought to be affected have depleted values compared to deep ocean and sediments by a ratio larger than can be explained by cosmic inputs.[10]
The alpha decay of184Os into180W (with a rate perhaps large enough for detection) has been proposed as aradiometric dating method for osmium-rich rocks or fordifferentiation of a planetary core.[11][12][13]
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[14] [n 2][n 3] | Half-life[1] [n 4] | Decay mode[1] [n 5] | Daughter isotope [n 6][n 7] | Spin and parity[1] [n 8][n 9] | Natural abundance(mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
| 160Os[15] | 76 | 84 | 97+97 −32 μs | α | 156W | 0+ | |||||||||||||
| 160mOs[15] | 1844(18) keV | 41+15 −9 μs | α | 156W | 8+ | ||||||||||||||
| 161Os | 76 | 85 | 160.98905(43)# | 0.64(6) ms | α | 157W | (7/2–) | ||||||||||||
| 162Os | 76 | 86 | 161.98443(32)# | 2.1(1) ms | α | 158W | 0+ | ||||||||||||
| 163Os | 76 | 87 | 162.98246(32)# | 5.7(5) ms | α | 159W | 7/2– | ||||||||||||
| β+ ? | 163Re | ||||||||||||||||||
| 164Os | 76 | 88 | 163.97807(16) | 21(1) ms | α (96%) | 160W | 0+ | ||||||||||||
| β+ (4%) | 164Re | ||||||||||||||||||
| 165Os | 76 | 89 | 164.97665(22)# | 71(3) ms | α (90%) | 161W | (7/2–) | ||||||||||||
| β+ (10%) | 165Re | ||||||||||||||||||
| 166Os | 76 | 90 | 165.972698(19) | 213(5) ms | α (83%) | 162W | 0+ | ||||||||||||
| β+ (17%) | 166Re | ||||||||||||||||||
| 167Os | 76 | 91 | 166.971552(87) | 839(5) ms | α (51%) | 163W | 7/2– | ||||||||||||
| β+ (49%) | 167Re | ||||||||||||||||||
| 167mOs | 434.3(11) keV | 0.672(7) μs | IT | 167Os | 13/2+ | ||||||||||||||
| 168Os | 76 | 92 | 167.967799(11) | 2.1(1) s | β+ (57%) | 168Re | 0+ | ||||||||||||
| α (43%) | 164W | ||||||||||||||||||
| 169Os | 76 | 93 | 168.967018(28) | 3.46(11) s | β+ (86.3%) | 169Re | (5/2–) | ||||||||||||
| α (13.7%) | 165W | ||||||||||||||||||
| 170Os | 76 | 94 | 169.963579(10) | 7.37(18) s | β+ (90.5%) | 170Re | 0+ | ||||||||||||
| α (9.5%) | 166W | ||||||||||||||||||
| 171Os | 76 | 95 | 170.963180(20) | 8.3(2) s | β+ (98.20%) | 171Re | (5/2−) | ||||||||||||
| α (1.80%) | 167W | ||||||||||||||||||
| 172Os | 76 | 96 | 171.960017(14) | 19.2(9) s | β+ (98.81%) | 172Re | 0+ | ||||||||||||
| α (1.19%) | 168W | ||||||||||||||||||
| 173Os | 76 | 97 | 172.959808(16) | 22.4(9) s | β+ (99.6%) | 173Re | 5/2– | ||||||||||||
| α (0.4%) | 169W | ||||||||||||||||||
| 174Os | 76 | 98 | 173.957063(11) | 44(4) s | β+ (99.976%) | 174Re | 0+ | ||||||||||||
| α (0.024%) | 170W | ||||||||||||||||||
| 175Os | 76 | 99 | 174.956945(13) | 1.4(1) min | β+ | 175Re | (5/2−) | ||||||||||||
| 176Os | 76 | 100 | 175.954770(12) | 3.6(5) min | β+ | 176Re | 0+ | ||||||||||||
| 177Os | 76 | 101 | 176.954958(16) | 3.0(2) min | β+ | 177Re | 1/2− | ||||||||||||
| 178Os | 76 | 102 | 177.953253(15) | 5.0(4) min | β+ | 178Re | 0+ | ||||||||||||
| 179Os | 76 | 103 | 178.953816(17) | 6.5(3) min | β+ | 179Re | 1/2– | ||||||||||||
| 179m1Os | 145.41(12) keV | ~500 ns | IT | 179Os | (7/2)– | ||||||||||||||
| 179m2Os | 243.0(8) keV | 783(14) ns | IT | 179Os | (9/2)+ | ||||||||||||||
| 180Os | 76 | 104 | 179.952382(17) | 21.5(4) min | β+ | 180Re | 0+ | ||||||||||||
| 181Os | 76 | 105 | 180.953247(27) | 105(3) min | β+ | 181Re | 1/2− | ||||||||||||
| 181m1Os | 49.20(14) keV | 2.7(1) min | β+ | 181Re | 7/2− | ||||||||||||||
| 181m2Os | 156.91(15) keV | 262(6) ns | IT | 181Os | 9/2+ | ||||||||||||||
| 182Os | 76 | 106 | 181.952110(23) | 21.84(20) h | EC | 182Re | 0+ | ||||||||||||
| 182m1Os | 1831.4(3) keV | 780(70) μs | IT | 182Os | 8– | ||||||||||||||
| 182m2Os | 7049.5(4) keV | 150(10) ns | IT | 182Os | 25+ | ||||||||||||||
| 183Os | 76 | 107 | 182.953125(53) | 13.0(5) h | β+ | 183Re | 9/2+ | ||||||||||||
| 183mOs | 170.73(7) keV | 9.9(3) h | β+ (85%) | 183Re | 1/2− | ||||||||||||||
| IT (15%) | 183Os | ||||||||||||||||||
| 184Os[n 10] | 76 | 108 | 183.95249292(89) | 1.12(23)×1013 y | α[n 11] | 180W | 0+ | 2(2)×10−4 | |||||||||||
| 185Os | 76 | 109 | 184.95404597(89) | 92.95(9) d | EC | 185Re | 1/2− | ||||||||||||
| 185m1Os | 102.37(11) keV | 3.0(4) μs | IT | 185Os | 7/2− | ||||||||||||||
| 185m2Os | 275.53(12) keV | 0.78(5) μs | IT | 185Os | 11/2+ | ||||||||||||||
| 186Os[n 10] | 76 | 110 | 185.95383757(82) | 2.0(11)×1015 y | α | 182W | 0+ | 0.0159(64) | |||||||||||
| 187Os[n 12] | 76 | 111 | 186.95574957(79) | Observationally Stable[n 13] | 1/2− | 0.0196(17) | |||||||||||||
| 187m1Os | 100.45(4) keV | 112(6) ns | IT | 187Os | 7/2− | ||||||||||||||
| 187m2Os | 257.10(7) keV | 231(2) μs | IT | 187Os | 11/2+ | ||||||||||||||
| 188Os[n 12] | 76 | 112 | 187.95583729(79) | Observationally Stable[n 14] | 0+ | 0.1324(27) | |||||||||||||
| 189Os | 76 | 113 | 188.95814595(72) | Observationally Stable[n 15] | 3/2− | 0.1615(23) | |||||||||||||
| 189mOs | 30.82(2) keV | 5.81(10) h | IT | 189Os | 9/2− | ||||||||||||||
| 190Os | 76 | 114 | 189.95844544(70) | Observationally Stable[n 16] | 0+ | 0.2626(20) | |||||||||||||
| 190mOs | 1705.7(1) keV | 9.86(3) min | IT | 190Os | 10− | ||||||||||||||
| 191Os | 76 | 115 | 190.96092811(71) | 14.99(2) d | β− | 191Ir | 9/2− | ||||||||||||
| 191mOs | 74.382(3) keV | 13.10(5) h | IT | 191Os | 3/2− | ||||||||||||||
| 192Os | 76 | 116 | 191.9614788(25) | Observationally Stable[n 17] | 0+ | 0.4078(32) | |||||||||||||
| 192m1Os | 2015.40(11) keV | 5.94(9) s | IT | 192Os | 10− | ||||||||||||||
| β−? | 192Ir | ||||||||||||||||||
| 192m2Os | 4580.3(10) keV | 205(7) ns | IT | 192Os | (20+) | ||||||||||||||
| 193Os | 76 | 117 | 192.9641496(25) | 29.830(18) h | β− | 193Ir | 3/2− | ||||||||||||
| 193mOs | 315.6(3) keV | 121(28) ns | IT | 193Os | (9/2−) | ||||||||||||||
| 194Os | 76 | 118 | 193.9651794(26) | 6.0(2) y | β− | 194Ir | 0+ | ||||||||||||
| 195Os | 76 | 119 | 194.968318(60) | 6.5(11) min | β− | 195Ir | (3/2−) | ||||||||||||
| 195mOs | 427.8(3) keV | 47(3) s | IT | 195Os | (13/2+) | ||||||||||||||
| β−? | 195Ir | ||||||||||||||||||
| 196Os | 76 | 120 | 195.969643(43) | 34.9(2) min | β− | 196Ir | 0+ | ||||||||||||
| 197Os | 76 | 121 | 196.97308(22)# | 93(7) s | β− | 197Ir | 5/2−# | ||||||||||||
| 198Os | 76 | 122 | 197.97466(22)# | 125(28) s | β− | 198Ir | 0+ | ||||||||||||
| 199Os | 76 | 123 | 198.97824(22)# | 6(3) s | β− | 199Ir | 5/2−# | ||||||||||||
| 200Os | 76 | 124 | 199.98009(32)# | 7(4) s | β− | 200Ir | 0+ | ||||||||||||
| 201Os | 76 | 125 | 200.98407(32)# | 3# s [>300ns] | β−? | 201Ir | 1/2−# | ||||||||||||
| 202Os | 76 | 126 | 201.98655(43)# | 2# s [>300ns] | β−? | 202Ir | 0+ | ||||||||||||
| 203Os | 76 | 127 | 202.99220(43)# | 300# ms [>300ns] | β−? | 203Ir | 9/2+# | ||||||||||||
| β− n? | 202Ir | ||||||||||||||||||
| This table header & footer: | |||||||||||||||||||
| EC: | Electron capture |
| IT: | Isomeric transition |
| p: | Proton emission |
Daughter products other than osmium