Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of nihonium

From Wikipedia, the free encyclopedia
Nuclides with atomic number of 113 but with different mass numbers
Isotopes ofnihonium (113Nh)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
278Nhsynth2.0 msα274Rg
282Nhsynth61 msα278Rg
283Nhsynth123 msα279Rg
284Nhsynth0.90 sα280Rg
ε284Cn
285Nhsynth2.1 sα281Rg
SF
286Nhsynth9.5 sα282Rg
287Nhsynth5.5 s?[2]α283Rg
290Nhsynth2 s?[3]α286Rg

Nihonium (113Nh) is asynthetic element. Being synthetic, astandard atomic weight cannot be given and like all artificial elements, it has nostable isotopes. The firstisotope to be synthesized was284Nh as adecay product of288Mc in 2003. The first isotope to be directly synthesized was278Nh in 2004. There are 6 knownradioisotopes from278Nh to286Nh, along with the unconfirmed287Nh and290Nh. The longest-lived isotope is286Nh with ahalf-life of 9.5 seconds.

List of isotopes

[edit]


Nuclide
ZNIsotopic mass(Da)[4]
[n 1][n 2]
Half-life[1]
Decay
mode
[1]
[n 3]
Daughter
isotope

Spin and
parity[1]
278Nh113165278.17073(24)#2.0+2.7
−0.7
 ms

[2.3(13) ms]
α274Rg
282Nh113169282.17577(43)#61+73
−22
 ms
[5]
α278Rg
283Nh[n 4]113170283.17667(47)#123+80
−35
 ms
[5]
α279Rg
284Nh[n 5]113171284.17884(57)#0.90+0.07
−0.06
 s
[5]
α (≥99%)280Rg 
EC (≤1%)[5]284Cn
285Nh[n 6]113172285.18011(83)#2.1+0.6
−0.3
 s
[5]
α (82%)281Rg
SF (18%)[5](various)
286Nh[n 7]113173286.18246(63)#9.5+6.3
−2.7
 s

[12(5) s]
α282Rg
287Nh[2][n 8]113174287.18406(76)#5.5 sα283Rg
290Nh[n 9]113177290.19143(50)#2.0+9.6
−0.9
 s

[8(6) s]
α286Rg
SF (<50%)(various)
This table header & footer:
  1. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  3. ^Modes of decay:
    EC:Electron capture
  4. ^Not directly synthesized, occurs asdecay product of287Mc
  5. ^Not directly synthesized, occurs as decay product of288Mc
  6. ^Not directly synthesized, occurs indecay chain of293Ts
  7. ^Not directly synthesized, occurs in decay chain of294Ts
  8. ^Not directly synthesized, occurs in decay chain of287Fl; unconfirmed
  9. ^Not directly synthesized, occurs in decay chain of290Fl and294Lv; unconfirmed

Isotopes and nuclear properties

[edit]

Nucleosynthesis

[edit]

Super-heavy elements such as nihonium are produced by bombarding lighter elements inparticle accelerators that inducefusion reactions. Whereas most of the isotopes of nihonium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higheratomic numbers.[6]

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[7] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to theground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[6] The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (seecold fusion).[8]

Cold fusion

[edit]

Before the synthesis of nihonium by the RIKEN team, scientists at theInstitute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) inDarmstadt, Germany also tried to synthesize nihonium by bombarding bismuth-209 with zinc-70 in 1998. No nihonium atoms were identified in two separate runs of the reaction.[9] They repeated the experiment in 2003 again without success.[9] In late 2003, the emerging team atRIKEN using their efficient apparatus GARIS attempted the reaction and reached a limit of 140 fb. In December 2003 – August 2004, they resorted to "brute force" and carried out the reaction for a period of eight months. They were able to detect a single atom of278Nh.[10] They repeated the reaction in several runs in 2005 and were able to synthesize a second atom,[11] followed by a third in 2012.[12]

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=113.

TargetProjectileCNAttempt result
208Pb71Ga279NhReaction yet to be attempted
209Bi70Zn279NhSuccessful reaction
238U45Sc283NhReaction yet to be attempted
237Np48Ca285NhSuccessful reaction
244Pu41K285NhReaction yet to be attempted
250Cm37Cl287NhReaction yet to be attempted
248Cm37Cl285NhReaction yet to be attempted

Hot fusion

[edit]

In June 2006, the Dubna-Livermore team synthesised nihonium directly by bombarding aneptunium-237 target with acceleratedcalcium-48 nuclei, in a search for the lighter isotopes281Nh and282Nh and their decay products, to provide insight into the stabilizing effects of the closed neutron shells atN = 162 andN = 184:[13]

237
93
Np
+48
20
Ca
282
113
Nh
+ 31
0
n

Two atoms of282Nh were detected.[13]

As decay product

[edit]
List of nihonium isotopes observed by decay
Evaporation residueObserved nihonium isotope
294Lv,290Fl ?290Nh ?[3]
287Fl ?287Nh ?[2]
294Ts,290Mc286Nh[14]
293Ts,289Mc285Nh[14]
288Mc284Nh[15]
287Mc283Nh[15]
286Mc282Nh

Nihonium has been observed as a decay product ofmoscovium (via alpha decay). Moscovium currently has five known isotopes; all of them undergo alpha decays to become nihonium nuclei, with mass numbers between 282 and 286. Parent moscovium nuclei can be themselves decay products oftennessine. It may also occur as a decay product of flerovium (via electron capture), and parent flerovium nuclei can be themselves decay products oflivermorium.[16] For example, in January 2010, the Dubna team (JINR) identified nihonium-286 as a product in the decay of tennessine via an alpha decay sequence:[14]

294
117
Ts
290
115
Mc
+4
2
He
290
115
Mc
286
113
Nh
+4
2
He

Theoretical calculations

[edit]

Evaporation residue cross sections

[edit]

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

TargetProjectileCNChannel (product)σmaxModelRef
209Bi70Zn279Nh1n (278Nh)30 fbDNS[17]
238U45Sc283Nh3n (280Nh)20 fbDNS[18]
237Np48Ca285Nh3n (282Nh)0.4 pbDNS[19]
244Pu41K285Nh3n (282Nh)42.2 fbDNS[18]
250Cm37Cl287Nh4n (283Nh)0.594 pbDNS[18]
248Cm37Cl285Nh3n (282Nh)0.26 pbDNS[18]

References

[edit]
  1. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^abcHofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.).Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164.ISBN 9789813226555.
  3. ^abHofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120".The European Physics Journal A.2016 (52).doi:10.1140/epja/i2016-16180-4.
  4. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  5. ^abcdefOganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope286Mc produced in the243Am+48Ca reaction".Physical Review C.106 (64306) 064306.Bibcode:2022PhRvC.106f4306O.doi:10.1103/PhysRevC.106.064306.S2CID 254435744.
  6. ^abArmbruster, Peter & Münzenberg, Gottfried (1989). "Creating superheavy elements".Scientific American.34:36–42.
  7. ^Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009)."Discovery of the element with atomic number 112 (IUPAC Technical Report)".Pure and Applied Chemistry.81 (7): 1331.doi:10.1351/PAC-REP-08-03-05.
  8. ^Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium".Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.261 (2):301–308.doi:10.1016/0022-0728(89)80006-3.
  9. ^ab"Search for element 113"Archived 2012-02-19 at theWayback Machine, Hofmann et al.,GSI report 2003. Retrieved on 3 March 2008
  10. ^Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction209Bi(70Zn, n)278113".Journal of the Physical Society of Japan.73 (10):2593–2596.Bibcode:2004JPSJ...73.2593M.doi:10.1143/JPSJ.73.2593.
  11. ^Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011)."Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)".Pure and Applied Chemistry.83 (7): 1485.doi:10.1351/PAC-REP-10-05-01.
  12. ^K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope,278113, of the 113th Element".Journal of the Physical Society of Japan.81 (10) 103201.arXiv:1209.6431.Bibcode:2012JPSJ...81j3201M.doi:10.1143/JPSJ.81.103201.S2CID 119217928.
  13. ^abOganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Sagaidak, R.; Shirokovsky, I.; Tsyganov, Yu.; Voinov, A.; Gulbekian, Gulbekian; et al. (2007)."Synthesis of the isotope282113 in the237Np+48Ca fusion reaction"(PDF).Physical Review C.76 (1): 011601(R).Bibcode:2007PhRvC..76a1601O.doi:10.1103/PhysRevC.76.011601.
  14. ^abcOganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H.; et al. (2010)."Synthesis of a New Element with Atomic Number Z=117".Physical Review Letters.104 (14) 142502.Bibcode:2010PhRvL.104n2502O.doi:10.1103/PhysRevLett.104.142502.PMID 20481935.
  15. ^abOganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in48Ca-induced Reactions (Synthesis and Decay Properties)".AIP Conference Proceedings. Vol. 912. pp. 235–246.doi:10.1063/1.2746600.
  16. ^Sonzogni, Alejandro."Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived fromthe original on 2007-08-07. Retrieved2008-06-06.
  17. ^Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner (2007). "Formation of superheavy nuclei in cold fusion reactions".Physical Review C.76 (4) 044606.arXiv:0707.2588.Bibcode:2007PhRvC..76d4606F.doi:10.1103/PhysRevC.76.044606.S2CID 711489.
  18. ^abcdFeng, Z.; Jin, G.; Li, J. (2009). "Production of new superheavy Z=108-114 nuclei with238U,244Pu and248,250Cm targets".Physical Review C.80 (5) 057601.arXiv:0912.4069.doi:10.1103/PhysRevC.80.057601.S2CID 118733755.
  19. ^Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions".Nuclear Physics A.816 (1–4):33–51.arXiv:0803.1117.Bibcode:2009NuPhA.816...33F.doi:10.1016/j.nuclphysa.2008.11.003.S2CID 18647291.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_nihonium&oldid=1318322629"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp