Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of neodymium

From Wikipedia, the free encyclopedia

Isotopes ofneodymium (60Nd)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
140Ndsynth3.37 dβ+140Pr
142Nd27.2%stable
143Nd12.2%stable
144Nd23.8%2.29×1015 yα140Ce
145Nd8.3%stable
146Nd17.2%stable
147Ndsynth10.98 dβ147Pm
148Nd5.80%stable
150Nd5.60%9.3×1018 yββ150Sm
Standard atomic weightAr°(Nd)

Naturally occurringneodymium (60Nd) is composed of fivestable isotopes,142Nd,143Nd,145Nd,146Nd and148Nd, with142Nd being the most abundant (27.2%natural abundance), and two long-livedradioisotopes,144Nd and150Nd. In all, 35 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes144Nd (alpha decay, ahalf-life (t1/2) of2.29×1015 years) and150Nd (double beta decay, t1/2 of9.3×1018 years), and for practical purposes they can be considered to be stable as well. The radioactivity of144Nd is due to it having 84 neutrons (two more than 82, which is amagic number corresponding to a stable neutron configuration), and so it may emit analpha particle (which has 2 neutrons) to form cerium-140 with 82 neutrons.

All of the remainingradioactive isotopes have half-lives that are less than 11 days, and the majority of these have half-lives that are less than 70 seconds. The most stableartificial isotope is147Nd, the parent of promethium, with a half-life of 10.98 days. This element also has 15 knownmeta states with the most stable being139mNd (t1/2 5.5 hours),135mNd (t1/2 5.5 minutes) and133m1Nd (t1/2 ~70 seconds).

The primarydecay modes for isotopes lighter than the lightest and most abundant stable isotope, which is also the only theoretically stable isotope,142Nd, areelectron capture andpositron decay, and the primary mode for heavier radioisotopes isbeta decay. The primarydecay products for lighter radioisotopes arepraseodymium isotopes and the primary products for heavier ones arepromethium isotopes.

Neodymium isotopes as fission products

[edit]

Neodymium is one of the more commonfission products that results from the splitting ofuranium-233,uranium-235,plutonium-239 andplutonium-241. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors inGabon had produced anatural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth.[4][5][6]

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[7]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity[1]
[n 8][n 5]
Natural abundance(mole fraction)
Excitation energy[n 5]Normal proportion[1]Range of variation
125Nd6065124.94840(43)#0.65(15) sβ+125Pr(5/2)(+#)
β+,p (?%)124Ce
126Nd6066125.94269(32)#1# s
[>200 ns]
0+
127Nd6067126.93998(32)#1.8(4) sβ+127Pr5/2+#
β+, p (?%)126Ce
128Nd6068127.93502(22)#5# s0+
129Nd6069128.93304(22)#6.8(6) sβ+129Pr7/2−[8]
β+, p (?%)128Ce
129m1Nd17 keV[8]2.6(4) sβ+129Pr1/2+[8]
β+, p (?%)128Ce
129m2Nd[8]39 keV2.6(4) sβ+129Pr3/2+
β+, p (?%)128Ce
129m3Nd[8]108 keVIT (?%)129m2Nd5/2+
IT (?%)129Nd
129m4Nd[8]1893 keVIT129Nd(17/2+)
129m5Nd[8]2109 keVIT129Nd(19/2+)
129m6Nd[8]2284 keV0.48(4) μsIT129Nd(21/2+)
130Nd6070129.928506(30)21(3) sβ+130Pr0+
131Nd6071130.927248(30)25.4(9) sβ+131Pr(5/2+)
β+, p (?%)130Ce
132Nd6072131.923321(26)1.56(10) minβ+132Pr0+
133Nd6073132.922348(50)70(10) sβ+133Pr(7/2+)
133m1Nd127.97(12) keV~70 sβ+ (?%)133Pr(1/2)+
IT (?%)133Nd
133m2Nd176.10(10) keV301(18) nsIT133Nd(9/2–)
134Nd6074133.918790(13)8.5(15) minβ+134Pr0+
134mNd2293.0(4) keV389(17) μsIT134Nd8–
135Nd6075134.918181(21)12.4(6) minβ+135Pr9/2–
135mNd64.95(24) keV5.5(5) minβ+135Pr(1/2+)
136Nd6076135.914976(13)50.65(33) minβ+136Pr0+
137Nd6077136.914563(13)38.5(15) minβ+137Pr1/2+
137mNd519.43(20) keV1.60(15) sIT137Nd11/2–
138Nd6078137.911951(12)5.04(9) hβ+138Pr0+
138mNd3174.5(4) keV370(5) nsIT138Nd10+
139Nd6079138.911951(30)29.7(5) minβ+139Pr3/2+
139m1Nd231.16(5) keV5.50(20) hβ+ (87.0%)139Pr11/2–
IT (13.0%)139Nd
139m2Nd2616.9(6) keV276.8(18) nsIT139Nd23/2
140Nd6080139.9095461(35)3.37(2) dEC140Pr0+
140m1Nd2221.65(9) keV600(50) μsIT140Nd7–
140m2Nd7435.1(4) keV1.22(6) μsIT140Nd20+
141Nd6081140.9096167(34)2.49(3) hEC (97.28%)141Pr3/2+
β+ (2.72%)
141mNd756.51(5) keV62.0(8) sIT (99.97%)141Nd11/2–
β+ (0.032%)141Pr
142Nd6082141.9077288(13)Stable0+0.27153(40)
143Nd[n 9]6083142.9098198(13)Observationally Stable[n 10]7/2−0.12173(26)
144Nd[n 9][n 11]6084143.9100928(13)2.29(16)×1015 yα140Ce0+0.23798(19)
145Nd[n 9]6085144.9125792(14)Observationally Stable[n 12]7/2−0.08293(12)
146Nd[n 9]6086145.9131225(14)Observationally Stable[n 13]0+0.17189(32)
147Nd[n 9]6087146.9161060(14)10.98(1) dβ147Pm5/2−
148Nd[n 9]6088147.9168990(22)Observationally Stable[n 14]0+0.05756(21)
149Nd[n 9]6089148.9201546(22)1.728(1) hβ149Pm5/2−
150Nd[n 9][n 11]6090149.9209013(12)9.3(7)×1018 yββ150Sm0+0.05638(28)
151Nd6091150.9238394(12)12.44(7) minβ151Pm3/2+
152Nd6092151.924691(26)11.4(2) minβ152Pm0+
153Nd6093152.9277179(29)31.6(10) sβ153Pm(3/2)−
153mNd191.71(16) keV1.10(4) μsIT153Nd(5/2)+
154Nd6094153.9295974(11)25.9(2) sβ154Pm0+
154mNd1297.9(4) keV3.2(3) μsIT154Nd(4−)
155Nd6095154.9331356(98)8.9(2) sβ155Pm(3/2−)
156Nd6096155.9353704(14)5.06(13) sβ156Pm0+
156mNd1431.3(4) keV365(145) nsIT156Nd5−
157Nd6097156.9393511(23)1.17(4) s[12]β157Pm5/2−#
158Nd6098157.9422056(14)810(30) msβ158Pm0+
158mNd1648.1(14) keV339(20) nsIT158Nd(6−)
159Nd6099158.946619(32)500(30) msβ159Pm7/2+#
160Nd60100159.949839(50)439(37) msβ160Pm0+
160mNd1107.9(9) keV1.63(21) μsIT160Nd(4−)
161Nd60101160.95466(43)#215(76) msβ161Pm1/2−#
162Nd60102161.95812(43)#310(200) msβ162Pm0+
163Nd60103162.96341(54)#80# ms
[>550 ns]
5/2−#
This table header & footer:
  1. ^mNd – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition


    p:Proton emission
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^( ) spin value – Indicates spin with weak assignment arguments.
  9. ^abcdefghFission product
  10. ^Believed to undergo α decay to139Ce with a half-life over1.1×1020 years[9][10]
  11. ^abPrimordialradionuclide
  12. ^Believed to undergo α decay to141Ce with a half-life of over6.1×1019 years[11][10]
  13. ^Believed to undergo ββ decay to146Sm, or α decay to142Ce with a half-life of over3.3×1021 years[11][10]
  14. ^Believed to undergo ββ decay to148Sm with a half-life over3×1018 years, or α decay to144Ce with a half-life of over1.2×1019 years[11][10]

See also

[edit]

Daughter products other than neodymium

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Neodymium".CIAAW. 2005.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Hemond, C.; Menet, C.; Menager, M.T. (1991)."U and Nd Isotopes from the New Oklo Reactor 10 (GABON): Evidence for Radioelements Migration".MRS Proceedings.257.doi:10.1557/PROC-257-489.
  5. ^"Oklo's Natural Nuclear Reactors". 24 October 2020.
  6. ^"The Implications of the Oklo Phenomenon on the Constancy of Radiometric Decay Rates".
  7. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  8. ^abcdefghPetrache, C. M.; Uusitalo, J.; Briscoe, A. D.; Sullivan, C. M.; Joss, D. T.; Tann, H.; Aktas, ö.; Alayed, B.; Al-Aqeel, M. A. M.; Astier, A.; Badran, H.; Cederwall, B.; Delafosse, C.; Ertoprak, A.; Favier, Z.; Forsberg, U.; Gins, W.; Grahn, T.; Greenlees, P. T.; He, X. T.; Heery, J.; Hilton, J.; Kalantan, S.; Li, R.; Jodidar, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Lewis, M. C.; Li, J. G.; Li, Z. P.; Luoma, M.; Lv, B. F.; McCarter, A.; Nathaniel, S.; Ojala, J.; Page, R. D.; Pakarinen, J.; Papadakis, P.; Parr, E.; Partanen, J.; Paul, E. S.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Smallcombe, J.; Sorri, J.; Szwec, S.; Wang, L. J.; Wang, Y.; Waring, L.; Xu, F. R.; Zhang, J.; Zhang, Z. H.; Zheng, K. K.; Zimba, G. (19 July 2023)."High- K three-quasiparticle isomers in the proton-rich nucleus Nd 129"(PDF).Physical Review C.108 (1).doi:10.1103/PhysRevC.108.014317.
  9. ^Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Poda, D. V.; Polischuk, O. G.; Sokur, N. V.; Tretyak, V. I. (1 March 2024)."Search for alpha and double alpha decays of natural Nd isotopes accompanied by gamma quanta".European Physical Journal A.60 (46).doi:10.1140/epja/s10050-024-01260-3.
  10. ^abcdBelli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays".European Physical Journal A.55 (140):4–6.arXiv:1908.11458.Bibcode:2019EPJA...55..140B.doi:10.1140/epja/i2019-12823-2.S2CID 201664098.
  11. ^abcSokur, N.V.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Kobychev, V.V.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Polischuk, O.G.; Tretyak, V.I. (11 July 2023).Alpha decay of naturally occurring neodymium isotopes. XII International Conference on New Frontiers in Physics.
  12. ^Hartley, D. J.; Kondev, F. G.; Carpenter, M. P.; Clark, J. A.; Copp, P.; Kay, B.; Lauritsen, T.; Savard, G.; Seweryniak, D.; Wilson, G. L.; Wu, J. (2023-08-14). "First β-decay spectroscopy study of157Nd".Physical Review C.108 (2) 024307. American Physical Society (APS).Bibcode:2023PhRvC.108b4307H.doi:10.1103/physrevc.108.024307.ISSN 2469-9985.S2CID 260913513.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_neodymium&oldid=1313875438"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp