Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of molybdenum

From Wikipedia, the free encyclopedia
"Mo-99" redirects here. For MO99 Freon mix R438A, seerefrigerant.

Isotopes ofmolybdenum (42Mo)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
92Mo14.7%stable
93Mosynth4839 y[2]ε93Nb
94Mo9.19%stable
95Mo15.9%stable
96Mo16.7%stable
97Mo9.58%stable
98Mo24.3%stable
99Mosynth65.932 hβ99mTc
100Mo9.74%7.07×1018 yββ100Ru
Standard atomic weightAr°(Mo)

Molybdenum (42Mo) has seven isotopes in nature, with atomic masses of 92, 94-98, and 100. All are stable except100Mo, which undergoesdouble beta decay with ahalf-life of 7.07×1018 years (theshortest known for this mode) to100Ru.92Mo and98Mo are also energetically able to decay in this manner, to zirconium and ruthenium respectively; the others are theoretically stable. There are also a total of 32 syntheticisotopes known, and at least 13 metastablenuclear isomers, ranging inatomic mass from 81 to 119.

The isotopes with mass 93 or lower decay byelectron capture or positron emission toniobium isotopes (orzirconium after delayed proton emission); those with mass 99 or higher by ordinarybeta decay totechnetium. The most stable of the former are93Mo, recently measured to have a half-life around 4800 years,[2] and90Mo at 5.56 hours. The most stable of the latter is the medically important99Mo, half-life 65.932 hours, and whose decay leads to thechief isotope of technetium. By far the most stable isomer is93m1Mo at 6.85 hours, decaying to its ground state.

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 8]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
81Mo423980.96623(54)#1# ms
[>400 ns]
β+?81Nb5/2+#
β+,p?80Zr
82Mo424081.95666(43)#30# ms
[>400 ns]
β+?82Nb0+
β+, p?81Zr
83Mo424182.95025(43)#23(19) msβ+83Nb3/2−#
β+, p?82Zr
84Mo424283.941882(24)[6]2.3(3) sβ+84Nb0+
β+, p?83Zr
85Mo424384.938261(17)3.2(2) sβ+ (99.86%)85Nb(1/2+)
β+, p (0.14%)84Zr
86Mo424485.931174(3)19.1(3) sβ+86Nb0+
87Mo424586.928196(3)14.1(3) sβ+ (85%)87Nb7/2+#
β+, p (15%)86Zr
87mMo[7]310(30) keV(1/2−)
88Mo424687.921968(4)8.0(2) minβ+88Nb0+
89Mo424788.919468(4)2.11(10) minβ+89Nb(9/2+)
89mMo387.5(2) keV190(15) msIT89Mo(1/2−)
90Mo424889.913931(4)5.56(9) hβ+90Nb0+
90mMo2874.73(15) keV1.14(5) μsIT90Mo8+
91Mo424990.911745(7)15.49(1) minβ+91Nb9/2+
91mMo653.01(9) keV64.6(6) sIT (50.0%)91Mo1/2−
β+ (50.0%)91Nb
92Mo425091.90680715(17)Observationally Stable[n 9]0+0.14649(106)
92mMo2760.52(14) keV190(3) nsIT92Mo8+
93Mo425192.90680877(19)4839(63) y[2]EC (95.7%)93mNb5/2+
EC (4.3%)93Nb
93m1Mo2424.95(4) keV6.85(7) hIT (99.88%)93Mo21/2+
β+ (0.12%)93Nb
93m2Mo9695(17) keV1.8(10) μsIT93Mo(39/2−)
94Mo425293.90508359(15)Stable0+0.09187(33)
95Mo[n 10]425394.90583744(13)Stable5/2+0.15873(30)
96Mo425495.90467477(13)Stable0+0.16673(8)
97Mo[n 10]425596.90601690(18)Stable5/2+0.09582(15)
98Mo[n 10]425697.90540361(19)Observationally Stable[n 11]0+0.24292(80)
99Mo[n 10][n 12]425798.90770730(25)65.932(5) hβ99mTc1/2+
99m1Mo97.785(3) keV15.5(2) μsIT99Mo5/2+
99m2Mo684.10(19) keV760(60) nsIT99Mo11/2−
100Mo[n 10][n 13]425899.9074680(3)7.07(14)×1018 yββ100Ru0+0.09744(65)
101Mo4259100.9103376(3)14.61(3) minβ101Tc1/2+
101m1Mo13.497(9) keV226(7) nsIT101Mo3/2+
101m2Mo57.015(11) keV133(70) nsIT101Mo5/2+
102Mo4260101.910294(9)11.3(2) minβ102Tc0+
103Mo4261102.913092(10)67.5(15) sβ103Tc3/2+
104Mo4262103.913747(10)60(2) sβ104Tc0+
105Mo4263104.9169798(23)[8]36.3(8) sβ105Tc(5/2−)
106Mo4264105.9182732(98)8.73(12) sβ106Tc0+
107Mo4265106.9221198(99)3.5(5) sβ107Tc(1/2+)
107mMo65.4(2) keV445(21) nsIT107Mo(5/2+)
108Mo4266107.9240475(99)1.105(10) sβ (>99.5%)108Tc0+
β,n (<0.5%)107Tc
109Mo4267108.928438(12)700(14) msβ (98.7%)109Tc(1/2+)
β, n (1.3%)108Tc
109mMo69.7(5) keV210(60) nsIT109Mo5/2+#
110Mo4268109.930718(26)292(7) msβ (98.0%)110Tc0+
β, n (2.0%)109Tc
111Mo4269110.935652(14)193.6(44) msβ (>88%)111Tc1/2+#
β, n (<12%)110Tc
111mMo100(50)# keV~200 msβ111Tc7/2−#
β, n?110Tc
112Mo4270111.93829(22)#125(5) msβ112Tc0+
β, n?111Tc
113Mo4271112.94348(32)#80(2) msβ113Tc5/2+#
β, n?112Tc
114Mo4272113.94667(32)#58(2) msβ114Tc0+
β, n?113Tc
115Mo4273114.95217(43)#45.5(20) msβ115Tc3/2+#
β, n?114Tc
β, 2n?113Tc
116Mo4274115.95576(54)#32(4) msβ116Tc0+
β, n?115Tc
β, 2n?114Tc
117Mo4275116.96169(54)#22(5) msβ117Tc3/2+#
β, n?116Tc
β, 2n?115Tc
118Mo4276117.96525(54)#21(6) msβ118Tc0+
β, n?117Tc
β, 2n?116Tc
119Mo4277118.97147(32)#12# ms
[>550 ns]
β?119Tc3/2+#
β, n?118Tc
β, 2n?117Tc
This table header & footer:
  1. ^mMo – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^Believed to decay by β+β+ to92Zr with a half-life over 1.9×1020 y
  10. ^abcdeFission product
  11. ^Believed to decay by ββ to98Ru with a half-life of over 1×1014 years
  12. ^Usedto produce themedically useful radioisotopetechnetium-99m
  13. ^Primordialradionuclide

Molybdenum-99

[edit]
Overhead view of the RA-3 research reactor pool (CNEA, Argentina) during molybdenum-99 production
Overhead view of the RA-3research reactor pool (CNEA,Argentina) during molybdenum-99 production

Molybdenum-99 is produced commercially by intense neutron-bombardment (i.e.fission) of a highly purifieduranium-235 target, followed rapidly by extraction.[9] It is used as a parent radioisotope intechnetium-99m generators to produce the even shorter-lived daughter isotopetechnetium-99m, which is used in approximately 40 million medical procedures annually. A common misunderstanding or misnomer is that99Mo is used in these diagnostic medical scans, when actually it has no role in the imaging agent or the scan itself. In fact,99Mo co-eluted with the99mTc (also known as breakthrough) is considered a contaminant and is minimised to adhere to the appropriateUSP (or equivalent) regulations and standards. The IAEA recommends that99Mo concentrations exceeding more than 0.15 μCi/mCi99mTc or 0.015% should not be administered for usage in humans.[10] Typically, quantification of99Mo breakthrough is performed for every elution when using a99Mo/99mTc generator during QA-QC testing of the final product.

There are alternative routes for generating99Mo that do not require a fissionable target, such as high or low enriched uranium (i.e., HEU or LEU). Some of these include accelerator-based methods, such as proton bombardment orphotoneutron reactions on enriched100Mo targets. Historically,99Mo generated by neutron capture on natural isotopic molybdenum or enriched98Mo targets was used for the development of commercial99Mo/99mTc generators.[11][12] The neutron-capture process was eventually superseded by fission-based99Mo that could be generated with much higher specific activities. Implementing feed-stocks of high specific activity99Mo solutions thus allowed for higher quality production and better separations of99mTc from99Mo on small alumina column usingchromatography. Employing low-specific activity99Mo under similar conditions is particularly problematic in that either higher Mo loading capacities or larger columns are required for accommodating equivalent amounts of99Mo. Chemically speaking, this phenomenon occurs due to other Mo isotopes present aside from99Mo that compete for surface site interactions on the column substrate. In turn, low-specific activity99Mo usually requires much larger column sizes and longer separation times, and usually yields99mTc accompanied by unsatisfactory amounts of the parent radioisotope when usingγ-alumina as the column substrate. Ultimately, the inferior end-product99mTc generated under these conditions makes it essentially incompatible with the current supply chain.

In the last decade, cooperative agreements between the US government and private capital entities have resurrected neutron capture production for commercially distributed99Mo/99mTc in the United States of America.[13] The return to neutron-capture-based99Mo has also been accompanied by the implementation of novel separation methods that allow for low-specific activity99Mo to be utilized.[citation needed]

See also

[edit]

Daughter products other than molybdenum

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^abcKajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05)."First direct determination of the93Mo half-life".Scientific Reports.11 (1).doi:10.1038/s41598-021-99253-5.ISSN 2045-2322.PMC 8492754.PMID 34611245.
  3. ^"Standard Atomic Weights: Molybdenum".CIAAW. 2013.
  4. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  5. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  6. ^Kimura, S.; Wada, M.; Fu, C. Y.; Fukuda, N.; Hirayama, Y.; Hou, D. S.; Iimura, S.; Ishiyama, H.; Ito, Y.; Kubono, S.; Kusaka, K.; Michimasa, S.; Miyatake, H.; Nishimura, S.; Niwase, T.; Phong, V.; Rosenbusch, M.; Schatz, H.; Schury, P.; Shimizu, Y.; Suzuki, H.; Takamine, A.; Takeda, H.; Togano, Y.; Watanabe, Y. X.; Xian, W. D.; Yanagisawa, Y.; Yeung, T. T.; Yoshimoto, M.; Zha, S. (8 October 2025). "Precision Mass Measurements around Mo 84 Rule Out ZrNb Cycle Formation in the Rapid Proton-Capture Process at Type I X-Ray Bursts".Physical Review Letters.135 (15) 152701.doi:10.1103/2dyn-q7wp.PMID 41138077.
  7. ^Xing, Y. M.; Yuan, C. X.; Wang, M.; Zhang, Y. H.; Zhou, X. H.; Litvinov, Yu. A.; Blaum, K.; Xu, H. S.; Bao, T.; Chen, R. J.; Fu, C. Y.; Gao, B. S.; Ge, W. W.; He, J. J.; Huang, W. J.; Liao, T.; Li, J. G.; Li, H. F.; Litvinov, S.; Naimi, S.; Shuai, P.; Sun, M. Z.; Wang, Q.; Xu, X.; Xu, F. R.; Yamaguchi, T.; Yan, X. L.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhang, M.; Zhou, X. (11 January 2023). "Isochronous mass measurements of neutron-deficient nuclei from Sn 112 projectile fragmentation".Physical Review C.107 (1) 014304.doi:10.1103/PhysRevC.107.014304.
  8. ^Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. (2024)."Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL".Physical Review C.110 (3) 034326.arXiv:2403.04710.Bibcode:2024PhRvC.110c4326J.doi:10.1103/PhysRevC.110.034326.
  9. ^Frank N. Von Hippel; Laura H. Kahn (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes".Science & Global Security.14 (2 & 3):151–162.Bibcode:2006S&GS...14..151V.doi:10.1080/08929880600993071.S2CID 122507063.
  10. ^Ibrahim I, Zulkifli H, Bohari Y, Zakaria I, Wan Hamirul BWK.Minimizing Molybdenum-99 Contamination In Technetium-99m Pertechnetate From The Elution Of99Mo/99mTc Generator(PDF) (Report).
  11. ^Richards, P. (1989).Technetium-99m: The early days. 3rd International Symposium on Technetium in Chemistry and Nuclear Medicine, Padova, Italy, 5-8 Sep 1989.OSTI 5612212.
  12. ^Richards, P. (1965-10-14). The Technetium-99m Generator (Report).doi:10.2172/4589063.OSTI 4589063.
  13. ^"Emerging leader with new solutions in the field of nuclear medicine technology".NorthStar Medical Radioisotopes, LLC. Retrieved2020-01-23.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_molybdenum&oldid=1328654233"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp