Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of chlorine

From Wikipedia, the free encyclopedia

icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of chlorine" – news ·newspapers ·books ·scholar ·JSTOR
(May 2018) (Learn how and when to remove this message)
Isotopes ofchlorine (17Cl)
Main isotopes[1]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
35Cl75.8%stable
36Cltrace3.01×105 yβ36Ar
ε36S
37Cl24.2%stable
Standard atomic weightAr°(Cl)

Chlorine (17Cl) has two stableisotopes,35Cl (75.8%) and37Cl (24.2%), giving chlorine astandard atomic weight of 35.45. Artificicalradioisotopes are known ranging from28Cl to52Cl, and there are also twoisomers,34mCl and38mCl. The longest-lived radioactive isotope is36Cl, which has a half-life of 301,000 years. All other isotopes and isomers have half-lives under an hour, and most under 10 seconds.

List of isotopes

[edit]
Nuclide
[n 1]
ZNIsotopic mass(Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
28Cl[5]171128.03035(54)#p27S1+#
29Cl171229.01505(20)#5.4(19) zsp28S(1/2+)
30Cl171330.005018(26)<50 ns[5]p29S3+#
31Cl171430.9924481(37)190(1) msβ+ (97.6%)31S3/2+
β+, p (2.4%)30P
32Cl171531.98568461(60)298(1) msβ+ (99.92%)32S1+
β+,α (0.054%)28Si
β+, p (0.026%)31P
33Cl171632.97745199(42)2.5038(22) sβ+33S3/2+
34Cl171733.973762490(52)1.5267(4) sβ+34S0+
34mCl146.360(27) keV31.99(3) minβ+ (55.4%)34S3+
IT (44.6%)34Cl
35Cl171834.968852694(38)Stable3/2+0.758(2)
36Cl[n 8]171935.968306822(38)3.013(15)×105 yβ (98.1%)36Ar2+7×10−13[6][7][n 9]
β+ (1.9%)36S
37Cl172036.965902573(55)Stable3/2+0.242(2)
38Cl172137.96801041(11)37.230(14) minβ38Ar2−
38mCl671.365(8) keV715(3) msIT38Cl5−
39Cl172238.9680082(19)56.2(6) minβ39Ar3/2+
40Cl172339.970415(34)1.35(3) minβ40Ar2−
41Cl172440.970685(74)38.4(8) sβ41Ar(1/2+)
42Cl172541.973342(64)6.8(3) sβ42Ar(2−)
β,n?41Ar
43Cl172642.974064(66)3.13(9) sβ43Ar(3/2+)
β, n?42Ar
44Cl172743.978015(92)0.56(11) sβ (>92%)44Ar(2-)
β, n? (<8%)43Ar
45Cl172844.98039(15)513(36) ms[8]β (76%)45Ar(3/2+)
β, n (24%)44Ar
46Cl172945.98525(10)232(2) msβ, n (60%)45Ar2-#
β (40%)46Ar
β, 2n?44Ar
47Cl173046.98972(22)#101(5) msβ (>97%)47Ar3/2+#
β, n (<3%)46Ar
β, 2n?45Ar
48Cl173147.99541(54)#30# ms
[>200 ns]
β?48Ar
β, n?47Ar
β, 2n?46Ar
49Cl173249.00079(43)#35# ms
[>200 ns]
β?49Ar3/2+#
β, n?48Ar
β, 2n?47Ar
50Cl173350.00827(43)#10# ms
[>620 ns]
β50Ar
β, n?49Ar
β, 2n?48Ar
51Cl173451.01534(75)#5# ms
[>200 ns]
β?51Ar3/2+#
β, n?50Ar
β, 2n?49Ar
52Cl173552.02400(75)#2# ms
[>400 ns]
β?52Ar
β, n?51Ar
β, 2n?50Ar
This table header & footer:
  1. ^mCl – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^Used inradiodating water
  9. ^Cosmogenic nuclide

Stable isotope analysis

[edit]

The representative terrestrial abundance of chlorine contains about is 24.2% of37Cl, with a normal range of 23.9–24.5% of chlorine atoms.[2] When measuring deviations in isotopic composition, the usual reference point is "Standard Mean Ocean Chloride" (SMOC), although aNISTStandard Reference Material (975a) also exists. SMOC is known to have a37Cl/35Cl ratio of 0.319627 ± 0.000199 (24.221% ± 0.0015% chlorine-37)[9] and to have an atomic weight of 35.4525.

There is known variation in the isotopic abundance of chlorine. This heavier isotope tends to be more prevalent in chloride minerals than in aqueous solutions such as seawater, although the isotopic composition oforganochlorine compounds can vary in either direction from the SMOC standard in the range of severalparts per thousand.[2]

Chlorine-36

[edit]
Main article:Chlorine-36

Trace amounts ofradioactive36Cl exist in the environment, in a ratio of about 7×10−13 to 1 with stable isotopes.36Cl is produced in the atmosphere byspallation of36Ar by interactions withcosmic rayprotons. In the subsurface environment,36Cl is generated primarily as a result ofneutron capture by35Cl ormuon capture by40Ca.36Cl decays to either36S (1.9%) or to36Ar (98.1%), with a combinedhalf-life of 308,000 years. The half-life of thishydrophilic nonreactive isotope makes it suitable forgeologic dating in the range of 60,000 to 1 million years. Additionally, large amounts of36Cl were produced by neutron irradiation ofseawater during atmospheric detonations ofnuclear weapons between 1952 and 1958. The residence time of36Cl in the atmosphere is about 1 week. Thus, as an event marker of 1950s water insoil andground water,36Cl is also useful for dating waters less than 50 years before the present.36Cl has seen use in other areas of the geological sciences, forecasts, and elements. In chloride-basedmolten salt reactors the production of36
Cl
byneutron capture is an inevitable consequence of using natural isotope mixtures of chlorine (i.e. Those containing35
Cl
). This produces a long lived radioactive product which has to be stored or disposed off.Isotope separation to produce pure37
Cl
can vastly reduce36
Cl
production, but a small amount might still be produced by (n,2n) reactions involvingfast neutrons.

Chlorine-37

[edit]
Main article:Chlorine-37

Besides being a component of natural stable chlorine, the chief notability of this isotope is its use to detectsolar neutrinos through inverse electron capture (producingthe gas37Ar). This was used in the first detection at theHomestake experiment. Subsequentlygallium-71 was found more suitable for this purpose, and used inGALLEX/GNO andSAGE.

See also

[edit]

Daughter products other than chlorine

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^abc"Standard Atomic Weights: Chlorine".CIAAW. 2009.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  5. ^abMukha, I.; et al. (2018). "Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains".Physical Review C.98 (6) 064308: 064308–1–064308–13.arXiv:1803.10951.Bibcode:2018PhRvC..98f4308M.doi:10.1103/PhysRevC.98.064308.S2CID 119384311.
  6. ^M. Zreda; et al. (1991). "Cosmogenic chlorine-36 production rates in terrestrial rocks".Earth and Planetary Science Letters.105 (1–3):94–109.Bibcode:1991E&PSL.105...94Z.doi:10.1016/0012-821X(91)90123-Y.
  7. ^M. Sheppard and M. Herod (2012). "Variation in background concentrations and specific activities of 36Cl, 129I and U/Th-series radionuclides in surface waters".Journal of Environmental Radioactivity.106:27–34.doi:10.1016/j.jenvrad.2011.10.015.PMID 22304997.
  8. ^Bhattacharya, Soumik; Tripathi, Vandana; Tabor, S. L.; Volya, A.; Bender, P. C.; Benetti, C.; Carpenter, M. P.; Carroll, J. J.; Chester, A.; Chiara, C. J.; Childers, K.; Clark, B. R.; Crider, B. P.; Harke, J. T.; Jain, R.; Liddick, S. N.; Lubna, R. S.; Luitel, S.; Longfellow, B.; Mogannam, M. J.; Ogunbeku, T. H.; Perello, J.; Richard, A. L.; Rubino, E.; Saha, S.; Shehu, O. A.; Unz, R.; Xiao, Y.; Zhu, Yiyi (2023-08-18). decay of neutron-rich45Cl located at the magic number N=28"(PDF).Physical Review C.108 (2) 024312. American Physical Society (APS).doi:10.1103/physrevc.108.024312.ISSN 2469-9985.OSTI 2205286.
  9. ^Chlorine-bearing species and the 37Cl/35Cl isotope ratio ... - Figure 8. This is the only source I find giving the actual composition of SMOC (as the isotope ratio). There surely should be a better one.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_chlorine&oldid=1335047801"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp