This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Isotopes of chlorine" – news ·newspapers ·books ·scholar ·JSTOR(May 2018) (Learn how and when to remove this message) |
| ||||||||||||||||||||||||||||
| Standard atomic weightAr°(Cl) | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chlorine (17Cl) has two stableisotopes,35Cl (75.8%) and37Cl (24.2%), giving chlorine astandard atomic weight of 35.45. Artificicalradioisotopes are known ranging from28Cl to52Cl, and there are also twoisomers,34mCl and38mCl. The longest-lived radioactive isotope is36Cl, which has a half-life of 301,000 years. All other isotopes and isomers have half-lives under an hour, and most under 10 seconds.
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[4] [n 2][n 3] | Half-life[1] [n 4] | Decay mode[1] [n 5] | Daughter isotope [n 6] | Spin and parity[1] [n 7][n 4] | Natural abundance(mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
| 28Cl[5] | 17 | 11 | 28.03035(54)# | p | 27S | 1+# | |||||||||||||
| 29Cl | 17 | 12 | 29.01505(20)# | 5.4(19) zs | p | 28S | (1/2+) | ||||||||||||
| 30Cl | 17 | 13 | 30.005018(26) | <50 ns[5] | p | 29S | 3+# | ||||||||||||
| 31Cl | 17 | 14 | 30.9924481(37) | 190(1) ms | β+ (97.6%) | 31S | 3/2+ | ||||||||||||
| β+, p (2.4%) | 30P | ||||||||||||||||||
| 32Cl | 17 | 15 | 31.98568461(60) | 298(1) ms | β+ (99.92%) | 32S | 1+ | ||||||||||||
| β+,α (0.054%) | 28Si | ||||||||||||||||||
| β+, p (0.026%) | 31P | ||||||||||||||||||
| 33Cl | 17 | 16 | 32.97745199(42) | 2.5038(22) s | β+ | 33S | 3/2+ | ||||||||||||
| 34Cl | 17 | 17 | 33.973762490(52) | 1.5267(4) s | β+ | 34S | 0+ | ||||||||||||
| 34mCl | 146.360(27) keV | 31.99(3) min | β+ (55.4%) | 34S | 3+ | ||||||||||||||
| IT (44.6%) | 34Cl | ||||||||||||||||||
| 35Cl | 17 | 18 | 34.968852694(38) | Stable | 3/2+ | 0.758(2) | |||||||||||||
| 36Cl[n 8] | 17 | 19 | 35.968306822(38) | 3.013(15)×105 y | β− (98.1%) | 36Ar | 2+ | 7×10−13[6][7][n 9] | |||||||||||
| β+ (1.9%) | 36S | ||||||||||||||||||
| 37Cl | 17 | 20 | 36.965902573(55) | Stable | 3/2+ | 0.242(2) | |||||||||||||
| 38Cl | 17 | 21 | 37.96801041(11) | 37.230(14) min | β− | 38Ar | 2− | ||||||||||||
| 38mCl | 671.365(8) keV | 715(3) ms | IT | 38Cl | 5− | ||||||||||||||
| 39Cl | 17 | 22 | 38.9680082(19) | 56.2(6) min | β− | 39Ar | 3/2+ | ||||||||||||
| 40Cl | 17 | 23 | 39.970415(34) | 1.35(3) min | β− | 40Ar | 2− | ||||||||||||
| 41Cl | 17 | 24 | 40.970685(74) | 38.4(8) s | β− | 41Ar | (1/2+) | ||||||||||||
| 42Cl | 17 | 25 | 41.973342(64) | 6.8(3) s | β− | 42Ar | (2−) | ||||||||||||
| β−,n? | 41Ar | ||||||||||||||||||
| 43Cl | 17 | 26 | 42.974064(66) | 3.13(9) s | β− | 43Ar | (3/2+) | ||||||||||||
| β−, n? | 42Ar | ||||||||||||||||||
| 44Cl | 17 | 27 | 43.978015(92) | 0.56(11) s | β− (>92%) | 44Ar | (2-) | ||||||||||||
| β−, n? (<8%) | 43Ar | ||||||||||||||||||
| 45Cl | 17 | 28 | 44.98039(15) | 513(36) ms[8] | β− (76%) | 45Ar | (3/2+) | ||||||||||||
| β−, n (24%) | 44Ar | ||||||||||||||||||
| 46Cl | 17 | 29 | 45.98525(10) | 232(2) ms | β−, n (60%) | 45Ar | 2-# | ||||||||||||
| β− (40%) | 46Ar | ||||||||||||||||||
| β−, 2n? | 44Ar | ||||||||||||||||||
| 47Cl | 17 | 30 | 46.98972(22)# | 101(5) ms | β− (>97%) | 47Ar | 3/2+# | ||||||||||||
| β−, n (<3%) | 46Ar | ||||||||||||||||||
| β−, 2n? | 45Ar | ||||||||||||||||||
| 48Cl | 17 | 31 | 47.99541(54)# | 30# ms [>200 ns] | β−? | 48Ar | |||||||||||||
| β−, n? | 47Ar | ||||||||||||||||||
| β−, 2n? | 46Ar | ||||||||||||||||||
| 49Cl | 17 | 32 | 49.00079(43)# | 35# ms [>200 ns] | β−? | 49Ar | 3/2+# | ||||||||||||
| β−, n? | 48Ar | ||||||||||||||||||
| β−, 2n? | 47Ar | ||||||||||||||||||
| 50Cl | 17 | 33 | 50.00827(43)# | 10# ms [>620 ns] | β− | 50Ar | |||||||||||||
| β−, n? | 49Ar | ||||||||||||||||||
| β−, 2n? | 48Ar | ||||||||||||||||||
| 51Cl | 17 | 34 | 51.01534(75)# | 5# ms [>200 ns] | β−? | 51Ar | 3/2+# | ||||||||||||
| β−, n? | 50Ar | ||||||||||||||||||
| β−, 2n? | 49Ar | ||||||||||||||||||
| 52Cl | 17 | 35 | 52.02400(75)# | 2# ms [>400 ns] | β−? | 52Ar | |||||||||||||
| β−, n? | 51Ar | ||||||||||||||||||
| β−, 2n? | 50Ar | ||||||||||||||||||
| This table header & footer: | |||||||||||||||||||
| IT: | Isomeric transition |
| n: | Neutron emission |
| p: | Proton emission |
The representative terrestrial abundance of chlorine contains about is 24.2% of37Cl, with a normal range of 23.9–24.5% of chlorine atoms.[2] When measuring deviations in isotopic composition, the usual reference point is "Standard Mean Ocean Chloride" (SMOC), although aNISTStandard Reference Material (975a) also exists. SMOC is known to have a37Cl/35Cl ratio of 0.319627 ± 0.000199 (24.221% ± 0.0015% chlorine-37)[9] and to have an atomic weight of 35.4525.
There is known variation in the isotopic abundance of chlorine. This heavier isotope tends to be more prevalent in chloride minerals than in aqueous solutions such as seawater, although the isotopic composition oforganochlorine compounds can vary in either direction from the SMOC standard in the range of severalparts per thousand.[2]
Trace amounts ofradioactive36Cl exist in the environment, in a ratio of about 7×10−13 to 1 with stable isotopes.36Cl is produced in the atmosphere byspallation of36Ar by interactions withcosmic rayprotons. In the subsurface environment,36Cl is generated primarily as a result ofneutron capture by35Cl ormuon capture by40Ca.36Cl decays to either36S (1.9%) or to36Ar (98.1%), with a combinedhalf-life of 308,000 years. The half-life of thishydrophilic nonreactive isotope makes it suitable forgeologic dating in the range of 60,000 to 1 million years. Additionally, large amounts of36Cl were produced by neutron irradiation ofseawater during atmospheric detonations ofnuclear weapons between 1952 and 1958. The residence time of36Cl in the atmosphere is about 1 week. Thus, as an event marker of 1950s water insoil andground water,36Cl is also useful for dating waters less than 50 years before the present.36Cl has seen use in other areas of the geological sciences, forecasts, and elements. In chloride-basedmolten salt reactors the production of36
Cl byneutron capture is an inevitable consequence of using natural isotope mixtures of chlorine (i.e. Those containing35
Cl). This produces a long lived radioactive product which has to be stored or disposed off.Isotope separation to produce pure37
Cl can vastly reduce36
Cl production, but a small amount might still be produced by (n,2n) reactions involvingfast neutrons.
Besides being a component of natural stable chlorine, the chief notability of this isotope is its use to detectsolar neutrinos through inverse electron capture (producingthe gas37Ar). This was used in the first detection at theHomestake experiment. Subsequentlygallium-71 was found more suitable for this purpose, and used inGALLEX/GNO andSAGE.
Daughter products other than chlorine