This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Isotopes of cadmium" – news ·newspapers ·books ·scholar ·JSTOR(May 2018) (Learn how and when to remove this message) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Standard atomic weightAr°(Cd) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurringcadmium (48Cd) is composed of 8isotopes. For two of them, naturalradioactivity has been observed, and three others are predicted to possibly decay though this has not been observed; it may be presumed the half-lives are extremely long. The two natural radioactive isotopes are113Cd (beta decay, half-life8.04×1015 years) and116Cd (double beta decay, half-life2.69×1019 years). The other three are106Cd,108Cd (double electron capture), and114Cd (double beta decay); only lower limits on their decays have been set. Only three isotopes—110Cd,111Cd, and112Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are109Cd with a half-life of 461.3 days, and115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 7 hours and the majority of these are less than 5 minutes. This element also has 12 knownmeta states, with the most stable being113mCd (t1/2 13.9 years),115mCd (t1/2 44.6 days) and117mCd (t1/2 3.44 hours).
The known isotopes of cadmium range from95Cd to132Cd. The primarydecay mode before the stable isotope112Cd iselectron capture toisotopes of silver, and after, beta emission toisotopes of indium.
A 2021 study has shown at high ionic strengths, cadmium isotope fractionation mainly depends on its complexation with carboxylic sites. At low ionic strengths, nonspecific cadmium binding induced by electrostatic attractions plays a dominant role and promotes cadmium isotope fractionation during complexation.[4]
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[5] [n 2][n 3] | Half-life[1] [n 4] | Decay mode[1] [n 5] | Daughter isotope [n 6][n 7] | Spin and parity[1] [n 8][n 9] | Natural abundance(mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 9] | Normal proportion[1] | Range of variation | |||||||||||||||||
| 94Cd | 48 | 46 | 93.95659(54)# | 80# ms [> 760 ns] | 0+ | ||||||||||||||
| 95Cd | 48 | 47 | 94.94948(61)# | 32(3) ms | β+ (95.4%) | 95Ag | 9/2+# | ||||||||||||
| β+,p (4.6%) | 94Pd | ||||||||||||||||||
| 96Cd | 48 | 48 | 95.94034(44)# | 1.003(47) s | β+ (98.4%) | 96Ag | 0+ | ||||||||||||
| β+, p (1.6%) | 95Pd | ||||||||||||||||||
| 96m1Cd | 6000(1400) keV | 511(26) ms | β+ (84.6%) | 96Ag | 16+ | ||||||||||||||
| β+, p (15.4%) | 95Pd | ||||||||||||||||||
| 96m2Cd | 5605(5) keV | 198(18) ns | IT | 96Cd | (12−,13−) | ||||||||||||||
| 97Cd | 48 | 49 | 96.93480(45) | 1.16(5) s | β+ (92.6%) | 97Ag | (9/2+) | ||||||||||||
| β+, p (7.4%) | 96Pd | ||||||||||||||||||
| 97m1Cd | 1245.1(2) keV | 730(70) μs | IT | 97Cd | (1/2−) | ||||||||||||||
| 97m2Cd | 2620(580) keV | 3.86(6) s | β+ (74.9%) | 97Ag | (25/2+) | ||||||||||||||
| β+, p (25.1%) | 96Pd | ||||||||||||||||||
| 98Cd | 48 | 50 | 97.927389(56) | 9.29(10) s | β+ (>99.97%) | 98Ag | 0+ | ||||||||||||
| β+, p (<0.029%) | 97Pd | ||||||||||||||||||
| 98m1Cd | 2428.3(4) keV | 154(16) ns | IT | 98Cd | (8+) | ||||||||||||||
| 98m2Cd | 6635(2) keV | 224(5) ns | IT | 98Cd | (12+) | ||||||||||||||
| 99Cd | 48 | 51 | 98.9249258(17) | 17(1) s | β+ (99.79%) | 99Ag | 5/2+# | ||||||||||||
| β+, p (0.21%) | 98Pd | ||||||||||||||||||
| β+, α (<10−4%) | 95Rh | ||||||||||||||||||
| 100Cd | 48 | 52 | 99.9203488(18) | 49.1(5) s | β+ | 100Ag | 0+ | ||||||||||||
| 101Cd | 48 | 53 | 100.9185862(16) | 1.36(5) min | β+ | 101Ag | 5/2+ | ||||||||||||
| 102Cd | 48 | 54 | 101.9144818(18) | 5.5(5) min | β+ | 102Ag | 0+ | ||||||||||||
| 103Cd | 48 | 55 | 102.9134169(19) | 7.3(1) min | β+ | 103Ag | 5/2+ | ||||||||||||
| 104Cd | 48 | 56 | 103.9098562(18) | 57.7(10) min | β+ | 104Ag | 0+ | ||||||||||||
| 105Cd | 48 | 57 | 104.9094639(15) | 55.5(4) min | β+ | 105Ag | 5/2+ | ||||||||||||
| 105mCd | 2517.6(5) keV | 4.5(5) μs | IT | 105Cd | (21/2+) | ||||||||||||||
| 106Cd | 48 | 58 | 105.9064598(12) | Observationally stable[n 10] | 0+ | 0.01245(22) | |||||||||||||
| 107Cd | 48 | 59 | 106.9066120(18) | 6.50(2) h | β+ | 107Ag | 5/2+ | ||||||||||||
| 108Cd | 48 | 60 | 107.9041836(12) | Observationally stable[n 11] | 0+ | 0.00888(11) | |||||||||||||
| 109Cd | 48 | 61 | 108.9049867(16) | 461.3(5) d | EC | 109Ag | 5/2+ | ||||||||||||
| 109m1Cd | 59.60(7) keV | 11.8(16) μs | IT | 109Cd | 1/2+ | ||||||||||||||
| 109m2Cd | 463.10(11) keV | 10.6(4) μs | IT | 109Cd | 11/2− | ||||||||||||||
| 110Cd | 48 | 62 | 109.90300747(41) | Stable | 0+ | 0.12470(61) | |||||||||||||
| 111Cd[n 12] | 48 | 63 | 110.90418378(38) | Stable | 1/2+ | 0.12795(12) | |||||||||||||
| 111mCd | 396.214(21) keV | 48.50(9) min | IT | 111Cd | 11/2− | ||||||||||||||
| 112Cd[n 12] | 48 | 64 | 111.90276390(27) | Stable | 0+ | 0.24109(7) | |||||||||||||
| 113Cd[n 12][n 13] | 48 | 65 | 112.90440811(26) | 8.04(5)×1015 y | β− | 113In | 1/2+ | 0.12227(7) | |||||||||||
| 113mCd[n 12] | 263.54(3) keV | 13.89(11) y | β− (99.90%) | 113In | 11/2− | ||||||||||||||
| IT (0.0964%) | 113Cd | ||||||||||||||||||
| 114Cd[n 12] | 48 | 66 | 113.90336500(30) | Observationally stable[n 14] | 0+ | 0.28754(81) | |||||||||||||
| 115Cd[n 12] | 48 | 67 | 114.90543743(70) | 53.46(5) h | β− | 115mIn | 1/2+ | ||||||||||||
| 115mCd[n 12] | 181.0(5) keV | 44.56(24) d | β− | 115In | 11/2− | ||||||||||||||
| 116Cd[n 12][n 13] | 48 | 68 | 115.90476323(17) | 2.69(9)×1019 y | β−β− | 116Sn | 0+ | 0.07512(54) | |||||||||||
| 117Cd | 48 | 69 | 116.9072260(11) | 2.503(5) h | β− | 117In | 1/2+ | ||||||||||||
| 117mCd | 136.4(2) keV | 3.441(9) h | β− | 117In | 11/2− | ||||||||||||||
| 118Cd | 48 | 70 | 117.906922(21) | 50.3(2) min | β− | 118In | 0+ | ||||||||||||
| 119Cd | 48 | 71 | 118.909847(40) | 2.69(2) min | β− | 119In | 1/2+ | ||||||||||||
| 119mCd | 146.54(11) keV | 2.20(2) min | β− | 119In | 11/2− | ||||||||||||||
| 120Cd | 48 | 72 | 119.9098681(40) | 50.80(21) s | β− | 120In | 0+ | ||||||||||||
| 121Cd | 48 | 73 | 120.9129637(21) | 13.5(3) s | β− | 121In | 3/2+ | ||||||||||||
| 121mCd | 214.86(15) keV | 8.3(8) s | β− | 121In | 11/2− | ||||||||||||||
| 122Cd | 48 | 74 | 121.9134591(25) | 5.98(10) s[6] | β− | 122In | 0+ | ||||||||||||
| 123Cd | 48 | 75 | 122.9168925(29) | 2.10(2) s | β− | 123In | 3/2+ | ||||||||||||
| 123mCd | 143(4) keV | 1.82(3) s | β− (?%) | 123In | 11/2− | ||||||||||||||
| IT (?%) | 123Cd | ||||||||||||||||||
| 124Cd | 48 | 76 | 123.9176598(28) | 1.25(2) s | β− | 124In | 0+ | ||||||||||||
| 125Cd | 48 | 77 | 124.9212576(31) | 680(40) ms | β− | 125In | 3/2+ | ||||||||||||
| 125m1Cd | 186(4) keV | 480(30) ms | β− | 125In | 11/2− | ||||||||||||||
| 125m2Cd | 1648(4) keV | 19(3) μs | IT | 125Cd | (19/2+) | ||||||||||||||
| 126Cd | 48 | 78 | 125.9224303(25) | 512(5) ms | β− | 126In | 0+ | ||||||||||||
| 127Cd | 48 | 79 | 126.9262033(67) | 480(100) ms | β− | 127In | 3/2+ | ||||||||||||
| 127m1Cd | 285(8) keV | 360(40) ms | β− | 127In | 11/2− | ||||||||||||||
| 127m2Cd | 1845(8) keV | 17.5(3) μs | IT | 127Cd | (19/2+) | ||||||||||||||
| 128Cd | 48 | 80 | 127.9278168(69) | 246(2) ms | β− | 128In | 0+ | ||||||||||||
| 128m1Cd | 1870.5(3) keV | 270(7) ns | IT | 128Cd | (5−) | ||||||||||||||
| 128m2Cd | 2714.6(4) keV | 3.56(6) μs | IT | 128Cd | (10+) | ||||||||||||||
| 128m3Cd | 4286.6(15) keV | 6.3(8) ms | IT | 128Cd | (15−) | ||||||||||||||
| 129Cd | 48 | 81 | 128.9322356(57) | 147(3) ms | β− (?%) | 129In | 11/2− | ||||||||||||
| β−,n (?%) | 128In | ||||||||||||||||||
| 129m1Cd | 343(8) keV | 157(8) ms | β− (?%) | 129In | 3/2+ | ||||||||||||||
| β−,n (?%) | 128In | ||||||||||||||||||
| 129m2Cd | 2283(8) keV | 3.6(2) ms | IT | 129Cd | (21/2+) | ||||||||||||||
| 130Cd | 48 | 82 | 129.934388(24) | 126.8(18) ms | β− (96.5%) | 130In | 0+ | ||||||||||||
| β−, n (3.5%) | 129In | ||||||||||||||||||
| 130mCd | 2129.6(10) keV | 240(16) ns | IT | 130Cd | (8+) | ||||||||||||||
| 131Cd | 48 | 83 | 130.940728(21) | 98(2) ms | β− (96.5%) | 131In | 7/2−# | ||||||||||||
| β−, n (3.5%) | 130In | ||||||||||||||||||
| 132Cd | 48 | 84 | 131.945823(64) | 84(5) ms | β−, n (60%) | 131In | 0+ | ||||||||||||
| β− (40%) | 132In | ||||||||||||||||||
| 133Cd | 48 | 85 | 132.95261(22)# | 61(6) ms | β− (?%) | 133In | 7/2−# | ||||||||||||
| β−, n (?%) | 132In | ||||||||||||||||||
| 134Cd | 48 | 86 | 133.95764(32)# | 65(15) ms | β− | 134In | 0+ | ||||||||||||
| This table header & footer: | |||||||||||||||||||
| EC: | Electron capture |
| IT: | Isomeric transition |
| n: | Neutron emission |
| p: | Proton emission |
| Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
|---|---|---|---|---|
| (a) | (%)[a 2] | (keV) | ||
| 155Eu | 4.74 | 0.0803[a 3] | 252 | βγ |
| 85Kr | 10.73 | 0.2180[a 4] | 687 | βγ |
| 113mCd | 13.9 | 0.0008[a 3] | 316 | β |
| 90Sr | 28.91 | 4.505 | 2826[a 5] | β |
| 137Cs | 30.04 | 6.337 | 1176 | βγ |
| 121mSn | 43.9 | 0.00005 | 390 | βγ |
| 151Sm | 94.6 | 0.5314[a 3] | 77 | β |
| ||||
Cadmium-113m is a cadmiumradioisotope andnuclear isomer with a half-life of 13.9 years. In a normalthermal reactor, it has a very lowfission product yield, plus its largeneutron capturecross section means that most of even the small amount produced is destroyed in the course of thenuclear fuel's burnup; thus, this isotope is not a significant contributor tonuclear waste.
Fast fission or fission of some heavieractinides[which?] will produce113mCd at higher yields.
Daughter products other than cadmium