This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Isotopes of aluminium" – news ·newspapers ·books ·scholar ·JSTOR(May 2018) (Learn how and when to remove this message) |
| |||||||||||||||||||||
| Standard atomic weightAr°(Al) | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aluminium oraluminum (13Al) has one stable isotope,27Al, comprising all natural aluminium. Theradioactive26Al, with half-life 717,000 years, occurs in traces from cosmic-rayspallation ofargon in theatmosphere.
Other than26Al, there are 22 known synthetic radioisotopes from20Al to43Al, and 4 knownmetastable states; all have half-lives under 7 minutes, most under a second.
26Al is anextinct radionuclide and has received attention as such, being used in the study of meteorites. Its terrestrial occurrence has also found practical application in datingmarinesediments,manganese nodules, glacial ice,quartz inrock exposures, andmeteorites. The ratio of26Al to10Be has been used to study the role ofsediment transport,deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales.[4]
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[5] [n 2][n 3] | Half-life[1] | Decay mode[1] [n 4] | Daughter isotope [n 5] | Spin and parity[1] [n 6][n 7] | Isotopic abundance | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 7] | |||||||||||||||||||
| 20Al[6] | 13 | 7 | 20.04326(13) | >1.1 zs | p | 19Mg | (1−) | ||||||||||||
| 21Al[7] | 13 | 8 | 21.0278(13) | >1.1 zs | p | 20Mg | (5/2+) | ||||||||||||
| 22Al | 13 | 9 | 22.01942310(32)[8] | 91.1(5) ms | β+, p (55%) | 21Na | (4)+ | ||||||||||||
| β+ (44%) | 22Mg | ||||||||||||||||||
| β+, 2p (1.10%) | 20Ne | ||||||||||||||||||
| β+,α (0.038%) | 18Ne | ||||||||||||||||||
| 23Al | 13 | 10 | 23.00724435(37) | 446(6) ms | β+ (98.78%) | 23Mg | 5/2+ | ||||||||||||
| β+, p (1.22%) | 22Na | ||||||||||||||||||
| 24Al | 13 | 11 | 23.99994760(24) | 2.053(4) s | β+ (99.96%) | 24Mg | 4+ | ||||||||||||
| β+, α (0.035%) | 20Ne | ||||||||||||||||||
| β+, p (0.0016%) | 23Na | ||||||||||||||||||
| 24mAl | 425.8(1) keV | 130(3) ms | IT (82.5%) | 24Al | 1+ | ||||||||||||||
| β+ (17.5%) | 24Mg | ||||||||||||||||||
| β+, α (0.028%) | 20Ne | ||||||||||||||||||
| 25Al | 13 | 12 | 24.990428308(69) | 7.1666(23) s | β+ | 25Mg | 5/2+ | ||||||||||||
| 26Al[n 8] | 13 | 13 | 25.986891876(71) | 7.17(24)×105 y | β+ (85%) | 26Mg | 5+ | Trace[n 9] | |||||||||||
| EC (15%)[9] | |||||||||||||||||||
| 26mAl | 228.306(13) keV | 6.3460(5) s | β+ | 26Mg | 0+ | ||||||||||||||
| 27Al | 13 | 14 | 26.981538408(50) | Stable | 5/2+ | 1.0000 | |||||||||||||
| 28Al | 13 | 15 | 27.981910009(52) | 2.245(5) min | β− | 28Si | 3+ | ||||||||||||
| 29Al | 13 | 16 | 28.98045316(37) | 6.56(6) min | β− | 29Si | 5/2+ | ||||||||||||
| 30Al | 13 | 17 | 29.9829692(21) | 3.62(6) s | β− | 30Si | 3+ | ||||||||||||
| 31Al | 13 | 18 | 30.9839498(24) | 644(25) ms | β− (>98.4%) | 31Si | 5/2+ | ||||||||||||
| β−,n (<1.6%) | 30Si | ||||||||||||||||||
| 32Al | 13 | 19 | 31.9880843(77) | 32.6(5) ms | β− (99.3%) | 32Si | 1+ | ||||||||||||
| β−, n (0.7%) | 31Si | ||||||||||||||||||
| 32mAl | 956.6(5) keV | 200(20) ns | IT | 32Al | (4+) | ||||||||||||||
| 33Al | 13 | 20 | 32.9908777(75) | 41.46(9) ms | β− (91.5%) | 33Si | 5/2+ | ||||||||||||
| β−, n (8.5%) | 32Si | ||||||||||||||||||
| 34Al | 13 | 21 | 33.9967819(23) | 53.73(13) ms | β− (74%) | 34Si | 4− | ||||||||||||
| β−, n (26%) | 33Si | ||||||||||||||||||
| 34mAl | 46.4(17) keV | 22.1(2) ms | β− (89%) | 34Si | 1+ | ||||||||||||||
| β−, n (11%) | 33Si | ||||||||||||||||||
| 35Al | 13 | 22 | 34.9997598(79) | 38.16(21) ms | β− (64.2%) | 35Si | (5/2+,3/2+) | ||||||||||||
| β−, n (35.8%) | 34Si | ||||||||||||||||||
| 36Al | 13 | 23 | 36.00639(16) | 90(40) ms | β− (>69%) | 36Si | |||||||||||||
| β−, n (<31%) | 35Si | ||||||||||||||||||
| 37Al | 13 | 24 | 37.01053(19) | 11.4(3) ms | β−, n (52%) | 36Si | 5/2+# | ||||||||||||
| β− (<47%) | 37Si | ||||||||||||||||||
| β−, 2n (>1%) | 35Si | ||||||||||||||||||
| 38Al | 13 | 25 | 38.01768(16)# | 9.0(7) ms | β−, n (84%) | 37Si | 0−# | ||||||||||||
| β− (16%) | 38Si | ||||||||||||||||||
| 39Al | 13 | 26 | 39.02307(32)# | 7.6(16) ms | β−, n (97%) | 38Si | 5/2+# | ||||||||||||
| β− (3%) | 39Si | ||||||||||||||||||
| 40Al | 13 | 27 | 40.03094(32)# | 5.7(3 (stat), 2 (sys)) ms[10] | β−, n (64%) | 39Si | |||||||||||||
| β−, 2n (20%) | 38Si | ||||||||||||||||||
| β− (16%) | 40Si | ||||||||||||||||||
| 41Al | 13 | 28 | 41.03713(43)# | 3.5(8 (stat), 4 (sys)) ms[10] | β−, n (86%) | 40Si | 5/2+# | ||||||||||||
| β−, 2n (11%) | 39Si | ||||||||||||||||||
| β− (3%) | 41Si | ||||||||||||||||||
| 42Al | 13 | 29 | 42.04508(54)# | 3# ms [>170 ns] | |||||||||||||||
| 43Al | 13 | 30 | 43.05182(64)# | 4# ms [>170 ns] | β−? | 43Si | 5/2+# | ||||||||||||
| This table header & footer: | |||||||||||||||||||
| IT: | Isomeric transition |

Cosmogenicaluminium-26 was first described in studies of theMoon and meteorites. Meteorite fragments, after departure from their parent bodies, are exposed to intense cosmic-ray bombardment during their travel through space, causing substantial26Al production. After falling to Earth, atmospheric shielding protects the meteorite fragments from further26Al production, and its decay can then be used to determine the meteorite's terrestrial age. Meteorite research has also shown that26Al was relatively abundant at the time of formation of our planetary system. Most meteoriticists believe that the energy released by the decay of26Al was responsible for the melting anddifferentiation of someasteroids after their formation 4.55 billion years ago.[13]
Daughter products other than aluminum