Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isocyanide

From Wikipedia, the free encyclopedia
(Redirected fromIsonitrile)
Chemical compound with isocyanide group (-N+≡C-)
Not to be confused withIsocyanate.
Generalresonance structure of an isocyanide

Anisocyanide (also calledisonitrile orcarbylamine) is anorganic compound with thefunctional groupN+≡C. It is theisomer of the relatednitrile (–C≡N), hence the prefix isisocyano.[1] The organic fragment is connected to the isocyanide group through thenitrogen atom, not via thecarbon. They are used as building blocks for the synthesis of other compounds.[2]

Properties

[edit]

Structure and bonding

[edit]

The C-N distance in isocyanides is 115.8 pm inmethyl isocyanide. The C-N-C angles are near 180°.[3]

Akin tocarbon monoxide, isocyanides are described by tworesonance structures, one with atriple bond between the nitrogen and the carbon and one with adouble bond between. The π lone pair of the nitrogen stabilizes the structure and is responsible of the linearity of isocyanides, although the reactivity of isocyanides reflects some carbene character, at least in a formal sense. Thus, both resonance structures are useful representations.[4] They are susceptible topolymerization.[4]

Spectroscopy

[edit]

Isocyanides exhibit a strong absorption in their IR spectra in the range of 2165–2110 cm−1.[5]

The electronic symmetry about the isocyanide14N nucleus results in a slow quadrupolarrelaxation so that13C-14N nuclear spincoupling can be observed, with coupling constants ofca. 5 Hz for the isocyanide13C nucleus and 5–14 Hz for the13C nucleus which the isocyanide group is attached to.[5]

Odour

[edit]

Isocyanides have a very disagreeable odour. Lieke remarked that "Es besitzt einen penetranten, höchst unangenehmen Geruch; das Oeffnen eines Gefässes mit Cyanallyl [sic] reicht hin, die Luft eines Zimmers mehrere Tage lang zu verpesten [It has a penetrating, extremely unpleasant odour; the opening of a flask of allyl cyanide [sic] is enough to foul up the air in a room for several days]...."[6]: 319  Note that in Lieke's day, the difference between isocyanide and nitrile was not fully appreciated.

Ivar Karl Ugi states that "The development of the chemistry of isocyanides has probably suffered only little delay through the characteristic odor of volatile isonitriles, which has been described by Hofmann and Gautier as 'highly specific, almost overpowering', 'horrible', and 'extremely distressing'. It is true that many potential workers in this field have been turned away by the odour, but this is heavily outweighed by the fact that isonitriles can be detected even in traces, and that most of the routes leading to the formation of isonitriles were discovered through the odor of these compounds."[7] Isocyanides have been investigated as potentialnon-lethal weapons.[8]

Some isocyanides convey less offensive odours such as malt, natural rubber, creosote, cherry or old wood.[9] Non-volatile derivatives such astosylmethyl isocyanide do not have an odor.[10]

Toxicity

[edit]

While some isocyanides (e.g., cyclohexyl isocyanide) are toxic, others "exhibit no appreciable toxicity for mammals". Referring to ethyl isocyanide, toxicological studies in the 1960s at Bayer showed that "oral and subcutaneous doses of 500-5000 mg/kg can be tolerated by mice".[7]

Synthesis

[edit]

Many routes to isocyanides have been developed.[2]

From formamides

[edit]

Commonly, isocyanides are synthesized bydehydration offormamides. The formamide can be dehydrated withtoluenesulfonyl chloride,phosphorus oxychloride,phosgene,diphosgene, or theBurgess reagent in the presence of a base such as pyridine or triethylamine.[11][12][13][14]

RNHC(O)H + ArSO2Cl + 2 C5H5N → RNC + [C5H5NH]+[ArSO3] + [C5H5NH]+Cl

The formamide precursors are, in turn, prepared from amines by formylation withformic acid or formyl acetyl anhydride,[15] or from theRitter reaction of alkenes (and other sources of carbocations) andhydrogen cyanide.[16]

From dichlorocarbene

[edit]

In thecarbylamine reaction (also known as the Hofmann isocyanide synthesis) alkali base reacts withchloroform to producedichlorocarbene. The carbene then converts primaryamines to isocyanides. Illustrative is the synthesis oftert-butyl isocyanide fromtert-butylamine in the presence ofcatalytic amount of thephase transfer catalyst benzyltriethylammonium chloride.[17]

Me3CNH2 + CHCl3 + 3 NaOH → Me3CNC + 3 NaCl + 3 H2O

As it is only effective for primary amines, this reaction can be used as achemical test for their presence.

Silver cyanide route

[edit]

Of historical interest but not often of practical value, the first isocyanide,allyl isocyanide, was prepared by the reaction ofallyl iodide andsilver cyanide.[6]

RI + AgCN → RNC + AgI

Other methods

[edit]

Another route to isocyanides entails deprotonation ofoxazoles andbenzoxazoles in the 2-position.[9] The resulting organolithium compound exists inchemical equilibrium with the2-isocyanophenolate, which can be captured by anelectrophile such as anacid chloride.

In some cases, aphosphonite ester-amide can desulfurizethiocyanates to isocyanides.[18]

Reactions

[edit]

Isocyanides have diverse reactivity.[2]

Isocyanides are stable to strong base (they are often made under strongly basic conditions), but they are sensitive to acid. In the presence of aqueous acid, isocyanides hydrolyse to the correspondingformamides:

RNC + H2O → RNHC(O)H

This reaction is used to destroy odorous isocyanide mixtures. Some isocyanides can polymerize in the presence of Lewis and Bronsted acids.[19]

Isocyanides participate in manymulticomponent reactions of interest inorganic synthesis, two of which are: theUgi reaction and thePasserini reaction.

Isocyanides also participate incycloaddition reactions, such as the [4+1] cycloaddition with tetrazines.[20] Depending on the degree of substitution of the isocyanide, this reaction converts isocyanides intocarbonyls or gives stable cycloadducts.[21] They also undergo insertion into the C–Cl bonds of acyl chlorides in theNef isocyanide reaction, a process that is believed to be concerted and illustrates their carbene character.

Isocyanides have also been shown to be a useful reagent in palladium catalysed reactions with a wide variety of compounds being formed using this method.[22]

Much likenitriles, isocyanides are electron-withdrawing and easily deprotonate at the α position. For example,benzyl isocyanide has a pKa of 27.4 andbenzyl cyanide has a pKa of 21.9, but toluene has a pKa in the 40s.[23] In the gas phase,CH3NC is 1.8 kcal/mol less acidic thanCH3CN.[24]

Chlorination of isocyanides givesisocyanide dichlorides.

Ligands in coordination chemistry

[edit]
Main article:Transition metal isocyanide complexes
Technetium sestamibi is a commercial isocyanide complex that is used in medicine for imaging.

Isocyanides formcoordination complexes with most transition metals.[25] They behave as electron-rich analogues of carbon monoxide. For exampletert-butyl isocyanide formsFe2(tBuNC)9, which is analogous toFe2(CO)9.[26] Although structurally similar, the analogous carbonyls differ in several ways, mainly becauset-BuNC is a better donor ligand than CO. Thus,Fe(tBuNC)5 is easily protonated, whereas its counterpartFe(CO)5 is not.[27]

Naturally occurring isocyanides

[edit]

Only few naturally occurring compounds exhibit the isocyanide functionality. The first was discovered in 1957 in an extract of the moldPenicillium notatum. The compoundxanthocillin later was used as anantibiotic. Since then numerous other isocyanides have been isolated. Most of the marine isocyanides are terpenoid, while some of the terrestrial isocyanides originate from α-aminoacids.[28]

Xanthocillin is a rarenatural product that contains two isocyanide groups.

Nomenclature

[edit]

IUPAC uses theprefix "isocyano" for the systematic nomenclature of isocyanides:isocyanomethane, isocyanoethane, isocyanopropane, etc.

The sometimes used old term "carbylamine" conflicts with systematic nomenclature. Anamine always has three single bonds,[29] whereas an isocyanide has only one single and one multiple bond.

Theisocyanamide functional group consists of an amino group attached to an isocyano moiety. The isonitrile suffix or isocyano- prefix is used depending upon priority table.

References

[edit]
  1. ^IUPAC Goldbookisocyanides
  2. ^abcPatil, Pravin; Ahmadian-Moghaddam, Maryam; Dömling, Alexander (2020-09-29)."Isocyanide 2.0".Green Chemistry.22 (20):6902–6911.doi:10.1039/D0GC02722G.ISSN 1463-9270.
  3. ^Kessler, M.; Ring, H.; Trambarulo, R.; Gordy, W. (1950). "Microwave Spectra and Molecular Structures of Methyl Cyanide and Methyl Isocyanide".Physical Review.79 (1):54–56.Bibcode:1950PhRv...79...54K.doi:10.1103/PhysRev.79.54.
  4. ^abRamozzi, R.; Chéron, N.; Braïda, B.; Hiberty, P. C.; Fleurat-Lessard, P. (2012). "A Valence Bond View of Isocyanides' Electronic Structure".New Journal of Chemistry.36 (5):1137–1340.doi:10.1039/C2NJ40050B.
  5. ^abStephany, R. W.; de Bie, M. J. A.; Drenth, W. (1974). "A13C-NMR and IR study of isocyanides and some of their complexes".Organic Magnetic Resonance.6 (1):45–47.doi:10.1002/mrc.1270060112.
  6. ^abW. Lieke (1859)."Über das Cyanallyl".Annalen der Chemie und Pharmacie.112 (3):316–321.doi:10.1002/jlac.18591120307.
  7. ^abUgi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offermann, K. (1965). "Isonitrile Syntheses".Angewandte Chemie International Edition.4 (6):472–484.doi:10.1002/anie.196504721.
  8. ^Pirrung, M. C.; Ghorai, S.; Ibarra-Rivera, T. R. (2009). "Multicomponent Reactions of Convertible Isonitriles".The Journal of Organic Chemistry.74 (11):4110–4117.doi:10.1021/jo900414n.PMID 19408909.
  9. ^abPirrung, M. C.; Ghorai, S. (2006). "Versatile, Fragrant, Convertible Isonitriles".Journal of the American Chemical Society.128 (36):11772–11773.doi:10.1021/ja0644374.PMID 16953613.
  10. ^B. E. Hoogenboom, O. H. Oldenziel, and A. M. van Leusen "Toluenesulfonylmethyl isocyanide" Organic Syntheses, Coll. Vol. 6, p.987 (1988).
  11. ^R. E. Schuster; J. E. Scott (1966)."Methyl isocyanide".Organic Syntheses.46: 75.doi:10.15227/orgsyn.046.0075.
  12. ^Ivar Karl Ugi; R. Meyr (1958). "Neue Darstellungsmethode für Isonitrile".Angewandte Chemie.70 (22–23):702–703.Bibcode:1958AngCh..70..702U.doi:10.1002/ange.19580702213.
  13. ^Siobhan Creedon; H. Kevin Crowley; Daniel G. McCarthy (1998). "Dehydration of formamides using the Burgess Reagent: a new route to isocyanides".J. Chem. Soc., Perkin Trans. 1 (6):1015–1018.doi:10.1039/a708081f.
  14. ^Basoccu, Francesco; Cuccu, Federico; Casti, Federico; Mocci, Rita; Fattuoni, Claudia; Porcheddu, Andrea (22 June 2022)."A trustworthy mechanochemical route to isocyanides".Beilstein Journal of Organic Chemistry.18:732–737.doi:10.3762/bjoc.18.73.PMC 9235834.PMID 35821692.
  15. ^정선호; 안진희; Park, Sang-Kyu; 최중권 (2002-01-20)."A Practical and Convenient Procedure for the N-Formylation of Amines Using Formic Acid".Bulletin of the Korean Chemical Society.23 (1):149–150.doi:10.5012/BKCS.2002.23.1.149.
  16. ^"a,b-DIMETHYL-b-PHENETHYLAMINE".Organic Syntheses.44: 44. 1964.doi:10.15227/orgsyn.044.0044.
  17. ^G. W. Gokel; R. P. Widera; W. P. Weber (1988). "Phase-transfer Hofmann Carbylamine Reaction: tert-Butyl Isocyanide".Organic Syntheses.55: 232.doi:10.15227/orgsyn.055.0096.
  18. ^Taber, Douglass F. (7 Nov 2011)."The Rawal synthesis of N‑methyl­welwitindolinone D isonitrile".Organic Chemistry Highlights.
  19. ^Deming, T. J.; Novak, B. M. (1993). "Mechanistic Studies on the Nickel Catalyzed Polymerization of Isocyanides".J. Am. Chem. Soc.115 (20): 9101.doi:10.1021/ja00073a028.
  20. ^Imming, P.; R. Mohr; E. Müller; W. Overheu; G. Seitz (1982). "[4 + 1]Cycloaddition of Isocyanides to 1,2,4,5-Tetrazines: A Novel Synthesis of Pyrazole".Angewandte Chemie International Edition.21 (4): 284.doi:10.1002/anie.198202841.
  21. ^Stöckmann, H.; A. Neves; S. Stairs; K. Brindle; F. Leeper (2011). "Exploring Isonitrile-Based Click Chemistry for Ligation with Biomolecules".Organic & Biomolecular Chemistry.9 (21):7303–7305.doi:10.1039/C1OB06424J.PMID 21915395.
  22. ^Lang, S. (2013). "Unravelling the labyrinth of palladium catalysed reactions involving isocyanides".Chemical Society Reviews.42 (12):4867–4880.doi:10.1039/C3CS60022J.PMID 23443313.
  23. ^"Bordwell pKa Table (Acidity in DMSO)".www.chem.wisc.edu. Retrieved2018-12-20.
  24. ^Filley, Jonathan; DePuy, Charles H.; Bierbaum, Veronica M. (1987-09-01). "Gas-phase negative-ion chemistry of methyl isocyanide".Journal of the American Chemical Society.109 (20):5992–5995.doi:10.1021/ja00254a017.ISSN 0002-7863.
  25. ^Singleton, Eric; Oosthuizen, Hester E. (1983). "Metal Isocyanide Complexes".Advances in Organometallic Chemistry.22:209–310.doi:10.1016/S0065-3055(08)60404-9.ISBN 9780120311224.
  26. ^Bassett, J.M.; Barker, G.K.; Green, M.; Howard, J.A.; Stone, G.A.; Wolsey, W.C. "Chemistry of low-valent metal isocyanide complexes".Journal of the Chemical Society, Dalton Transactions.1981:219–227.
  27. ^Bassett, J.-M.; Farrugia, L. J.;Stone, F.G.A. (1980). "Notes. Protonation of pentakis(t-butyl isocyanide)iron".Journal of the Chemical Society, Dalton Transactions.1980 (9):1789–1790.doi:10.1039/DT9800001789.
  28. ^Scheuer, P. J. (1992). "Isocyanides and Cyanides as Natural Products".Accounts of Chemical Research.25 (10):433–439.doi:10.1021/ar00022a001.
  29. ^IUPAC Nomenclature of Organic Compounds (Recommendations 1993)
Hydrocarbons
(only C and H)
Onlycarbon,
hydrogen,
andoxygen
(only C, H and O)
R-O-R
carbonyl
carboxy
Only one
element,
not being
carbon,
hydrogen,
or oxygen
(one element,
not C, H or O)
Nitrogen
Silicon
Phosphorus
Sulfur
Boron
Selenium
Tellurium
Polonium
Halo
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isocyanide&oldid=1282151674"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp