Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Irrationality measure

From Wikipedia, the free encyclopedia
Function that quantifies how near a number is to being rational
Rational approximations to theSquare root of 2.

Inmathematics, anirrationality measure of areal numberx{\displaystyle x} is a measure of how "closely" it can beapproximated byrationals.

If afunctionf(t,λ){\displaystyle f(t,\lambda )}, defined fort,λ>0{\displaystyle t,\lambda >0}, takes positive real values and is strictly decreasing in both variables, consider the followinginequality:

0<|xpq|<f(q,λ){\displaystyle 0<\left|x-{\frac {p}{q}}\right|<f(q,\lambda )}

for a given real numberxR{\displaystyle x\in \mathbb {R} } and rational numberspq{\displaystyle {\frac {p}{q}}} withpZ,qZ+{\displaystyle p\in \mathbb {Z} ,q\in \mathbb {Z} ^{+}}. DefineR{\displaystyle R} as theset of allλR+{\displaystyle \lambda \in \mathbb {R} ^{+}} for which only finitely manypq{\displaystyle {\frac {p}{q}}} exist, such that the inequality is satisfied. Thenλ(x)=infR{\displaystyle \lambda (x)=\inf R} is called an irrationality measure ofx{\displaystyle x} with regard tof.{\displaystyle f.} If there is no suchλ{\displaystyle \lambda } and the setR{\displaystyle R} isempty,x{\displaystyle x} is said to have infinite irrationality measureλ(x)={\displaystyle \lambda (x)=\infty }.

Consequently, the inequality

0<|xpq|<f(q,λ(x)+ε){\displaystyle 0<\left|x-{\frac {p}{q}}\right|<f(q,\lambda (x)+\varepsilon )}

has at most only finitely many solutionspq{\displaystyle {\frac {p}{q}}} for allε>0{\displaystyle \varepsilon >0}.[1]

Irrationality exponent

[edit]

Theirrationality exponent orLiouville–Roth irrationality measure is given by settingf(q,μ)=qμ{\displaystyle f(q,\mu )=q^{-\mu }},[1] a definition adapting the one ofLiouville numbers — the irrationality exponentμ(x){\displaystyle \mu (x)} is defined for real numbersx{\displaystyle x} to be thesupremum of the set ofμ{\displaystyle \mu } such that0<|xpq|<1qμ{\displaystyle 0<\left|x-{\frac {p}{q}}\right|<{\frac {1}{q^{\mu }}}} is satisfied by an infinite number ofcoprime integer pairs(p,q){\displaystyle (p,q)} withq>0{\displaystyle q>0}.[2][3]: 246 

For any valuen<μ(x){\displaystyle n<\mu (x)}, theinfinite set of all rationalsp/q{\displaystyle p/q} satisfying the above inequality yields good approximations ofx{\displaystyle x}. Conversely, ifn>μ(x){\displaystyle n>\mu (x)}, then there are at most finitely many coprime(p,q){\displaystyle (p,q)} withq>0{\displaystyle q>0} that satisfy the inequality.

For example, whenever a rational approximationpqx{\displaystyle {\frac {p}{q}}\approx x} withp,qN{\displaystyle p,q\in \mathbb {N} } yieldsn+1{\displaystyle n+1} exact decimal digits, then

110n|xpq|1qμ(x)+ε{\displaystyle {\frac {1}{10^{n}}}\geq \left|x-{\frac {p}{q}}\right|\geq {\frac {1}{q^{\mu (x)+\varepsilon }}}}

for anyε>0{\displaystyle \varepsilon >0}, except for at most a finite number of "lucky" pairs(p,q){\displaystyle (p,q)}.

A numberxR{\displaystyle x\in \mathbb {R} } with irrationality exponentμ(x)2{\displaystyle \mu (x)\leq 2} is called adiophantine number,[4] while numbers withμ(x)={\displaystyle \mu (x)=\infty } are calledLiouville numbers.

Corollaries

[edit]

Rational numbers have irrationality exponent 1, while (as a consequence ofDirichlet's approximation theorem) every irrational number has irrationality exponent at least 2.

On the other hand, an application ofBorel-Cantelli lemma shows that almost all numbers, including allalgebraic irrational numbers, have an irrationality exponent exactly equal to 2.[3]: 246 

It isμ(x)=μ(rx+s){\displaystyle \mu (x)=\mu (rx+s)} for real numbersx{\displaystyle x} and rational numbersr0{\displaystyle r\neq 0} ands{\displaystyle s}. If for somex{\displaystyle x} we haveμ(x)μ{\displaystyle \mu (x)\leq \mu }, then it followsμ(x1/2)2μ{\displaystyle \mu (x^{1/2})\leq 2\mu }.[5]: 368 

For a real numberx{\displaystyle x} given by itssimple continued fraction expansionx=[a0;a1,a2,...]{\displaystyle x=[a_{0};a_{1},a_{2},...]} with convergentspi/qi{\displaystyle p_{i}/q_{i}} it holds:[1]

μ(x)=1+lim supnlnqn+1lnqn=2+lim supnlnan+1lnqn.{\displaystyle \mu (x)=1+\limsup _{n\to \infty }{\frac {\ln q_{n+1}}{\ln q_{n}}}=2+\limsup _{n\to \infty }{\frac {\ln a_{n+1}}{\ln q_{n}}}.}

If we havelim supn1nln|qn|σ{\displaystyle \limsup _{n\to \infty }{\tfrac {1}{n}}{\ln |q_{n}|}\leq \sigma } andlimn1nln|qnxpn|=τ{\displaystyle \lim _{n\to \infty }{\tfrac {1}{n}}{\ln |q_{n}x-p_{n}|}=-\tau } for some positive real numbersσ,τ{\displaystyle \sigma ,\tau }, then we can establish an upper bound for the irrationality exponent ofx{\displaystyle x} by:[6][7]

μ(x)1+στ{\displaystyle \mu (x)\leq 1+{\frac {\sigma }{\tau }}}

Known bounds

[edit]

For mosttranscendental numbers, the exact value of their irrationality exponent is not known.[5] Below is a table of knownupper and lower bounds.

Numberx{\displaystyle x}Irrationality exponentμ(x){\displaystyle \mu (x)}Notes
Lower boundUpper bound
Rational numberp/q{\displaystyle p/q} withpZ,qZ+{\displaystyle p\in \mathbb {Z} ,q\in \mathbb {Z} ^{+}}1Every rational numberp/q{\displaystyle p/q} has an irrationality exponent of exactly 1.
Irrationalalgebraic numberα{\displaystyle \alpha }2ByRoth's theorem the irrationality exponent of any irrational algebraic number is exactly 2. Examples includesquare roots and thegolden ratioφ{\displaystyle \varphi }.
e2/k,kZ+{\displaystyle e^{2/k},k\in \mathbb {Z} ^{+}}2If the elementsan{\displaystyle a_{n}} of the simple continued fraction expansion of an irrational numberx{\displaystyle x} are bounded abovean<P(n){\displaystyle a_{n}<P(n)} by an arbitrary polynomialP{\displaystyle P}, then its irrationality exponent isμ(x)=2{\displaystyle \mu (x)=2}.

Examples include numbers whose continued fractions behave predictably such as

e=[2;1,2,1,1,4,1,1,6,1,...]{\displaystyle e=[2;1,2,1,1,4,1,1,6,1,...]} andI0(2)/I1(2)=[1;2,3,4,5,6,7,8,9,10,...]{\displaystyle I_{0}(2)/I_{1}(2)=[1;2,3,4,5,6,7,8,9,10,...]}.

tan(1/k),kZ+{\displaystyle \tan(1/k),k\in \mathbb {Z} ^{+}}2
tanh(1/k),kZ+{\displaystyle \tanh(1/k),k\in \mathbb {Z} ^{+}}2
S(b){\displaystyle S(b)} withb2{\displaystyle b\geq 2}2S(b):=k=0b2k{\displaystyle S(b):=\sum _{k=0}^{\infty }b^{-2^{k}}}withbZ{\displaystyle b\in \mathbb {Z} }, has continued fraction terms which do not exceed a fixed constant.[8][9]
T(b){\displaystyle T(b)} withb2{\displaystyle b\geq 2}[10]2T(b):=k=0tkbk{\displaystyle T(b):=\sum _{k=0}^{\infty }t_{k}b^{-k}} wheretk{\displaystyle t_{k}} is theThue–Morse sequence andbZ{\displaystyle b\in \mathbb {Z} }. SeeProuhet-Thue-Morse constant.
ln(2){\displaystyle \ln(2)}[11][12]23.57455...There are other numbers of the formln(a/b){\displaystyle \ln(a/b)} for which bounds on their irrationality exponents are known.[13][14][15]
ln(3){\displaystyle \ln(3)}[11][16]25.11620...
5ln(3/2){\displaystyle 5\ln(3/2)}[17]23.43506...There are many other numbers of the form2k+1ln(2k+1+12k+11){\displaystyle {\sqrt {2k+1}}\ln \left({\frac {{\sqrt {2k+1}}+1}{{\sqrt {2k+1}}-1}}\right)} for which bounds on their irrationality exponents are known.[17] This is the case fork=12{\displaystyle k=12}.
π/3{\displaystyle \pi /{\sqrt {3}}}[18][19]24.60105...There are many other numbers of the form2k1arctan(2k1k1){\displaystyle {\sqrt {2k-1}}\arctan \left({\frac {\sqrt {2k-1}}{k-1}}\right)} for which bounds on their irrationality exponents are known.[18] This is the case fork=2{\displaystyle k=2}.
π{\displaystyle \pi }[11][20]27.10320...It has been proven that if theFlint Hills seriesn=1csc2nn3{\displaystyle \displaystyle \sum _{n=1}^{\infty }{\frac {\csc ^{2}n}{n^{3}}}} (wheren is in radians) converges, thenπ{\displaystyle \pi }'s irrationality exponent is at most5/2{\displaystyle 5/2}[21][22] and that if it diverges, the irrationality exponent is at least5/2{\displaystyle 5/2}.[23]
π2{\displaystyle \pi ^{2}}[11][24]25.09541...π2{\displaystyle \pi ^{2}} andζ(2){\displaystyle \zeta (2)} are linearly dependent overQ{\displaystyle \mathbb {Q} }.(ζ(2)=π26){\displaystyle \left(\zeta (2)={\frac {\pi ^{2}}{6}}\right)}, also see theBasel problem.
arctan(1/2){\displaystyle \arctan(1/2)}[25]29.27204...There are many other numbers of the formarctan(1/k){\displaystyle \arctan(1/k)} for which bounds on their irrationality exponents are known.[26][27]
arctan(1/3){\displaystyle \arctan(1/3)}[28]25.94202...
Apéry's constantζ(3){\displaystyle \zeta (3)}[11]25.51389...
Γ(1/4){\displaystyle \Gamma (1/4)}[29]210330
Cahen's constantC{\displaystyle C}[30]3
Champernowne constantsCb{\displaystyle C_{b}} in baseb2{\displaystyle b\geq 2}[31]b{\displaystyle b}Examples includeC10=0.1234567891011...=[0;8,9,1,149083,1,...]{\displaystyle C_{10}=0.1234567891011...=[0;8,9,1,149083,1,...]}
Liouville numbersL{\displaystyle L}{\displaystyle \infty }The Liouville numbers are precisely those numbers having infinite irrationality exponent.[3]: 248 

Irrationality base

[edit]

Theirrationality base orSondow irrationality measure is obtained by settingf(q,β)=βq{\displaystyle f(q,\beta )=\beta ^{-q}}.[1][6] It is a weaker irrationality measure, being able to distinguish how well different Liouville numbers can be approximated, but yieldingβ(x)=1{\displaystyle \beta (x)=1} for all other real numbers:

Letx{\displaystyle x} be an irrational number. If there exist real numbersβ1{\displaystyle \beta \geq 1} with the property that for anyε>0{\displaystyle \varepsilon >0}, there is a positive integerq(ε){\displaystyle q(\varepsilon )} such that

|xpq|>1(β+ε)q{\displaystyle \left|x-{\frac {p}{q}}\right|>{\frac {1}{(\beta +\varepsilon )^{q}}}}

for all integersp,q{\displaystyle p,q} withqq(ε){\displaystyle q\geq q(\varepsilon )} then the least suchβ{\displaystyle \beta } is called the irrationality base ofx{\displaystyle x} and is represented asβ(x){\displaystyle \beta (x)}.

If no suchβ{\displaystyle \beta } exists, thenβ(x)={\displaystyle \beta (x)=\infty } andx{\displaystyle x} is called asuper Liouville number.

If a real numberx{\displaystyle x} is given by itssimple continued fraction expansionx=[a0;a1,a2,...]{\displaystyle x=[a_{0};a_{1},a_{2},...]} with convergentspi/qi{\displaystyle p_{i}/q_{i}} then it holds:

β(x)=lim supnlnqn+1qn=lim supnlnan+1qn{\displaystyle \beta (x)=\limsup _{n\to \infty }{\frac {\ln q_{n+1}}{q_{n}}}=\limsup _{n\to \infty }{\frac {\ln a_{n+1}}{q_{n}}}}.[1]

Examples

[edit]

Any real numberx{\displaystyle x} with finite irrationality exponentμ(x)<{\displaystyle \mu (x)<\infty } has irrationality baseβ(x)=1{\displaystyle \beta (x)=1}, while any number with irrationality baseβ(x)>1{\displaystyle \beta (x)>1} has irrationality exponentμ(x)={\displaystyle \mu (x)=\infty } and is a Liouville number.

The numberL=[1;2,22,222,...]{\displaystyle L=[1;2,2^{2},2^{2^{2}},...]} has irrationality exponentμ(L)={\displaystyle \mu (L)=\infty } and irrationality baseβ(L)=1{\displaystyle \beta (L)=1}.

The numbersτa=n=01na=1+1a+1aa+1aaa+1aaaa+...{\displaystyle \tau _{a}=\sum _{n=0}^{\infty }{\frac {1}{^{n}a}}=1+{\frac {1}{a}}+{\frac {1}{a^{a}}}+{\frac {1}{a^{a^{a}}}}+{\frac {1}{a^{a^{a^{a}}}}}+...} (na{\displaystyle {^{n}a}} representstetration,a=2,3,4...{\displaystyle a=2,3,4...}) have irrationality baseβ(τa)=a{\displaystyle \beta (\tau _{a})=a}.

The numberS=1+121+1421+18421+1168421+132168421+{\displaystyle S=1+{\frac {1}{2^{1}}}+{\frac {1}{4^{2^{1}}}}+{\frac {1}{8^{4^{2^{1}}}}}+{\frac {1}{16^{8^{4^{2^{1}}}}}}+{\frac {1}{32^{16^{8^{4^{2^{1}}}}}}}+\ldots } has irrationality baseβ(S)={\displaystyle \beta (S)=\infty }, hence it is asuper Liouville number.

Although it is not known whether or noteπ{\displaystyle e^{\pi }} is a Liouville number,[32]: 20  it is known thatβ(eπ)=1{\displaystyle \beta (e^{\pi })=1}.[5]: 371 

Other irrationality measures

[edit]

Markov constant

[edit]
Main article:Markov constant

Settingf(q,M)=(Mq2)1{\displaystyle f(q,M)=(Mq^{2})^{-1}} gives a stronger irrationality measure: theMarkov constantM(x){\displaystyle M(x)}. For an irrational numberxRQ{\displaystyle x\in \mathbb {R} \setminus \mathbb {Q} } it is the factor by whichDirichlet's approximation theorem can be improved forx{\displaystyle x}. Namely ifc<M(x){\displaystyle c<M(x)} is a positive real number, then the inequality

0<|xpq|<1cq2{\displaystyle 0<\left|x-{\frac {p}{q}}\right|<{\frac {1}{cq^{2}}}}

has infinitely many solutionspqQ{\displaystyle {\frac {p}{q}}\in \mathbb {Q} }. Ifc>M(x){\displaystyle c>M(x)} there are at most finitely many solutions.

Dirichlet's approximation theorem impliesM(x)1{\displaystyle M(x)\geq 1} andHurwitz's theorem givesM(x)5{\displaystyle M(x)\geq {\sqrt {5}}} both for irrationalx{\displaystyle x}.[33]

This is in fact the best general lower bound since thegolden ratio givesM(φ)=5{\displaystyle M(\varphi )={\sqrt {5}}}. It is alsoM(2)=22{\displaystyle M({\sqrt {2}})=2{\sqrt {2}}}.

Givenx=[a0;a1,a2,...]{\displaystyle x=[a_{0};a_{1},a_{2},...]} by its simplecontinued fraction expansion, one may obtain:[34]

M(x)=lim supn([an+1;an+2,an+3,...]+[0;an,an1,...,a2,a1]).{\displaystyle M(x)=\limsup _{n\to \infty }{([a_{n+1};a_{n+2},a_{n+3},...]+[0;a_{n},a_{n-1},...,a_{2},a_{1}])}.}

Bounds for the Markov constant ofx=[a0;a1,a2,...]{\displaystyle x=[a_{0};a_{1},a_{2},...]} can also be given byp2+4M(x)<p+2{\displaystyle {\sqrt {p^{2}+4}}\leq M(x)<p+2} withp=lim supnan{\displaystyle p=\limsup _{n\to \infty }a_{n}}.[35] This implies thatM(x)={\displaystyle M(x)=\infty } if and only if(ak){\displaystyle (a_{k})} is not bounded. The numbers with finiteM(x){\displaystyle M(x)} are calledbadly approximable. In particular everyquadratic irrational numberx{\displaystyle x} is badly approximable.

Any number withμ(x)>2{\displaystyle \mu (x)>2} orβ(x)>1{\displaystyle \beta (x)>1} has an unbounded simple continued fraction and henceM(x)={\displaystyle M(x)=\infty }. A further consequence isM(e)={\displaystyle M(e)=\infty }.

For rational numbersr{\displaystyle r} it may be definedM(r)=0{\displaystyle M(r)=0}.

Other results

[edit]

The valuesM(e)={\displaystyle M(e)=\infty } andμ(e)=2{\displaystyle \mu (e)=2} imply that the inequality0<|epq|<1cq2{\displaystyle 0<\left|e-{\frac {p}{q}}\right|<{\frac {1}{cq^{2}}}} has for allcR+{\displaystyle c\in \mathbb {R} ^{+}} infinitely many solutionspqQ{\displaystyle {\frac {p}{q}}\in \mathbb {Q} } while the inequality0<|epq|<1q2+ε{\displaystyle 0<\left|e-{\frac {p}{q}}\right|<{\frac {1}{q^{2+\varepsilon }}}} has for allεR+{\displaystyle \varepsilon \in \mathbb {R} ^{+}} only at most finitely many solutionspqQ{\displaystyle {\frac {p}{q}}\in \mathbb {Q} } . This gives rise to the question what the best upper bound is. The answer is given by:[36]

0<|epq|<clnlnqq2lnq{\displaystyle 0<\left|e-{\frac {p}{q}}\right|<{\frac {c\ln \ln q}{q^{2}\ln q}}}

which is satisfied by infinitely manypqQ{\displaystyle {\frac {p}{q}}\in \mathbb {Q} } forc>12{\displaystyle c>{\tfrac {1}{2}}} but not forc<12{\displaystyle c<{\tfrac {1}{2}}}.

This makesthe numbere{\displaystyle e} alongside the rationals and quadratic irrationals an exception to the fact that for almost all real numbersxR{\displaystyle x\in \mathbb {R} } the inequality below has infinitely many solutionspqQ{\displaystyle {\frac {p}{q}}\in \mathbb {Q} }:[5] (seeKhinchin's theorem)

0<|xpq|<1q2lnq{\displaystyle 0<\left|x-{\frac {p}{q}}\right|<{\frac {1}{q^{2}\ln q}}}

Mahler's generalization

[edit]
Main article:Transcendental number theory § Mahler's_classification

Kurt Mahler extended the concept of an irrationality measure and defined a so-calledtranscendence measure, drawing on the idea of a Liouville number andpartitioning the transcendental numbers into three distinct classes.[3]

Mahler's irrationality measure

[edit]

Instead of taking for a given real numberx{\displaystyle x} the difference|xp/q|{\displaystyle |x-p/q|} withp/qQ{\displaystyle p/q\in \mathbb {Q} }, one may instead focus on term|qxp|=|L(x)|{\displaystyle |qx-p|=|L(x)|} withp,qZ{\displaystyle p,q\in \mathbb {Z} } andLZ[x]{\displaystyle L\in \mathbb {Z} [x]} withdegL=1{\displaystyle \deg L=1}. Consider the following inequality:

0<|qxp|max(|p|,|q|)ω{\displaystyle 0<|qx-p|\leq \max(|p|,|q|)^{-\omega }} withp,qZ{\displaystyle p,q\in \mathbb {Z} } andωR0+{\displaystyle \omega \in \mathbb {R} _{0}^{+}}.

DefineR{\displaystyle R} as the set of allωR0+{\displaystyle \omega \in \mathbb {R} _{0}^{+}} for which infinitely many solutionsp,qZ{\displaystyle p,q\in \mathbb {Z} } exist, such that the inequality is satisfied. Thenω1(x)=supM{\displaystyle \omega _{1}(x)=\sup M} is Mahler's irrationality measure. It givesω1(p/q)=0{\displaystyle \omega _{1}(p/q)=0} for rational numbers,ω1(α)=1{\displaystyle \omega _{1}(\alpha )=1} for algebraic irrational numbers and in generalω1(x)=μ(x)1{\displaystyle \omega _{1}(x)=\mu (x)-1}, whereμ(x){\displaystyle \mu (x)} denotes the irrationality exponent.

Transcendence measure

[edit]

Mahler's irrationality measure can be generalized as follows:[2][3] TakeP{\displaystyle P} to be a polynomial withdegPnZ+{\displaystyle \deg P\leq n\in \mathbb {Z} ^{+}} and integer coefficientsaiZ{\displaystyle a_{i}\in \mathbb {Z} }. Then define aheight functionH(P)=max(|a0|,|a1|,...,|an|){\displaystyle H(P)=\max(|a_{0}|,|a_{1}|,...,|a_{n}|)} and consider forcomplex numbersz{\displaystyle z} the inequality:

0<|P(z)|H(P)ω{\displaystyle 0<|P(z)|\leq H(P)^{-\omega }} withωR0+{\displaystyle \omega \in \mathbb {R} _{0}^{+}}.

SetR{\displaystyle R} to be the set of allωR0+{\displaystyle \omega \in \mathbb {R} _{0}^{+}} for which infinitely many such polynomials exist, that keep the inequality satisfied. Further defineωn(z)=supR{\displaystyle \omega _{n}(z)=\sup R} for allnZ+{\displaystyle n\in \mathbb {Z} ^{+}} withω1(z){\displaystyle \omega _{1}(z)} being the above irrationality measure,ω2(z){\displaystyle \omega _{2}(z)} being anon-quadraticity measure, etc.

Then Mahler's transcendence measure is given by:

ω(z)=lim supnωn(z).{\displaystyle \omega (z)=\limsup _{n\to \infty }\omega _{n}(z).}

The transcendental numbers can now be divided into the following three classes:

If for allnZ+{\displaystyle n\in \mathbb {Z} ^{+}} the value ofωn(z){\displaystyle \omega _{n}(z)} is finite andω(z){\displaystyle \omega (z)} is finite as well,z{\displaystyle z} is called anS-number (of typeω(z){\displaystyle \omega (z)}).

If for allnZ+{\displaystyle n\in \mathbb {Z} ^{+}} the value ofωn(z){\displaystyle \omega _{n}(z)} is finite butω(z){\displaystyle \omega (z)} is infinite,z{\displaystyle z} is called anT-number.

If there exists a smallest positive integerN{\displaystyle N} such that for allnN{\displaystyle n\geq N} theωn(z){\displaystyle \omega _{n}(z)} are infinite,z{\displaystyle z} is called anU-number (of degreeN{\displaystyle N}).

The numberz{\displaystyle z} is algebraic (and called anA-number) if and only ifω(z)=0{\displaystyle \omega (z)=0}.

Almost all numbers are S-numbers. In fact, almost all real numbers giveω(x)=1{\displaystyle \omega (x)=1} while almost all complex numbers giveω(z)=12{\displaystyle \omega (z)={\tfrac {1}{2}}}.[37]: 86  The numbere is an S-number withω(e)=1{\displaystyle \omega (e)=1}. The numberπ is either an S- or T-number.[37]: 86  The U-numbers are a set of measure 0 but still uncountable.[38] They contain the Liouville numbers which are exactly the U-numbers of degree one.

Linear independence measure

[edit]

Another generalization of Mahler's irrationality measure gives a linear independence measure.[2][13] For real numbersx1,...,xnR{\displaystyle x_{1},...,x_{n}\in \mathbb {R} } consider the inequality

0<|c1x1+...+cnxn|max(|c1|,...,|cn|)ν{\displaystyle 0<|c_{1}x_{1}+...+c_{n}x_{n}|\leq \max(|c_{1}|,...,|c_{n}|)^{-\nu }} withc1,...,cnZ{\displaystyle c_{1},...,c_{n}\in \mathbb {Z} } andνR0+{\displaystyle \nu \in \mathbb {R} _{0}^{+}}.

DefineR{\displaystyle R} as the set of allνR0+{\displaystyle \nu \in \mathbb {R} _{0}^{+}} for which infinitely many solutionsc1,...cnZ{\displaystyle c_{1},...c_{n}\in \mathbb {Z} } exist, such that the inequality is satisfied. Thenν(x1,...,xn)=supR{\displaystyle \nu (x_{1},...,x_{n})=\sup R} is the linear independence measure.

If thex1,...,xn{\displaystyle x_{1},...,x_{n}} are linearly dependent overQ{\displaystyle \mathbb {\mathbb {Q} } } thenν(x1,...,xn)=0{\displaystyle \nu (x_{1},...,x_{n})=0}.

If1,x1,...,xn{\displaystyle 1,x_{1},...,x_{n}} arelinearly independent algebraic numbers overQ{\displaystyle \mathbb {\mathbb {Q} } } thenν(1,x1,...,xn)n{\displaystyle \nu (1,x_{1},...,x_{n})\leq n}.[32]

It is furtherν(1,x)=ω1(x)=μ(x)1{\displaystyle \nu (1,x)=\omega _{1}(x)=\mu (x)-1}.

Other generalizations

[edit]

Koksma’s generalization

[edit]

Jurjen Koksma in 1939 proposed another generalization, similar to that of Mahler, based on approximations of complex numbers by algebraic numbers.[3][37]

For a given complex numberz{\displaystyle z} consider algebraic numbersα{\displaystyle \alpha } of degree at mostn{\displaystyle n}. Define a height functionH(α)=H(P){\displaystyle H(\alpha )=H(P)}, whereP{\displaystyle P} is thecharacteristic polynomial ofα{\displaystyle \alpha } and consider the inequality:

0<|zα|H(α)ω1{\displaystyle 0<|z-\alpha |\leq H(\alpha )^{-\omega ^{*}-1}} withωR0+{\displaystyle \omega ^{*}\in \mathbb {R} _{0}^{+}}.

SetR{\displaystyle R} to be the set of allωR0+{\displaystyle \omega ^{*}\in \mathbb {R} _{0}^{+}} for which infinitely many such algebraic numbersα{\displaystyle \alpha } exist, that keep the inequality satisfied. Further defineωn(z)=supR{\displaystyle \omega _{n}^{*}(z)=\sup R} for allnZ+{\displaystyle n\in \mathbb {Z} ^{+}} withω1(z){\displaystyle \omega _{1}^{*}(z)} being an irrationality measure,ω2(z){\displaystyle \omega _{2}^{*}(z)} being anon-quadraticity measure,[17] etc.

Then Koksma's transcendence measure is given by:

ω(z)=lim supnωn(z){\displaystyle \omega ^{*}(z)=\limsup _{n\to \infty }\omega _{n}^{*}(z)}.

The complex numbers can now once again be partitioned into four classes A*, S*, T* and U*. However it turns out that these classes are equivalent to the ones given by Mahler in the sense that they produce exactly the same partition.[37]: 87 

Simultaneous approximation of real numbers

[edit]
Main article:Subspace theorem

Given a real numberxR{\displaystyle x\in \mathbb {R} }, an irrationality measure ofx{\displaystyle x} quantifies how well it can be approximated by rational numberspq{\displaystyle {\frac {p}{q}}} with denominatorqZ+{\displaystyle q\in \mathbb {Z} ^{+}}. Ifx=α{\displaystyle x=\alpha } is taken to be an algebraic number that is also irrational one may obtain that the inequality

0<|αpq|<1qμ{\displaystyle 0<\left|\alpha -{\frac {p}{q}}\right|<{\frac {1}{q^{\mu }}}}

has only at most finitely many solutionspqQ{\displaystyle {\frac {p}{q}}\in \mathbb {Q} } forμ>2{\displaystyle \mu >2}. This is known asRoth's theorem.

This can be generalized: Given a set of real numbersx1,...,xnR{\displaystyle x_{1},...,x_{n}\in \mathbb {R} } one can quantify how well they can be approximated simultaneously by rational numbersp1q,...,pnq{\displaystyle {\frac {p_{1}}{q}},...,{\frac {p_{n}}{q}}} with the same denominatorqZ+{\displaystyle q\in \mathbb {Z} ^{+}}. If thexi=αi{\displaystyle x_{i}=\alpha _{i}} are taken to be algebraic numbers, such that1,α1,...,αn{\displaystyle 1,\alpha _{1},...,\alpha _{n}} are linearly independent over the rational numbersQ{\displaystyle \mathbb {Q} } it follows that the inequalities

0<|αipiq|<1qμ,i{1,...,n}{\displaystyle 0<\left|\alpha _{i}-{\frac {p_{i}}{q}}\right|<{\frac {1}{q^{\mu }}},\forall i\in \{1,...,n\}}

have only at most finitely many solutions(p1q,...,pnq)Qn{\displaystyle \left({\frac {p_{1}}{q}},...,{\frac {p_{n}}{q}}\right)\in \mathbb {Q} ^{n}} forμ>1+1n{\displaystyle \mu >1+{\frac {1}{n}}}. This result is due toWolfgang M. Schmidt.[39][40]

See also

[edit]

References

[edit]
  1. ^abcdeSondow, Jonathan (2004). "Irrationality Measures, Irrationality Bases, and a Theorem of Jarnik".arXiv:math/0406300.
  2. ^abcParshin, A. N.; Shafarevich, I. R. (2013-03-09).Number Theory IV: Transcendental Numbers. Springer Science & Business Media.ISBN 978-3-662-03644-0.
  3. ^abcdefBugeaud, Yann (2012).Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics. Vol. 193. Cambridge:Cambridge University Press.doi:10.1017/CBO9781139017732.ISBN 978-0-521-11169-0.MR 2953186.Zbl 1260.11001.
  4. ^Tao, Terence (2009)."245B, Notes 9: The Baire category theorem and its Banach space consequences".What's new. Retrieved2024-09-08.
  5. ^abcdBorwein, Jonathan M. (1987).Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley.
  6. ^abSondow, Jonathan (2003-07-23). "An irrationality measure for Liouville numbers and conditional measures for Euler's constant".arXiv:math/0307308.
  7. ^Chudnovsky, G. V. (1982)."Hermite-padé approximations to exponential functions and elementary estimates of the measure of irrationality of π". In Chudnovsky, David V.; Chudnovsky, Gregory V. (eds.).The Riemann Problem, Complete Integrability and Arithmetic Applications. Lecture Notes in Mathematics. Vol. 925. Berlin, Heidelberg: Springer. pp. 299–322.doi:10.1007/BFb0093516.ISBN 978-3-540-39152-4.
  8. ^Shallit, Jeffrey (1979-05-01)."Simple continued fractions for some irrational numbers".Journal of Number Theory.11 (2):209–217.doi:10.1016/0022-314X(79)90040-4.ISSN 0022-314X.
  9. ^Shallit, J. O (1982-04-01)."Simple continued fractions for some irrational numbers, II".Journal of Number Theory.14 (2):228–231.doi:10.1016/0022-314X(82)90047-6.ISSN 0022-314X.
  10. ^Bugeaud, Yann (2011)."On the rational approximation to the Thue–Morse–Mahler numbers".Annales de l'Institut Fourier.61 (5):2065–2076.doi:10.5802/aif.2666.ISSN 1777-5310.
  11. ^abcdeWeisstein, Eric W."Irrationality Measure".mathworld.wolfram.com. Retrieved2020-10-14.
  12. ^Nesterenko, Yu. V. (2010-10-01)."On the irrationality exponent of the number ln 2".Mathematical Notes.88 (3):530–543.doi:10.1134/S0001434610090257.ISSN 1573-8876.S2CID 120685006.
  13. ^abWu, Qiang (2003)."On the Linear Independence Measure of Logarithms of Rational Numbers".Mathematics of Computation.72 (242):901–911.doi:10.1090/S0025-5718-02-01442-4.ISSN 0025-5718.JSTOR 4099938.
  14. ^Bouchelaghem, Abderraouf; He, Yuxin; Li, Yuanhang; Wu, Qiang (2024-03-01)."On the linear independence measures of logarithms of rational numbers. II".J. Korean Math. Soc.61 (2):293–307.doi:10.4134/JKMS.j230133.
  15. ^Sal’nikova, E. S. (2008-04-01)."Diophantine approximations of log 2 and other logarithms".Mathematical Notes.83 (3):389–398.doi:10.1134/S0001434608030097.ISSN 1573-8876.
  16. ^"Symmetrized polynomials in a problem of estimating of the irrationality measure of number ln 3".www.mathnet.ru. Retrieved2020-10-14.
  17. ^abcPolyanskii, Alexandr (2015-01-27). "On the irrationality measure of certain numbers".arXiv:1501.06752 [math.NT].
  18. ^abPolyanskii, A. A. (2018-03-01)."On the Irrationality Measures of Certain Numbers. II".Mathematical Notes.103 (3):626–634.doi:10.1134/S0001434618030306.ISSN 1573-8876.S2CID 125251520.
  19. ^Androsenko, V. A. (2015)."Irrationality measure of the number \frac{\pi}{\sqrt{3}}".Izvestiya: Mathematics.79 (1):1–17.doi:10.1070/im2015v079n01abeh002731.ISSN 1064-5632.S2CID 123775303.
  20. ^Zeilberger, Doron; Zudilin, Wadim (2020-01-07). "The irrationality measure ofπ is at most 7.103205334137...".Moscow Journal of Combinatorics and Number Theory.9 (4):407–419.arXiv:1912.06345.doi:10.2140/moscow.2020.9.407.S2CID 209370638.
  21. ^Alekseyev, Max A. (2011). "On convergence of the Flint Hills series".arXiv:1104.5100 [math.CA].
  22. ^Weisstein, Eric W."Flint Hills Series".MathWorld.
  23. ^Meiburg, Alex (2022). "Bounds on Irrationality Measures and the Flint-Hills Series".arXiv:2208.13356 [math.NT].
  24. ^Zudilin, Wadim (2014-06-01). "Two hypergeometric tales and a new irrationality measure ofζ(2)".Annales mathématiques du Québec.38 (1):101–117.arXiv:1310.1526.doi:10.1007/s40316-014-0016-0.ISSN 2195-4763.S2CID 119154009.
  25. ^Bashmakova, M. G.; Salikhov, V. Kh. (2019). "Об оценке меры иррациональности arctg 1/2".Чебышевский сборник.20 (4 (72)):58–68.ISSN 2226-8383.
  26. ^Tomashevskaya, E. B."On the irrationality measure of the number log 5+pi/2 and some other numbers".www.mathnet.ru. Retrieved2020-10-14.
  27. ^Salikhov, Vladislav K.; Bashmakova, Mariya G. (2022)."On rational approximations for some values of arctan(s/r) for natural s and r, s".Moscow Journal of Combinatorics and Number Theory.11 (2):181–188.doi:10.2140/moscow.2022.11.181.ISSN 2220-5438.
  28. ^Salikhov, V. Kh.; Bashmakova, M. G. (2020-12-01)."On Irrationality Measure of Some Values of $\operatorname{arctg} \frac{1}{n}$".Russian Mathematics.64 (12):29–37.doi:10.3103/S1066369X2012004X.ISSN 1934-810X.
  29. ^Waldschmidt, Michel (2008)."Elliptic Functions and Transcendence".Surveys in Number Theory. Developments in Mathematics. Vol. 17. Springer Verlag. pp. 143–188. Retrieved2024-09-10.
  30. ^Duverney, Daniel; Shiokawa, Iekata (2020-01-01)."Irrationality exponents of numbers related with Cahen's constant".Monatshefte für Mathematik.191 (1):53–76.doi:10.1007/s00605-019-01335-0.ISSN 1436-5081.
  31. ^Amou, Masaaki (1991-02-01)."Approximation to certain transcendental decimal fractions by algebraic numbers".Journal of Number Theory.37 (2):231–241.doi:10.1016/S0022-314X(05)80039-3.ISSN 0022-314X.
  32. ^abWaldschmidt, Michel (2004-01-24). "Open Diophantine Problems".arXiv:math/0312440.
  33. ^Hurwitz, A. (1891)."Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche (On the approximate representation of irrational numbers by rational fractions)".Mathematische Annalen (in German).39 (2):279–284.doi:10.1007/BF01206656.JFM 23.0222.02.S2CID 119535189.
  34. ^LeVeque, William (1977).Fundamentals of Number Theory. Addison-Wesley Publishing Company, Inc. pp. 251–254.ISBN 0-201-04287-8.
  35. ^Hancl, Jaroslav (January 2016). "Second basic theorem of Hurwitz".Lithuanian Mathematical Journal.56:72–76.doi:10.1007/s10986-016-9305-4.S2CID 124639896.
  36. ^Davis, C. S. (1978)."Rational approximations to e".Journal of the Australian Mathematical Society.25 (4):497–502.doi:10.1017/S1446788700021480.ISSN 1446-8107.
  37. ^abcdBaker, Alan (1979).Transcendental number theory (Repr. with additional material ed.). Cambridge: Cambridge Univ. Pr.ISBN 978-0-521-20461-3.
  38. ^Burger, Edward B.; Tubbs, Robert (2004-07-28).Making Transcendence Transparent: An Intuitive Approach to Classical Transcendental Number Theory. Springer Science & Business Media.ISBN 978-0-387-21444-3.
  39. ^Schmidt, Wolfgang M. (1972)."Norm Form Equations".Annals of Mathematics.96 (3):526–551.doi:10.2307/1970824.ISSN 0003-486X.JSTOR 1970824.
  40. ^Schmidt, Wolfgang M. (1996).Diophantine approximation. Lecture notes in mathematics. Berlin ; New York: Springer.ISBN 978-3-540-09762-4.
Fields
Key concepts
Advanced concepts
Retrieved from "https://en.wikipedia.org/w/index.php?title=Irrationality_measure&oldid=1333744420"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp