| ||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weightAr°(Fe) | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturaliron (26Fe) consists of four stableisotopes: 5.845%54Fe (possibly radioactive withhalf-life >4.4×1020 years),[4] 91.754%56Fe, 2.119%57Fe and 0.286%58Fe. There are 28 known radioisotopes and 8nuclear isomers, the most stable of which are60Fe (half-life 2.6 million years) and55Fe (half-life 2.7 years).
Much of the past work on measuring the isotopic composition of iron has centered on determining60Fe variations due to processes accompanyingnucleosynthesis (i.e.,meteorite studies) and ore formation. In the last decade however, advances inmass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of thestable isotopes of iron. Much of this work has been driven by theEarth andplanetary science communities, though applications to biological and industrial systems are beginning to emerge.[5]
Nuclide [n 1] | Z | N | Isotopic mass(Da)[6] [n 2][n 3] | Half-life[1] [n 4] | Decay mode[1] [n 5] | Daughter isotope [n 6] | Spin and parity[1] [n 7][n 4] | Natural abundance(mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
45Fe | 26 | 19 | 45.01547(30)# | 2.5(2) ms | 2p (70%) | 43Cr | 3/2+# | ||||||||||||
β+, p (18.9%) | 44Cr | ||||||||||||||||||
β+, 2p (7.8%) | 43V | ||||||||||||||||||
β+ (3.3%) | 45Mn | ||||||||||||||||||
46Fe | 26 | 20 | 46.00130(32)# | 13.0(20) ms | β+, p (78.7%) | 45Cr | 0+ | ||||||||||||
β+ (21.3%) | 46Mn | ||||||||||||||||||
β+, 2p? | 44V | ||||||||||||||||||
47Fe | 26 | 21 | 46.99235(54)# | 21.9(2) ms | β+, p (88.4%) | 46Cr | 7/2−# | ||||||||||||
β+ (11.6%) | 47Mn | ||||||||||||||||||
48Fe | 26 | 22 | 47.980667(99) | 45.3(6) ms | β+ (84.7%) | 48Mn | 0+ | ||||||||||||
β+, p (15.3%) | 47Cr | ||||||||||||||||||
49Fe | 26 | 23 | 48.973429(26) | 64.7(3) ms | β+, p (56.7%) | 48Cr | (7/2−) | ||||||||||||
β+ (43.3%) | 49Mn | ||||||||||||||||||
50Fe | 26 | 24 | 49.9629880(90) | 152.0(6) ms | β+ | 50Mn | 0+ | ||||||||||||
β+, p? | 49Cr | ||||||||||||||||||
51Fe | 26 | 25 | 50.9568551(15) | 305.4(23) ms | β+ | 51Mn | 5/2− | ||||||||||||
52Fe | 26 | 26 | 51.94811336(19) | 8.275(8) h | β+ | 52Mn | 0+ | ||||||||||||
52mFe | 6960.7(3) keV | 45.9(6) s | β+ (99.98%) | 52Mn | 12+ | ||||||||||||||
IT (0.021%) | 52Fe | ||||||||||||||||||
53Fe | 26 | 27 | 52.9453056(18) | 8.51(2) min | β+ | 53Mn | 7/2− | ||||||||||||
53mFe | 3040.4(3) keV | 2.54(2) min | IT | 53Fe | 19/2− | ||||||||||||||
54Fe | 26 | 28 | 53.93960819(37) | Observationally Stable[n 8] | 0+ | 0.05845(105) | |||||||||||||
54mFe | 6527.1(11) keV | 364(7) ns | IT | 54Fe | 10+ | ||||||||||||||
55Fe | 26 | 29 | 54.93829116(33) | 2.7562(4) y | EC | 55Mn | 3/2− | ||||||||||||
56Fe[n 9] | 26 | 30 | 55.93493554(29) | Stable | 0+ | 0.91754(106) | |||||||||||||
57Fe | 26 | 31 | 56.93539195(29) | Stable | 1/2− | 0.02119(29) | |||||||||||||
58Fe | 26 | 32 | 57.93327358(34) | Stable | 0+ | 0.00282(12) | |||||||||||||
59Fe | 26 | 33 | 58.93487349(35) | 44.500(12) d | β− | 59Co | 3/2− | ||||||||||||
60Fe | 26 | 34 | 59.9340702(37) | 2.62(4)×106 y | β− | 60Co | 0+ | trace | |||||||||||
61Fe | 26 | 35 | 60.9367462(28) | 5.98(6) min | β− | 61Co | (3/2−) | ||||||||||||
61mFe | 861.67(11) keV | 238(5) ns | IT | 61Fe | 9/2+ | ||||||||||||||
62Fe | 26 | 36 | 61.9367918(30) | 68(2) s | β− | 62Co | 0+ | ||||||||||||
63Fe | 26 | 37 | 62.9402727(46) | 6.1(6) s | β− | 63Co | (5/2−) | ||||||||||||
64Fe | 26 | 38 | 63.9409878(54) | 2.0(2) s | β− | 64Co | 0+ | ||||||||||||
65Fe | 26 | 39 | 64.9450153(55) | 805(10) ms | β− | 65Co | (1/2−) | ||||||||||||
β−,n? | 64Co | ||||||||||||||||||
65m1Fe | 393.7(2) keV | 1.12(15) s | β−? | 65Co | (9/2+) | ||||||||||||||
65m2Fe | 397.6(2) keV | 418(12) ns | IT | 65Fe | (5/2+) | ||||||||||||||
66Fe | 26 | 40 | 65.9462500(44) | 467(29) ms | β− | 66Co | 0+ | ||||||||||||
β−, n? | 65Co | ||||||||||||||||||
67Fe | 26 | 41 | 66.9509300(41) | 394(9) ms | β− | 67Co | (1/2-) | ||||||||||||
β−, n? | 66Co | ||||||||||||||||||
67m1Fe | 403(9) keV | 64(17) μs | IT | 67Fe | (5/2+,7/2+) | ||||||||||||||
67m2Fe | 450(100)# keV | 75(21) μs | IT | 67Fe | (9/2+) | ||||||||||||||
68Fe | 26 | 42 | 67.95288(21)# | 188(4) ms | β− | 68Co | 0+ | ||||||||||||
β−, n? | 67Co | ||||||||||||||||||
69Fe | 26 | 43 | 68.95792(22)# | 162(7) ms | β− | 69Co | 1/2−# | ||||||||||||
β−, n? | 68Co | ||||||||||||||||||
β−, 2n? | 67Co | ||||||||||||||||||
70Fe | 26 | 44 | 69.96040(32)# | 61.4(7) ms | β− | 70Co | 0+ | ||||||||||||
β−, n? | 69Co | ||||||||||||||||||
71Fe | 26 | 45 | 70.96572(43)# | 34.3(26) ms | β− | 71Co | 7/2+# | ||||||||||||
β−, n? | 70Co | ||||||||||||||||||
β−, 2n? | 69Co | ||||||||||||||||||
72Fe | 26 | 46 | 71.96860(54)# | 17.0(10) ms | β− | 72Co | 0+ | ||||||||||||
β−, n? | 71Co | ||||||||||||||||||
β−, 2n? | 70Co | ||||||||||||||||||
73Fe | 26 | 47 | 72.97425(54)# | 12.9(16) ms | β− | 73Co | 7/2+# | ||||||||||||
β−, n? | 72Co | ||||||||||||||||||
β−, 2n? | 71Co | ||||||||||||||||||
74Fe | 26 | 48 | 73.97782(54)# | 5(5) ms | β− | 74Co | 0+ | ||||||||||||
β−, n? | 73Co | ||||||||||||||||||
β−, 2n? | 72Co | ||||||||||||||||||
75Fe | 26 | 49 | 74.98422(64)# | 9# ms [>620 ns] | β−? | 75Co | 9/2+# | ||||||||||||
β−, n? | 74Co | ||||||||||||||||||
β−, 2n? | 73Co | ||||||||||||||||||
76Fe | 26 | 50 | 75.98863(64)# | 3# ms [>410 ns] | β−? | 76Co | 0+ | ||||||||||||
This table header & footer: |
EC: | Electron capture |
IT: | Isomeric transition |
n: | Neutron emission |
p: | Proton emission |
54Fe is observationally stable, but theoretically can decay to54Cr, with a half-life of more than4.4×1020 years viadouble electron capture (εε).[4]
56Fe is the most abundant isotope of iron. It is also the isotope with the lowest mass per nucleon, 930.412 MeV/c2, though not the isotope with the highestnuclear binding energy per nucleon, which isnickel-62.[7] However, because of the details of how nucleosynthesis works,56Fe is a more common endpoint of fusion chains insidesupernovae, where it is mostly produced as56Ni. Thus,56Ni is more common in the universe, relative to othermetals, including62Ni,58Fe and60Ni, all of which have a very high binding energy.
The high nuclear binding energy of56Fe represents the point where further nuclear reactions become energetically unfavorable. Therefore it is among the heaviest elements formed instellar nucleosynthesis reactions in massive stars. These reactions fuse lighter elements like magnesium, silicon, and sulfur to form heavier elements. Among the heavier elements formed is56Ni, which subsequently decays to56Co and then56Fe.
57Fe is widely used inMössbauer spectroscopy and the relatednuclear resonance vibrational spectroscopy due to the low natural variation in energy of the 14.4 keV nuclear transition.[8] The transition was famously used to make the first definitive measurement ofgravitational redshift, in the 1960Pound–Rebka experiment.[9]
Iron-58 can be used to combat anemia and low iron absorption, to metabolically track iron-controlling human genes, and for tracing elements in nature.[10][11] Iron-58 is also an assisting reagent in the synthesis of superheavy elements.[11]
Iron-60 has a half-life of 2.6 million years,[12][13] but was thought until 2009 to have a half-life of 1.5 million years. It undergoesbeta decay tocobalt-60, which then decays with a half-life of about 5 years to stable nickel-60. Traces of iron-60 have been found in lunar samples.
In phases of the meteoritesSemarkona andChervony Kut, a correlation between the concentration of60Ni, thegranddaughter isotope of60Fe, and the abundance of the stable iron isotopes could be found, which is evidence for the existence of60Fe at the time of formation of the Solar System. Possibly the energy from the decay of60Fe contributed, together with the energy from the decay of the radionuclide26Al, to the remelting anddifferentiation ofasteroids after their formation 4.6 billion years ago. The abundance of60Ni inextraterrestrial material may also provide further insight into the origin of theSolar System and its early history.
Iron-60 found in fossilized bacteria in sea floor sediments suggest there was a supernova near the Solar System about 2 million years ago.[14][15] Iron-60 is also found in sediments from 8 million years ago.[16] In 2019, researchers found interstellar60Fe inAntarctica, which they relate to theLocal Interstellar Cloud.[17]
The distance to thesupernova of origin can be estimated by relating the amount of iron-60 intercepted as Earth passes through the expanding supernova ejecta. Assuming that the material ejected in a supernova expands uniformly out from its origin as a sphere with surface area 4πr2. The fraction of the material intercepted by the Earth is dependent on its cross-sectional area (πR2Earth) as it passes through the expanding debris. Where Mej is the mass of ejected material.Assuming the intercepted material is distributed uniformly across the surface of the Earth (4πR2Earth), the mass surface density (Σej) of the supernova ejecta on Earth is:The number of60Fe atoms per unit area found on Earth can be estimated if the typical amount of60Fe ejected from a supernova is known. This can be done by dividing the surface mass density (Σej) by the atomic mass of60Fe.The equation for N60 can be rearranged to find the distance to the supernova.An example calculation for the distance to the supernova point of origin is given below. This calculation uses speculative values for terrestrial60Fe atom surface density (N60 ≈ 4 × 1011 atoms/m2) and a rough estimate of the mass of60Fe ejected by a supernova (10-5 M☉).More sophisticated analyses have been reported that take into consideration theflux and deposition of60Fe as well as possible interfering background sources.[18]
Cobalt-60, the decay product of iron-60, emits 1.173 MeV and 1.333 MeV as it decays. These gamma-ray lines have long been important targets forgamma-ray astronomy, and have been detected by the gamma-ray observatoryINTEGRAL. The signal traces theGalactic plane, showing that60Fe synthesis is ongoing in our Galaxy, and probingelement production in massive stars.[19][20]
Isotope masses from:
Isotopic compositions and standard atomic masses from:
Half-life, spin, and isomer data selected from: