Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Iron(III) chloride

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia

Inorganic compound of Iron

Iron(III) chloride
Iron(III) chloride (anhydrous)
Iron(III) chloride (hydrate)
Names
IUPAC names
Iron(III) chloride
Iron trichloride
Other names
  • Ferric chloride
  • Molysite
  • Flores martis
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.028.846Edit this at Wikidata
EC Number
  • 231-729-4
RTECS number
  • LJ9100000
UNII
UN number
  • 1773 (anhydrous)
  • 2582 (aqueous solution)
  • InChI=1S/3ClH.Fe/h3*1H;/q;;;+3/p-3 checkY
    Key: RBTARNINKXHZNM-UHFFFAOYSA-K checkY
  • InChI=1S/3ClH.Fe/h3*1H;/q;;;+3/p-3
    Key: RBTARNINKXHZNM-DFZHHIFOAF
  • Key: RBTARNINKXHZNM-UHFFFAOYSA-K
  • Cl[Fe](Cl)Cl
Properties
FeCl3
Molar mass
  • 162.204 g/mol (anhydrous)
  • 270.295 g/mol (hexahydrate)[1]
AppearanceGreen-black by reflected light; purple-red by transmitted light; yellow solid as hexahydrate; brown as aqueous solution
OdorSlightHCl
Density
  • 2.90 g/cm3 (anhydrous)
  • 1.82 g/cm3 (hexahydrate)[1]
Melting point307.6 °C (585.7 °F; 580.8 K) (anhydrous)
37 °C (99 °F; 310 K) (hexahydrate)[1]
Boiling point
  • 316 °C (601 °F; 589 K) (anhydrous, decomposes)[1]
  • 280 °C (536 °F; 553 K) (hexahydrate, decomposes)
912 g/L (anhydrous or hexahydrate, 25 °C)[1]
Solubility in
  •  
  • 630 g/L (18 °C)
  • Highly soluble
  • 830 g/L
  • Highly soluble
+13,450·10−6 cm3/mol[2]
Viscosity12 cP (40% solution)
Hazards[4][5][Note 1]
GHS labelling:
Corr. Met. 1; Skin Corr. 1C; Eye Dam. 1Acute Tox. 4 (oral)
Danger
H290,H302,H314
P234,P260,P264,P270,P273,P280,P301+P312,P301+P330+P331,P303+P361+P353,P304+P340,P305+P351+P338,P310,P321,P363,P390,P405,P406,P501
NFPA 704 (fire diamond)
Flash pointNon-flammable
NIOSH (US health exposure limits):
REL (Recommended)
TWA 1 mg/m3[3]
Safety data sheet (SDS)ICSC1499
Related compounds
Otheranions
Othercations
Relatedcoagulants
Structure
Hexagonal,hR24
R3, No. 148[7]
a = 0.6065 nm,b = 0.6065 nm,c = 1.742 nm
α = 90°, β = 90°, γ = 120°
6
Octahedral
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Iron(III) chloride describes the inorganic compounds with the formulaFeCl3(H2O)x. Also calledferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms, which are bothhygroscopic. They feature iron in its +3oxidation state. The anhydrous derivative is aLewis acid, while all forms are mild oxidizing agents. It is used as awater cleaner and as anetchant for metals.

Electronic and optical properties

[edit]
Anhydrous iron(III) chloride evaporates at relatively low temperatures to give the bitetrahedral dimer.

All forms of ferric chloride areparamagnetic, owing to the presence of unpaired electrons residing in 3d orbitals. Although Fe(III) chloride can be octahedral or tetrahedral (or both, see structure section), all of these forms have five unpaired electrons, one perd-orbital. Thehigh spin d5 electronic configuration requires that d-d electronic transitions arespin forbidden, in addition to violating theLaporte rule. This double forbidden-ness results in its solutions being only pale colored. Or, stated more technically, the optical transitions are non-intense. Aqueousferric sulfate andferric nitrate, which contain[Fe(H2O)6]3+, are nearly colorless, whereas the chloride solutions are yellow. Thus, the chloride ligands significantly influence the optical properties of the iron center.[8][9]

Structure

[edit]

Iron(III) chloride can exist as an anhydrous material and a series of hydrates, which results in distinct structures.

Anhydrous

[edit]

Theanhydrous compound is a hygroscopic crystalline solid with a melting point of 307.6 °C. The colour depends on the viewing angle: by reflected light, the crystals appear dark green, but bytransmitted light, they appear purple-red. Anhydrous iron(III) chloride has theBiI3 structure, withoctahedral Fe(III) centres interconnected by two-coordinate chlorideligands.[7][10]

Iron(III) chloride has a relatively low melting point, and boils at around 315 °C. The vapor consists of thedimerFe2Cl6, much likealuminium chloride. This dimer dissociates into themonomericFeCl3 (with D3hpoint groupmolecular symmetry) at higher temperatures, in competition with its reversible decomposition to giveiron(II) chloride andchlorine gas.[11]

Hydrates

[edit]

Ferric chloride formhydrates upon exposure to water, reflecting its Lewis acidity. All hydrates exhibitdeliquescence, meaning that they become liquid by absorbing moisture from the air. Hydration invariably gives derivatives ofaquo complexes with the formula[FeCl2(H2O)4]+. This cation can adopt eithertrans orcisstereochemistry, reflecting the relative location of the chlorideligands on theoctahedral Fe center. Four hydrates have been characterized byX-ray crystallography: the dihydrateFeCl3·2H2O, the disesquihydrateFeCl3·2.5H2O, the trisesquihydrateFeCl3·3.5H2O, and finally the hexahydrateFeCl3·6H2O. These species differ with respect to the stereochemistry of the octahedral iron cation, the identity of the anions, and the presence or absence ofwater of crystallization.[9] The structural formulas are[trans−FeCl2(H2O)4][FeCl4],[cis−FeCl2(H2O)4][FeCl4]·H2O,[cis−FeCl2(H2O)4][FeCl4]·H2O, and[trans−FeCl2(H2O)4]Cl·2H2O. The first three members of this series have the tetrahedraltetrachloroferrate ([FeCl4]) anion.[12]

Solution

[edit]
A brown, acidic solution of iron(III) chloride.

Like the solid hydrates, aqueous solutions of ferric chloride also consist of the octahedral[FeCl2(H2O)4]+ of unspecified stereochemistry.[9] Detailed speciation of aqueous solutions of ferric chloride is challenging because the individual components do not have distinctive spectroscopic signatures. Iron(III) complexes, with a high spin d5 configuration, are kinetically labile, which means that ligands rapidly dissociate and reassociate. A further complication is that these solutions are strongly acidic, as expected foraquo complexes of a tricationic metal. Iron aquo complexes are prone toolation, the formation ofpolymericoxo derivatives. Dilute solutions of ferric chloride produce soluble nanoparticles withmolecular weight of 104, which exhibit the property of "aging", i.e., the structure change or evolve over the course of days.[13] The polymeric species formed by the hydrolysis of ferric chlorides are key to the use of ferric chloride for water treatment.

In contrast to the complicated behavior of its aqueous solutions, solutions of iron(III) chloride indiethyl ether andtetrahydrofuran are well-behaved. Bothethers form 1:2adducts of the general formula FeCl3(ether)2. In these complexes, the iron is pentacoordinate.[14]

Preparation

[edit]

Several hundred tons of anhydrous iron(III) chloride are produced annually. The principal method, calleddirect chlorination, uses scrap iron as a precursor:[10]

2 Fe + 3 Cl2 → 2 FeCl3

The reaction is conducted at several hundred degrees such that the product is gaseous. Using excess chlorine guarantees that the intermediate ferrous chloride is converted to the ferric state.[10] A similar but laboratory-scale process also has been described.[15][16]

Aqueous solutions of iron(III) chloride are also produced industrially from a number of iron precursors, including iron oxides:

Fe2O3 + 6 HCl + 9 H2O → 2 FeCl3(H2O)6

In complementary route, iron metal can be oxidized byhydrochloric acid followed by chlorination:[10]

Fe + 2 HCl → FeCl2 + H2
FeCl2 + 0.5 Cl2 + 6 H2O → FeCl3(H2O)6

A number of variables apply to these processes, including the oxidation of iron by ferric chloride and the hydration of intermediates.[10] Hydrates of iron(III) chloride do not readily yield anhydrous ferric chloride. Attempted thermal dehydration yields hydrochloric acid andiron oxychloride. In the laboratory, hydrated iron(III) chloride can be converted to the anhydrous form by treatment withthionyl chloride[17] ortrimethylsilyl chloride:[18]

FeCl3·6H2O + 12 (CH3)3SiCl → FeCl3 + 6 ((CH3)3Si)2O + 12 HCl
FeCl3·6H2O + 6 SOCl2 → FeCl3 + 6 SO2 + 12 HCl

Reactions

[edit]

Beinghigh spin d5 electronic configuration iron(III) chlorides arelabile, meaning that its Cl- and H2O ligands exchange rapidly with free chloride and water.[9][19] In contrast to their kinetic lability, iron(III) chlorides are thermodynamically robust, as reflected by the vigorous methods applied to their synthesis, as described above.

Anhydrous FeCl3

[edit]

Aside from lability, which applies to anhydrous and hydrated forms, the reactivity of anhydrous ferric chloride reveals two trends: It is aLewis acid and anoxidizing agent.[20]

Reactions of anhydrous iron(III) chloride reflect its description as bothoxophilic and ahard Lewis acid. Myriad manifestations of the oxophiliicty of iron(III) chloride are available. When heated withiron(III) oxide at 350 °C it reacts to giveiron oxychloride:[21]

FeCl3 + Fe2O3 → 3FeOCl

Alkali metalalkoxides react to give the iron(III)alkoxide complexes. These products have more complicated structures than anhydrous iron(III) chloride.[22][23] In the solid phase a variety of multinuclear complexes have been described for the nominal stoichiometric reaction betweenFeCl3 andsodium ethoxide:

FeCl3 + 3 CH3CH2ONa → "Fe(OCH2CH3)3" + 3 NaCl

Iron(III) chloride forms a 1:2adduct withLewis bases such astriphenylphosphine oxide; e.g.,FeCl3(OP(C6H5)3)2. The related 1:2 complexFeCl3(OEt2)2, where Et = C2H5), has been crystallized from ether solution.[14]

Iron(III) chloride also reacts withtetraethylammonium chloride to give the yellow salt of thetetrachloroferrate ion ((Et4N)[FeCl4]). Similarly, combining FeCl3 with NaCl and KCl givesNa[FeCl4] andK[FeCl4], respectively.[24]

In addition to these simplestoichiometric reactions, the Lewis acidity of ferric chloride enables its use in a variety of acid-catalyzed reactions as described below in the section on organic chemistry.[10]

In terms of its being an oxidant, iron(III) chloride oxidizes iron powder to form iron(II) chloride via acomproportionation reaction:[10]

2 FeCl3 + Fe → 3 FeCl2

A traditional synthesis of anhydrousferrous chloride is the reduction ofFeCl3 withchlorobenzene:[25]

2 FeCl3 + C6H5Cl → 2 FeCl2 + C6H4Cl2 + HCl

iron(III) chloride releases chlorine gas when heated above 160 °C, generatingferrous chloride:[16]

2FeCl3 → 2FeCl2 + Cl2

To suppress this reaction, the preparation of iron(III) chloride requires an excess of chlorinating agent, as discussed above.[16][10]

Hydrated FeCl3

[edit]

Unlike the anhydrous material, hydrated ferric chloride is not a particularly strong Lewis acid since water ligands have quenched the Lewis acidity by binding to Fe(III). Instead, it is a Brønsted-Lowry acid, as the hydrogen atoms on the water ligands become more acidic when the water ligands bond to Fe(III).

Like the anhydrous material, hydrated ferric chloride is oxophilic. For example,oxalate salts react rapidly with aqueous iron(III) chloride to give[Fe(C2O4)3]3−, known asferrioxalate. Othercarboxylate sources, e.g.,citrate andtartrate, bind as well to givecarboxylate complexes. The affinity of iron(III) for oxygen ligands was the basis of qualitative tests for phenols. Although superseded by spectroscopic methods, theferric chloride test is a traditionalcolorimetric test.[26] The affinity of iron(III) for phenols is exploited in theTrinder spot test.[27]

Aqueous iron(III) chloride serves as a one-electron oxidant illustrated by its reaction withcopper(I) chloride to givecopper(II) chloride and iron(II) chloride.

FeCl3 + CuCl → FeCl2 + CuCl2

This fundamental reaction is relevant to the use of ferric chloride solutions in etching copper.

Organometallic chemistry

[edit]

The interaction of anhydrous iron(III) chloride withorganolithium andorganomagnesium compounds has been examined often. These studies are enabled because of the solubility of FeCl3 in ethereal solvents, which avoids the possibility of hydrolysis of thenucleophilicalkylating agents. Such studies may be relevant to the mechanism of FeCl3-catalyzedcross-coupling reactions.[28] The isolation of organoiron(III) intermediates requires low-temperature reactions, lest the [FeR4] intermediates degrade. Usingmethylmagnesium bromide as the alkylation agent, salts of Fe(CH3)4] have been isolated.[29] Illustrating the sensitivity of these reactions,methyl lithiumLiCH3 reacts with iron(III) chloride to give lithiumtetrachloroferrate(II)Li2[FeCl4]:[30]

2 FeCl3 + LiCH3 → FeCl2 + Li[FeCl4] + 0.5 CH3CH3
Li[FeCl4] + LiCH3 → Li2[FeCl4] + 0.5 CH3CH3

To a significant extent,iron(III) acetylacetonate and related beta-diketonate complexes are more widely used than FeCl3 as ether-soluble sources of ferric ion.[20] These diketonate complexes have the advantages that they do not form hydrates, unlike iron(III) chloride, and they are more soluble in relevant solvents.[28]Cyclopentadienyl magnesium bromide undergoes a complex reaction with iron(III) chloride, resulting inferrocene:[31]

3 C5H5MgBr + FeCl3 → Fe(C5H5)2 + 1/n (C5H5)n + 3 MgBrCl

This conversion, although not of practical value, was important in the history oforganometallic chemistry where ferrocene is emblematic of the field.[32]

Uses

[edit]

Water treatment

[edit]

The largest applications of iron(III) chloride aresewage treatment anddrinking water production. By forming highly dispersed networks of Fe-O-Fe containing materials, ferric chlorides serve as coagulant and flocculants.[33] In this application, an aqueous solution ofFeCl3 is treated with base to form afloc ofiron(III) hydroxide (Fe(OH)3), also formulated as FeO(OH) (ferrihydrite). This floc facilitates the separation of suspended materials, clarifying the water.[10]

Iron(III) chloride is also used to remove solublephosphate from wastewater.Iron(III) phosphate isinsoluble and thus precipitates as a solid.[34] One potential advantage of its use in water treatment, is that the ferric ion oxidizes (deodorizes)hydrogen sulfide.[35]

Etching and metal cleaning

[edit]

It is also used as aleaching agent in chloride hydrometallurgy,[36] for example in the production of Si from FeSi (Silgrain process byElkem).[37]

In another commercial application, a solution of iron(III) chloride is useful for etchingcopper according to the following equation:

2 FeCl3 + Cu → 2 FeCl2 + CuCl2

The solublecopper(II) chloride is rinsed away, leaving a copper pattern. This chemistry is used in the production ofprinted circuit boards (PCB).[19]

Iron(III) chloride is used in many other hobbies involving metallic objects.[38][39][40][41][42]

Organic chemistry

[edit]
Structure of FeCl3(diethylether)2. Color code: Cl=green,Fe = blue, O = red.

In industry, iron(III) chloride is used as a catalyst for the reaction ofethylene withchlorine, forming ethylene dichloride (1,2-dichloroethane):[43]

H2C=CH2 + Cl2 → ClCH2CH2Cl

Ethylene dichloride is acommodity chemical, which is mainly used for the industrial production ofvinyl chloride, themonomer for makingPVC.[44]

Illustrating it use as aLewis acid, iron(III) chloridecatalyseselectrophilic aromatic substitution andchlorinations. In this role, its function is similar to that ofaluminium chloride. In some cases, mixtures of the two are used.[45]

Organic synthesis research

[edit]

Although iron(III) chlorides are seldom used in practicalorganic synthesis, they have received considerable attention asreagents because they are inexpensive, earth abundant, and relatively nontoxic. Many experiments probe both its redox activity and its Lewis acidity.[20] For example, iron(III) chloride oxidizes naphthols to naphthoquinones:[20][46] 3-Alkylthiophenes are polymerized topolythiophenes upon treatment with ferric chloride.[47] Iron(III) chloride has been shown to promote C-Ccoupling reaction.[48]

Several reagents have been developed based onsupported iron(III) chloride. Onsilica gel, the anhydrous salt has been applied to certaindehydration andpinacol-type rearrangement reactions. A similar reagent but moistened induces hydrolysis orepimerization reactions.[49] Onalumina, ferric chloride has been shown to accelerateene reactions.[50]

When pretreated withsodium hydride, iron(III) chloride gives a hydridereducing agent that convertalkenes andketones intoalkanes andalcohols, respectively.[51]

Histology

[edit]

Iron(III) chloride is a component of useful stains, such asCarnoy's solution, ahistological fixative with many applications. Also, it is used to prepareVerhoeff's stain.[52]

Natural occurrence

[edit]

Like many metal halides,FeCl3 naturally occurs as a trace mineral. The rare mineralmolysite is usually associated withvolcanoes andfumaroles.[53][54]

FeCl3-based aerosol are produced by a reaction between iron-rich dust andhydrochloric acid from sea salt. This iron salt aerosol causes about 1–5% of naturally occurring oxidization ofmethane and is thought to have a range of cooling effects; thus, it has been proposed as a catalyst forAtmospheric Methane Removal.[55]

The clouds ofVenus are hypothesized to contain approximately 1%FeCl3 dissolved insulfuric acid.[56][57]

Safety

[edit]

Iron(III) chlorides are widely used in thetreatment of drinking water,[10] so they pose few problems as poisons, at low concentrations.[improper synthesis?] Nonetheless, anhydrous iron(III) chloride, as well as concentratedFeCl3 aqueous solution, is highlycorrosive, and must be handled using proper protective equipment.[20]

Notes

[edit]
  1. ^An alternative GHS classification from the Japanese GHS Inter-ministerial Committee (2006)[6] notes the possibility of respiratory tract irritation fromFeCl3 and differs slightly in other respects from the classification used here.

References

[edit]
  1. ^abcdefHaynes WM, ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida:CRC Press. p. 4.69.ISBN 1-4398-5511-0.
  2. ^Haynes WM, ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida:CRC Press. p. 4.133.ISBN 1-4398-5511-0.
  3. ^NIOSH Pocket Guide to Chemical Hazards."#0346".National Institute for Occupational Safety and Health (NIOSH).
  4. ^HSNO Chemical Classification Information Database, New Zealand Environmental Risk Management Authority, retrieved19 Sep 2010
  5. ^Various suppliers, collated by the Baylor College of Dentistry,Texas A&M University. (accessed 2010-09-19)
  6. ^GHS classification – ID 831, Japanese GHS Inter-ministerial Committee, 2006, retrieved19 Sep 2010
  7. ^abHashimoto S, Forster K, Moss SC (1989). "Structure refinement of an FeCl3 crystal using a thin plate sample".J. Appl. Crystallogr.22 (2):173–180.Bibcode:1989JApCr..22..173H.doi:10.1107/S0021889888013913.
  8. ^Housecroft CE, Sharpe AG (2012).Inorganic Chemistry (4th ed.). Prentice Hall. p. 747.ISBN 978-0-273-74275-3.
  9. ^abcdSimon A. Cotton (2018). "Iron(III) Chloride and Its Coordination Chemistry".Journal of Coordination Chemistry.71 (21):3415–3443.doi:10.1080/00958972.2018.1519188.S2CID 105925459.
  10. ^abcdefghijWildermuth E, Stark H, Friedrich G, Ebenhöch FL, Kühborth B, Silver J, Rituper R (2000). "Iron Compounds".Ullmann's Encyclopedia of Industrial Chemistry.doi:10.1002/14356007.a14_591.ISBN 3527306730.
  11. ^Holleman AF, Wiberg E (2001). Wiberg N (ed.).Inorganic Chemistry. San Diego: Academic Press.ISBN 978-0-12-352651-9.
  12. ^Lind MD (1967)."Crystal Structure of Ferric Chloride Hexahydrate".The Journal of Chemical Physics.47 (3):990–993.Bibcode:1967JChPh..47..990L.doi:10.1063/1.1712067.
  13. ^Flynn CM (1984). "Hydrolysis of Inorganic Iron(III) Salts".Chemical Reviews.84:31–41.doi:10.1021/cr00059a003.
  14. ^abSpandl J, Kusserow M, Brüdgam I (2003)."Alkoxo-Verbindungen des dreiwertigen Eisen: Synthese und Charakterisierung von [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [Fe2Cl4(OtBu)2] und [N(nBu)4]2[Fe6OCl6(OMe)12]".Zeitschrift für anorganische und allgemeine Chemie.629 (6):968–974.doi:10.1002/zaac.200300008.
  15. ^Tarr BR, Booth HS, Dolance A (1950). "Anhydrous Iron(III) Chloride (Ferric Chloride)".Inorganic Syntheses. Vol. 3. pp. 191–194.doi:10.1002/9780470132340.ch51.ISBN 9780470131626.{{cite book}}:ISBN / Date incompatibility (help)
  16. ^abcH. Lux (1963). "Iron (III) Chloride". In G. Brauer (ed.).Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2. NY, NY: Academic Press. p. 1492.
  17. ^Pray AR, Heitmiller RF, Strycker S, et al. (1990). "Anhydrous Metal Chlorides".Inorganic Syntheses. Vol. 28. pp. 321–323.doi:10.1002/9780470132593.ch80.ISBN 9780470132593.
  18. ^Boudjouk P, So JH, Ackermann MN, et al. (1992). "Solvated and Unsolvated Anhydrous Metal Chlorides from Metal Chloride Hydrates".Inorganic Syntheses. Vol. 29. pp. 108–111.doi:10.1002/9780470132609.ch26.ISBN 9780470132609.
  19. ^abGreenwood NN, Earnshaw A (1997).Chemistry of the Elements (2nd ed.). Oxford:Butterworth-Heinemann. p. 1084.ISBN 9780750633659.
  20. ^abcdeWhite AD, Gallou F (2006). "Iron(III) Chloride".Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/047084289X.ri054.pub2.ISBN 0471936235.
  21. ^Kikkawa S, Kanamaru F, Koizumi M, et al. (1984). "Layered Intercalation Compounds". In Holt SL Jr (ed.).Inorganic Syntheses. Vol. 22. John Wiley & Sons, Inc. pp. 86–89.doi:10.1002/9780470132531.ch17.ISBN 9780470132531.
  22. ^Turova NY, Turevskaya EP, Kessler VG, et al., eds. (2002). "12.22.1 Synthesis".The Chemistry of Metal Alkoxides. Springer Science. p. 481.ISBN 0306476576.
  23. ^Bradley DC, Mehrotra RC, Rothwell I, et al. (2001)."3.2.10. Alkoxides of later 3d metals".Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 69.ISBN 9780121241407.OCLC 162129468.
  24. ^Cook CM Jr, Dunn WE Jr (1961). "The Reaction of Ferric Chloride with Sodium and Potassium Chlorides".J. Phys. Chem.65 (9):1505–1511.doi:10.1021/j100905a008.
  25. ^P. Kovacic and N. O. Brace (1960). "Iron(II) Chloride".Inorganic Syntheses. Vol. 6. pp. 172–173.doi:10.1002/9780470132371.ch54.ISBN 9780470132371.{{cite book}}:ISBN / Date incompatibility (help)
  26. ^Furniss BS, Hannaford AJ, Smith PW, et al. (1989).Vogel's Textbook of Practical Organic Chemistry (5th ed.). New York:Longman/Wiley. p. 1213.ISBN 9780582462366.
  27. ^James A. King, Alan B. Storrow, Jeff A. Finkelstein (1995). "Urine Trinder Spot Test: A Rapid Salicylate Screen for the Emergency Department".Annals of Emergency Medicine.26 (3):330–333.doi:10.1016/S0196-0644(95)70082-X.PMID 7661424.
  28. ^abMako TL, Byers JA (2016). "Recent Advances in Iron-Catalysed Cross Coupling Reactions and Their Mechanistic Underpinning".Inorganic Chemistry Frontiers.3 (6):766–790.doi:10.1039/C5QI00295H.
  29. ^Sears JD, Muñoz SB, Cuenca MC, Brennessel WW, Neidig ML (2019)."Synthesis and Characterization of a Sterically Encumbered Homoleptic Tetraalkyliron(III) Ferrate Complex".Polyhedron.158:91–96.doi:10.1016/j.poly.2018.10.041.PMC 6481957.PMID 31031511. and references therein.
  30. ^Berthold HJ, Spiegl HJ (1972). "Über die Bildung von Lithiumtetrachloroferrat(II) Li2FeCl4 bei der Umsetzung von Eisen(III)-chlorid mit Lithiummethyl (1:1) in ätherischer Lösung".Z. Anorg. Allg. Chem. (in German).391 (3):193–202.doi:10.1002/zaac.19723910302.
  31. ^Kealy TJ, Pauson PL (1951). "A New Type of Organo-Iron Compound".Nature.168 (4285): 1040.Bibcode:1951Natur.168.1039K.doi:10.1038/1681039b0.S2CID 4181383.
  32. ^Pauson PL (2001). "Ferrocene—how it all began".Journal of Organometallic Chemistry.637–639:3–6.doi:10.1016/S0022-328X(01)01126-3.
  33. ^Water Treatment Chemicals(PDF).Akzo Nobel Base Chemicals. 2007. Archived fromthe original(PDF) on 13 August 2010. Retrieved26 Oct 2007.
  34. ^"Phosphorus Treatment and Removal Technologies"(PDF).Minnesota Pollution Control Agency. June 2006.
  35. ^Prathna TC, Srivastava A (2021)."Ferric chloride for odour control: studies from wastewater treatment plants in India".Water Practice and Technology.16 (1):35–41.Bibcode:2021WatPT..16...35P.doi:10.2166/wpt.2020.111.S2CID 229396639.
  36. ^Park KH, Mohapatra D, Reddy BR (2006). "A study on the acidified ferric chloride leaching of a complex (Cu–Ni–Co–Fe) matte".Separation and Purification Technology.51 (3):332–337.doi:10.1016/j.seppur.2006.02.013.
  37. ^Dueñas Díez M, Fjeld M, Andersen E, et al. (2006). "Validation of a compartmental population balance model of an industrial leaching process: The Silgrain process".Chem. Eng. Sci.61 (1):229–245.Bibcode:2006ChEnS..61..229D.doi:10.1016/j.ces.2005.01.047.
  38. ^John David Graham."Safer Printmaking—Intaglio".University of Saskatchewan. Retrieved5 February 2024.
  39. ^Harris P, Hartman R, Hartman J (November 1, 2002)."Etching Iron Meteorites". Meteorite Times. RetrievedOctober 14, 2016.
  40. ^Mike Lockwood, Carl Zambuto."A message about mirror coating and recoating".Lockwood Custom Optics, Inc. Lockwood Custom Optics. Retrieved5 February 2024.
  41. ^CoinValueLookup (13 December 2023)."Buffalo Nickel No Date Value: How Much Is It Worth Today?".CoinValueLookup. Retrieved5 February 2024.
  42. ^Scott D, Schwab R (2019). "3.1.4. Etching".Metallography in Archaeology and Art. Cultural Heritage Science. Springer.doi:10.1007/978-3-030-11265-3.ISBN 978-3-030-11265-3.S2CID 201676001.
  43. ^Dreher EL, Beutel KK, Myers JD, Lübbe T, Krieger S, Pottenger LH (2014). "Chloroethanes and Chloroethylenes".Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–81.doi:10.1002/14356007.o06_o01.pub2.ISBN 9783527306732.
  44. ^"Toxic Substances – 1,2-Dichloroethane".ATSDR. Retrieved2023-08-30.
  45. ^Riddell WA, Noller CR (1932). "Mixed Catalysis in the Friedel and Crafts Reaction. The Yields in Typical Reactions using Ferric Chloride–Aluminum Chloride Mixtures as Catalysts".J. Am. Chem. Soc.54 (1):290–294.Bibcode:1932JAChS..54..290R.doi:10.1021/ja01340a043.
  46. ^Louis F. Fieser (1937). "1,2-Naphthoquinone".Organic Syntheses.17: 68.doi:10.15227/orgsyn.017.0068.
  47. ^So RC, Carreon-Asok AC (2019). "Molecular Design, Synthetic Strategies, and Applications of Cationic Polythiophenes".Chemical Reviews.119 (21):11442–11509.doi:10.1021/acs.chemrev.8b00773.PMID 31580649.S2CID 206542971.
  48. ^Albright H, Davis AJ, Gomez-Lopez JL, Vonesh HL, Quach PK, Lambert TH, Schindler CS (2021)."Carbonyl–Olefin Metathesis".Chemical Reviews.121 (15):9359–9406.doi:10.1021/acs.chemrev.0c01096.PMC 9008594.PMID 34133136.
  49. ^White AD (2001). "Iron(III) Chloride-Silica Gel".Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/047084289X.ri059.ISBN 0471936235.
  50. ^White AD (2001). "Iron(III) Chloride-Alumina".Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/047084289X.ri057.ISBN 0471936235.
  51. ^White AD (2001). "Iron(III) Chloride-Sodium Hydride".Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/047084289X.ri060.ISBN 0471936235.
  52. ^Mallory, Sheehan, Hrapchak (1990). "Verhoeff's Elastic Stain". In Carson F, Cappellano CH (eds.).Histotechnology – A Self-Instructional Text. Chicago: ASCP Press. Retrieved2 January 2013 – via The Visible Mouse Project,U.C. Davis.
  53. ^"Molysite".mindat.org. Mindat. Retrieved5 February 2024.
  54. ^"IMA list of Minerals".International Mineralogical Association. 21 March 2011. Retrieved5 February 2024.
  55. ^Oeste FD, de Richter R, Ming T, Caillol S (January 13, 2017)."Climate engineering by mimicking natural dust climate control: the iron salt aerosol method".Earth System Dynamics.8 (1):1–54.Bibcode:2017ESD.....8....1O.doi:10.5194/esd-8-1-2017 – via esd.copernicus.org.
  56. ^Krasnopolsky VA, Parshev VA (1981). "Chemical composition of the atmosphere of Venus".Nature.292 (5824):610–613.Bibcode:1981Natur.292..610K.doi:10.1038/292610a0.S2CID 4369293.
  57. ^Krasnopolsky VA (2006). "Chemical composition of Venus atmosphere and clouds: Some unsolved problems".Planetary and Space Science.54 (13–14):1352–1359.Bibcode:2006P&SS...54.1352K.doi:10.1016/j.pss.2006.04.019.

Further reading

[edit]
Wikimedia Commons has media related toIron(III) chloride.
  1. Lide DR, ed. (1990).CRC Handbook of Chemistry and Physics (71st ed.). Ann Arbor, Michigan, US: CRC Press.ISBN 9780849304712.
  2. Stecher PG, Finkel MJ, Siegmund OH, eds. (1960).The Merck Index of Chemicals and Drugs (7th ed.). Rahway, New Jersey, US: Merck & Co.
  3. Nicholls D (1974).Complexes and First-Row Transition Elements, Macmillan Press, London, 1973. A Macmillan chemistry text. London: Macmillan Press.ISBN 9780333170885.
  4. Wells AF (1984).Structural Inorganic Chemistry. Oxford science publications (5th ed.). Oxford, UK: Oxford University Press.ISBN 9780198553700.
  5. Reich HJ, Rigby HJ, eds. (1999).Acidic and Basic Reagents. Handbook of Reagents for Organic Synthesis. New York: John Wiley & Sons, Inc.ISBN 9780471979258.
Fe(−II)
Fe(0)
Organoiron(0) compounds
Fe(I)
Organoiron(I) compounds
Fe(0,II)
Fe(II)
Organoiron(II) compounds
Fe(0,III)
Fe(II,III)
Fe(III)
Organoiron(III) compounds
Fe(IV)
Fe(VI)
Purported
Salts and covalent derivatives of thechloride ion
HClHe
LiClBeCl2B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaClMgCl2AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2Ar
KClCaCl
CaCl2
ScCl3TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2CuCl
CuCl2
ZnCl2GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrClKr
RbClSrCl2YCl3ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3PdCl2AgClCdCl2InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsClBaCl2*LuCl3
177LuCl3
HfCl4TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
PtCl2−6
AuCl
(Au[AuCl4])2
AuCl3
AuCl4
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3PoCl2
PoCl4
AtClRn
FrClRaCl2**LrCl3RfCl4DbCl5SgO2Cl2BhO3ClHsMtDsRgCnNhFlMcLvTsOg
 
*LaCl3CeCl3PrCl3NdCl2
NdCl3
PmCl3SmCl2
SmCl3
EuCl2
EuCl3
GdCl3TbCl3DyCl2
DyCl3
HoCl3ErCl3TmCl2
TmCl3
YbCl2
YbCl3
**AcCl3ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3
NpCl4
PuCl3
PuCl4
PuCl2−6
AmCl2
AmCl3
CmCl3BkCl3CfCl3
CfCl2
EsCl2
EsCl3
FmCl2MdCl2NoCl2
Retrieved from "https://en.wikipedia.org/w/index.php?title=Iron(III)_chloride&oldid=1309099226"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp