Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Inverse trigonometric functions

From Wikipedia, the free encyclopedia
(Redirected fromInverse trigonometric function)
Inverse functions of sin, cos, tan, etc.

Trigonometry
Reference
Laws and theorems
Calculus
Mathematicians
"Arctangent" redirects here. For other uses, seeArctangent (disambiguation).

Inmathematics, theinverse trigonometric functions (occasionally also calledantitrigonometric,[1]cyclometric,[2] orarcus functions[3]) are theinverse functions of thetrigonometric functions, under suitably restricteddomains. Specifically, they are the inverses of thesine,cosine,tangent,cotangent,secant, andcosecant functions,[4] and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used inengineering,navigation,physics, andgeometry.

Notation

[edit]
For a circle of radius 1, arcsin and arccos are the lengths of actual arcs determined by the quantities in question.
See also:Trigonometric functions § Notation

Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix:arcsin(x),arccos(x),arctan(x), etc.[1] (This convention is used throughout this article.) This notation arises from the following geometric relationships:[citation needed]when measuring in radians, an angle ofθ radians will correspond to anarc whose length is, wherer is the radius of the circle. Thus in theunit circle, the cosine of x function is both the arc and the angle, because the arc of a circle of radius 1 is the same as the angle. Or, "the arc whose cosine isx" is the same as "the angle whose cosine isx", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians.[5] In computer programming languages, the inverse trigonometric functions are often called by the abbreviated formsasin,acos,atan.[6]

The notationssin−1(x),cos−1(x),tan−1(x), etc., as introduced byJohn Herschel in 1813,[7][8] are often used as well in English-language sources,[1] much more than the alsoestablishedsin[−1](x),cos[−1](x),tan[−1](x) – conventions consistent with the notation of aninverse function, that is useful (for example) to define themultivalued version of each inverse trigonometric function:tan1(x)={arctan(x)+πkkZ} .{\displaystyle \tan ^{-1}(x)=\{\arctan(x)+\pi k\mid k\in \mathbb {Z} \}~.} However, this might appear to conflict logically with the common semantics for expressions such assin2(x) (although onlysin2x, without parentheses, is the really common use), which refer to numeric power rather thanfunction composition, and therefore may result in confusion between notation for thereciprocal (multiplicative inverse) andinverse function.[9]

The confusion is somewhat mitigated by the fact that each of the reciprocal trigonometric functions has its own name — for example,(cos(x))−1 = sec(x). Nevertheless, certain authors advise against using it, since it is ambiguous.[1][10] Another precarious convention used by a small number of authors is to use anuppercase first letter, along with a “−1” superscript:Sin−1(x),Cos−1(x),Tan−1(x), etc.[11] Although it is intended to avoid confusion with thereciprocal, which should be represented bysin−1(x),cos−1(x), etc., or, better, bysin−1x,cos−1x, etc., it in turn creates yet another major source of ambiguity, especially since many popular high-level programming languages (e.g.Mathematica andMAGMA) use those very same capitalised representations for the standard trig functions, whereas others (Python,SymPy,NumPy,Matlab,MAPLE, etc.) use lower-case.

Hence, since 2009, theISO 80000-2 standard has specified solely the "arc" prefix for the inverse functions.

Basic concepts

[edit]
The points labelled1,Sec(θ),Csc(θ) represent the length of the line segment from the origin to that point.Sin(θ),Tan(θ), and1 are the heights to the line starting from thex-axis, whileCos(θ),1, andCot(θ) are lengths along thex-axis starting from the origin.

Principal values

[edit]

Since none of the six trigonometric functions areone-to-one, they must be restricted in order to have inverse functions. Therefore, the resultranges of the inverse functions are proper (i.e. strict)subsets of the domains of the original functions.

For example, usingfunction in the sense ofmultivalued functions, just as thesquare root functiony=x{\displaystyle y={\sqrt {x}}} could be defined fromy2=x,{\displaystyle y^{2}=x,} the functiony=arcsin(x){\displaystyle y=\arcsin(x)} is defined so thatsin(y)=x.{\displaystyle \sin(y)=x.} For a given real numberx,{\displaystyle x,} with1x1,{\displaystyle -1\leq x\leq 1,} there are multiple (in fact,countably infinitely many) numbersy{\displaystyle y} such thatsin(y)=x{\displaystyle \sin(y)=x}; for example,sin(0)=0,{\displaystyle \sin(0)=0,} but alsosin(π)=0,{\displaystyle \sin(\pi )=0,}sin(2π)=0,{\displaystyle \sin(2\pi )=0,} etc. When only one value is desired, the function may be restricted to itsprincipal branch. With this restriction, for eachx{\displaystyle x} in the domain, the expressionarcsin(x){\displaystyle \arcsin(x)} will evaluate only to a single value, called itsprincipal value. These properties apply to all the inverse trigonometric functions.

The principal inverses are listed in the following table.

NameUsual notationDefinitionDomain ofx for real resultRange of usual principal value
(radians)
Range of usual principal value
(degrees)
arcsiney = arcsin(x)x =sin(y)−1 ≤x ≤ 1π/2yπ/2−90° ≤y ≤ 90°
arccosiney = arccos(x)x =cos(y)−1 ≤x ≤ 10 ≤y ≤ π0° ≤y ≤ 180°
arctangenty = arctan(x)x =tan(y)all real numbersπ/2 <y <π/2−90° <y < 90°
arccotangenty = arccot(x)x =cot(y)all real numbers0 <y < π0° <y < 180°
arcsecanty = arcsec(x)x =sec(y)|x| ≥ 10 ≤y <π/2 orπ/2 <y ≤ π0° ≤y < 90° or90° <y ≤ 180°
arccosecanty = arccsc(x)x =csc(y)|x| ≥ 1π/2y < 0 or0 <yπ/2−90° ≤y < 0 or0° <y ≤ 90°

Note: Some authors define the range of arcsecant to be(0y<π2{\textstyle 0\leq y<{\frac {\pi }{2}}} orπy<3π2{\textstyle \pi \leq y<{\frac {3\pi }{2}}} ),[12] because the tangent function is nonnegative on this domain. This makes some computations more consistent. For example, using this range,tan(arcsec(x))=x21,{\displaystyle \tan(\operatorname {arcsec}(x))={\sqrt {x^{2}-1}},} whereas with the range(0y<π2{\textstyle 0\leq y<{\frac {\pi }{2}}} orπ2<yπ{\textstyle {\frac {\pi }{2}}<y\leq \pi }), we would have to writetan(arcsec(x))=±x21,{\displaystyle \tan(\operatorname {arcsec}(x))=\pm {\sqrt {x^{2}-1}},} since tangent is nonnegative on0y<π2,{\textstyle 0\leq y<{\frac {\pi }{2}},} but nonpositive onπ2<yπ.{\textstyle {\frac {\pi }{2}}<y\leq \pi .} For a similar reason, the same authors define the range of arccosecant to be(π<yπ2{\textstyle (-\pi <y\leq -{\frac {\pi }{2}}} or0<yπ2).{\textstyle 0<y\leq {\frac {\pi }{2}}).}

Domains

[edit]

Ifx is allowed to be acomplex number, then the range ofy applies only to its real part.

The table below displays names and domains of the inverse trigonometric functions along with therange of their usualprincipal values inradians.

Name
SymbolDomainImage/RangeInverse
function
DomainImage of
principal values
sinesin{\displaystyle \sin }:{\displaystyle :}R{\displaystyle \mathbb {R} }{\displaystyle \to }[1,1]{\displaystyle [-1,1]}arcsin{\displaystyle \arcsin }:{\displaystyle :}[1,1]{\displaystyle [-1,1]}{\displaystyle \to }[π2,π2]{\displaystyle \left[-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right]}
cosinecos{\displaystyle \cos }:{\displaystyle :}R{\displaystyle \mathbb {R} }{\displaystyle \to }[1,1]{\displaystyle [-1,1]}arccos{\displaystyle \arccos }:{\displaystyle :}[1,1]{\displaystyle [-1,1]}{\displaystyle \to }[0,π]{\displaystyle [0,\pi ]}
tangenttan{\displaystyle \tan }:{\displaystyle :}πZ+(π2,π2){\displaystyle \pi \mathbb {Z} +\left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}{\displaystyle \to }R{\displaystyle \mathbb {R} }arctan{\displaystyle \arctan }:{\displaystyle :}R{\displaystyle \mathbb {R} }{\displaystyle \to }(π2,π2){\displaystyle \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}
cotangentcot{\displaystyle \cot }:{\displaystyle :}πZ+(0,π){\displaystyle \pi \mathbb {Z} +(0,\pi )}{\displaystyle \to }R{\displaystyle \mathbb {R} }arccot{\displaystyle \operatorname {arccot} }:{\displaystyle :}R{\displaystyle \mathbb {R} }{\displaystyle \to }(0,π){\displaystyle (0,\pi )}
secantsec{\displaystyle \sec }:{\displaystyle :}πZ+(π2,π2){\displaystyle \pi \mathbb {Z} +\left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}{\displaystyle \to }R(1,1){\displaystyle \mathbb {R} \setminus (-1,1)}arcsec{\displaystyle \operatorname {arcsec} }:{\displaystyle :}R(1,1){\displaystyle \mathbb {R} \setminus (-1,1)}{\displaystyle \to }[0,π]{π2}{\displaystyle [\,0,\;\pi \,]\;\;\;\setminus \left\{{\tfrac {\pi }{2}}\right\}}
cosecantcsc{\displaystyle \csc }:{\displaystyle :}πZ+(0,π){\displaystyle \pi \mathbb {Z} +(0,\pi )}{\displaystyle \to }R(1,1){\displaystyle \mathbb {R} \setminus (-1,1)}arccsc{\displaystyle \operatorname {arccsc} }:{\displaystyle :}R(1,1){\displaystyle \mathbb {R} \setminus (-1,1)}{\displaystyle \to }[π2,π2]{0}{\displaystyle \left[-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right]\setminus \{0\}}

The symbolR=(,){\displaystyle \mathbb {R} =(-\infty ,\infty )} denotes the set of allreal numbers andZ={,2,1,0,1,2,}{\displaystyle \mathbb {Z} =\{\ldots ,\,-2,\,-1,\,0,\,1,\,2,\,\ldots \}} denotes the set of allintegers. The set of all integer multiples ofπ{\displaystyle \pi } is denoted by

πZ := {πn:nZ} = {,2π,π,0,π,2π,}.{\displaystyle \pi \mathbb {Z} ~:=~\{\pi n\;:\;n\in \mathbb {Z} \}~=~\{\ldots ,\,-2\pi ,\,-\pi ,\,0,\,\pi ,\,2\pi ,\,\ldots \}.}

The symbol{\displaystyle \,\setminus \,} denotesset subtraction so that, for instance,R(1,1)=(,1][1,){\displaystyle \mathbb {R} \setminus (-1,1)=(-\infty ,-1]\cup [1,\infty )} is the set of points inR{\displaystyle \mathbb {R} } (that is, real numbers) that arenot in the interval(1,1).{\displaystyle (-1,1).}

TheMinkowski sum notationπZ+(0,π){\textstyle \pi \mathbb {Z} +(0,\pi )} andπZ+(π2,π2){\displaystyle \pi \mathbb {Z} +{\bigl (}{-{\tfrac {\pi }{2}}},{\tfrac {\pi }{2}}{\bigr )}} that is used above to concisely write the domains ofcot,csc,tan, and sec{\displaystyle \cot ,\csc ,\tan ,{\text{ and }}\sec } is now explained.

Domain of cotangentcot{\displaystyle \cot } and cosecantcsc{\displaystyle \csc }: The domains ofcot{\displaystyle \,\cot \,} andcsc{\displaystyle \,\csc \,} are the same. They are the set of all anglesθ{\displaystyle \theta } at whichsinθ0,{\displaystyle \sin \theta \neq 0,} i.e. all real numbers that arenot of the formπn{\displaystyle \pi n} for some integern,{\displaystyle n,}

πZ+(0,π)=(2π,π)(π,0)(0,π)(π,2π)=RπZ{\displaystyle {\begin{aligned}\pi \mathbb {Z} +(0,\pi )&=\cdots \cup (-2\pi ,-\pi )\cup (-\pi ,0)\cup (0,\pi )\cup (\pi ,2\pi )\cup \cdots \\&=\mathbb {R} \setminus \pi \mathbb {Z} \end{aligned}}}

Domain of tangenttan{\displaystyle \tan } and secantsec{\displaystyle \sec }: The domains oftan{\displaystyle \,\tan \,} andsec{\displaystyle \,\sec \,} are the same. They are the set of all anglesθ{\displaystyle \theta } at whichcosθ0,{\displaystyle \cos \theta \neq 0,}

πZ+(π2,π2)=(3π2,π2)(π2,π2)(π2,3π2)=R(π2+πZ){\displaystyle {\begin{aligned}\pi \mathbb {Z} +\left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)&=\cdots \cup {\bigl (}{-{\tfrac {3\pi }{2}}},{-{\tfrac {\pi }{2}}}{\bigr )}\cup {\bigl (}{-{\tfrac {\pi }{2}}},{\tfrac {\pi }{2}}{\bigr )}\cup {\bigl (}{\tfrac {\pi }{2}},{\tfrac {3\pi }{2}}{\bigr )}\cup \cdots \\&=\mathbb {R} \setminus \left({\tfrac {\pi }{2}}+\pi \mathbb {Z} \right)\\\end{aligned}}}

Solutions to elementary trigonometric equations

[edit]

Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of2π:{\displaystyle 2\pi :}

This periodicity is reflected in the general inverses, wherek{\displaystyle k} is some integer.

The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions. It is assumed that the given valuesθ,{\displaystyle \theta ,}r,{\displaystyle r,}s,{\displaystyle s,}x,{\displaystyle x,} andy{\displaystyle y} all lie within appropriate ranges so that the relevant expressions below arewell-defined. Note that "for somekZ{\displaystyle k\in \mathbb {Z} }" is just another way of saying "for someintegerk.{\displaystyle k.}"

The symbol{\displaystyle \,\iff \,} islogical equality and indicates that if the left hand side is true then so is the right hand side and, conversely, if the right hand side is true then so is the left hand side (see this footnote[note 1] for more details and an example illustrating this concept).

Equationif and only ifSolution
sinθ=y{\displaystyle \sin \theta =y}{\displaystyle \iff }θ={\displaystyle \theta =\,}(1)k{\displaystyle (-1)^{k}}arcsin(y){\displaystyle \arcsin(y)}+{\displaystyle +}πk{\displaystyle \pi k}for somekZ{\displaystyle k\in \mathbb {Z} }
cscθ=r{\displaystyle \csc \theta =r}{\displaystyle \iff }θ={\displaystyle \theta =\,}(1)k{\displaystyle (-1)^{k}}arccsc(r){\displaystyle \operatorname {arccsc}(r)}+{\displaystyle +}πk{\displaystyle \pi k}for somekZ{\displaystyle k\in \mathbb {Z} }
cosθ=x{\displaystyle \cos \theta =x}{\displaystyle \iff }θ={\displaystyle \theta =\,}±{\displaystyle \pm \,}arccos(x){\displaystyle \arccos(x)}+{\displaystyle +}2{\displaystyle 2}πk{\displaystyle \pi k}for somekZ{\displaystyle k\in \mathbb {Z} }
secθ=r{\displaystyle \sec \theta =r}{\displaystyle \iff }θ={\displaystyle \theta =\,}±{\displaystyle \pm \,}arcsec(r){\displaystyle \operatorname {arcsec}(r)}+{\displaystyle +}2{\displaystyle 2}πk{\displaystyle \pi k}for somekZ{\displaystyle k\in \mathbb {Z} }
tanθ=s{\displaystyle \tan \theta =s}{\displaystyle \iff }θ={\displaystyle \theta =\,}arctan(s){\displaystyle \arctan(s)}+{\displaystyle +}πk{\displaystyle \pi k}for somekZ{\displaystyle k\in \mathbb {Z} }
cotθ=r{\displaystyle \cot \theta =r}{\displaystyle \iff }θ={\displaystyle \theta =\,}arccot(r){\displaystyle \operatorname {arccot}(r)}+{\displaystyle +}πk{\displaystyle \pi k}for somekZ{\displaystyle k\in \mathbb {Z} }

where the first four solutions can be written in expanded form as:

Equationif and only ifSolution
sinθ=y{\displaystyle \sin \theta =y}{\displaystyle \iff }θ=arcsin(y)+2πk{\displaystyle \theta =\;\;\;\,\arcsin(y)+2\pi k}
          or
θ=arcsin(y)+2πk+π{\displaystyle \theta =-\arcsin(y)+2\pi k+\pi }
for somekZ{\displaystyle k\in \mathbb {Z} }
cscθ=r{\displaystyle \csc \theta =r}{\displaystyle \iff }θ=arccsc(r)+2πk{\displaystyle \theta =\;\;\;\,\operatorname {arccsc}(r)+2\pi k}
          or
θ=arccsc(r)+2πk+π{\displaystyle \theta =-\operatorname {arccsc}(r)+2\pi k+\pi }
for somekZ{\displaystyle k\in \mathbb {Z} }
cosθ=x{\displaystyle \cos \theta =x}{\displaystyle \iff }θ=arccos(x)+2πk{\displaystyle \theta =\;\;\;\,\arccos(x)+2\pi k}
         or
θ=arccos(x)+2πk{\displaystyle \theta =-\arccos(x)+2\pi k}
for somekZ{\displaystyle k\in \mathbb {Z} }
secθ=r{\displaystyle \sec \theta =r}{\displaystyle \iff }θ=arcsec(r)+2πk{\displaystyle \theta =\;\;\;\,\operatorname {arcsec}(r)+2\pi k}
         or
θ=arcsec(r)+2πk{\displaystyle \theta =-\operatorname {arcsec}(r)+2\pi k}
for somekZ{\displaystyle k\in \mathbb {Z} }

For example, ifcosθ=1{\displaystyle \cos \theta =-1} thenθ=π+2πk=π+2π(1+k){\displaystyle \theta =\pi +2\pi k=-\pi +2\pi (1+k)} for somekZ.{\displaystyle k\in \mathbb {Z} .} While ifsinθ=±1{\displaystyle \sin \theta =\pm 1} thenθ=π2+πk=π2+π(k+1){\textstyle \theta ={\frac {\pi }{2}}+\pi k=-{\frac {\pi }{2}}+\pi (k+1)} for somekZ,{\displaystyle k\in \mathbb {Z} ,} wherek{\displaystyle k} will be even ifsinθ=1{\displaystyle \sin \theta =1} and it will be odd ifsinθ=1.{\displaystyle \sin \theta =-1.} The equationssecθ=1{\displaystyle \sec \theta =-1} andcscθ=±1{\displaystyle \csc \theta =\pm 1} have the same solutions ascosθ=1{\displaystyle \cos \theta =-1} andsinθ=±1,{\displaystyle \sin \theta =\pm 1,} respectively. In all equations aboveexcept for those just solved (i.e. except forsin{\displaystyle \sin }/cscθ=±1{\displaystyle \csc \theta =\pm 1} andcos{\displaystyle \cos }/secθ=1{\displaystyle \sec \theta =-1}), the integerk{\displaystyle k} in the solution's formula is uniquely determined byθ{\displaystyle \theta } (for fixedr,s,x,{\displaystyle r,s,x,} andy{\displaystyle y}).

With the help ofinteger parityParity(h)={0if h is even 1if h is odd {\displaystyle \operatorname {Parity} (h)={\begin{cases}0&{\text{if }}h{\text{ is even }}\\1&{\text{if }}h{\text{ is odd }}\\\end{cases}}}it is possible to write a solution tocosθ=x{\displaystyle \cos \theta =x} that doesn't involve the "plus or minus"±{\displaystyle \,\pm \,} symbol:

cosθ=x{\displaystyle cos\;\theta =x\quad } if and only ifθ=(1)harccos(x)+πh+πParity(h){\displaystyle \quad \theta =(-1)^{h}\arccos(x)+\pi h+\pi \operatorname {Parity} (h)\quad } for somehZ.{\displaystyle h\in \mathbb {Z} .}

And similarly for the secant function,

secθ=r{\displaystyle sec\;\theta =r\quad } if and only ifθ=(1)harcsec(r)+πh+πParity(h){\displaystyle \quad \theta =(-1)^{h}\operatorname {arcsec}(r)+\pi h+\pi \operatorname {Parity} (h)\quad } for somehZ,{\displaystyle h\in \mathbb {Z} ,}

whereπh+πParity(h){\displaystyle \pi h+\pi \operatorname {Parity} (h)} equalsπh{\displaystyle \pi h} when the integerh{\displaystyle h} is even, and equalsπh+π{\displaystyle \pi h+\pi } when it's odd.

Detailed example and explanation of the "plus or minus" symbol±

[edit]

The solutions tocosθ=x{\displaystyle \cos \theta =x} andsecθ=x{\displaystyle \sec \theta =x} involve the "plus or minus" symbol±,{\displaystyle \,\pm ,\,} whose meaning is now clarified. Only the solution tocosθ=x{\displaystyle \cos \theta =x} will be discussed since the discussion forsecθ=x{\displaystyle \sec \theta =x} is the same. We are givenx{\displaystyle x} between1x1{\displaystyle -1\leq x\leq 1} and we know that there is an angleθ{\displaystyle \theta } in some interval that satisfiescosθ=x.{\displaystyle \cos \theta =x.} We want to find thisθ.{\displaystyle \theta .} The table above indicates that the solution isθ=±arccosx+2πk for some kZ{\displaystyle \,\theta =\pm \arccos x+2\pi k\,\quad {\text{ for some }}k\in \mathbb {Z} }which is a shorthand way of saying that (at least) one of the following statement is true:

  1. θ=arccosx+2πk{\displaystyle \,\theta =\arccos x+2\pi k\,} for some integerk,{\displaystyle k,}
    or
  2. θ=arccosx+2πk{\displaystyle \,\theta =-\arccos x+2\pi k\,} for some integerk.{\displaystyle k.}

As mentioned above, ifarccosx=π{\displaystyle \,\arccos x=\pi \,} (which by definition only happens whenx=cosπ=1{\displaystyle x=\cos \pi =-1}) then both statements (1) and (2) hold, although with different values for the integerk{\displaystyle k}: ifK{\displaystyle K} is the integer from statement (1), meaning thatθ=π+2πK{\displaystyle \theta =\pi +2\pi K} holds, then the integerk{\displaystyle k} for statement (2) isK+1{\displaystyle K+1} (becauseθ=π+2π(1+K){\displaystyle \theta =-\pi +2\pi (1+K)}). However, ifx1{\displaystyle x\neq -1} then the integerk{\displaystyle k} is unique and completely determined byθ.{\displaystyle \theta .} Ifarccosx=0{\displaystyle \,\arccos x=0\,} (which by definition only happens whenx=cos0=1{\displaystyle x=\cos 0=1}) then±arccosx=0{\displaystyle \,\pm \arccos x=0\,} (because+arccosx=+0=0{\displaystyle \,+\arccos x=+0=0\,} andarccosx=0=0{\displaystyle \,-\arccos x=-0=0\,} so in both cases±arccosx{\displaystyle \,\pm \arccos x\,} is equal to0{\displaystyle 0}) and so the statements (1) and (2) happen to be identical in this particular case (and so both hold). Having considered the casesarccosx=0{\displaystyle \,\arccos x=0\,} andarccosx=π,{\displaystyle \,\arccos x=\pi ,\,} we now focus on the case wherearccosx0{\displaystyle \,\arccos x\neq 0\,} andarccosxπ,{\displaystyle \,\arccos x\neq \pi ,\,} So assume this from now on. The solution tocosθ=x{\displaystyle \cos \theta =x} is stillθ=±arccosx+2πk for some kZ{\displaystyle \,\theta =\pm \arccos x+2\pi k\,\quad {\text{ for some }}k\in \mathbb {Z} }which as before is shorthand for saying that one of statements (1) and (2) is true. However this time, becausearccosx0{\displaystyle \,\arccos x\neq 0\,} and0<arccosx<π,{\displaystyle \,0<\arccos x<\pi ,\,} statements (1) and (2) are different and furthermore,exactly one of the two equalities holds (not both). Additional information aboutθ{\displaystyle \theta } is needed to determine which one holds. For example, suppose thatx=0{\displaystyle x=0} and thatall that is known aboutθ{\displaystyle \theta } is thatπθπ{\displaystyle \,-\pi \leq \theta \leq \pi \,} (and nothing more is known). Thenarccosx=arccos0=π2{\displaystyle \arccos x=\arccos 0={\frac {\pi }{2}}} and moreover, in this particular casek=0{\displaystyle k=0} (for both the+{\displaystyle \,+\,} case and the{\displaystyle \,-\,} case) and so consequently,θ = ±arccosx+2πk = ±(π2)+2π(0) = ±π2.{\displaystyle \theta ~=~\pm \arccos x+2\pi k~=~\pm \left({\frac {\pi }{2}}\right)+2\pi (0)~=~\pm {\frac {\pi }{2}}.}This means thatθ{\displaystyle \theta } could be eitherπ/2{\displaystyle \,\pi /2\,} orπ/2.{\displaystyle \,-\pi /2.} Without additional information it is not possible to determine which of these valuesθ{\displaystyle \theta } has. An example of some additional information that could determine the value ofθ{\displaystyle \theta } would be knowing that the angle is above thex{\displaystyle x}-axis (in which caseθ=π/2{\displaystyle \theta =\pi /2}) or alternatively, knowing that it is below thex{\displaystyle x}-axis (in which caseθ=π/2{\displaystyle \theta =-\pi /2}).

Equal identical trigonometric functions

[edit]

The table below shows how two anglesθ{\displaystyle \theta } andφ{\displaystyle \varphi } must be related if their values under a given trigonometric function are equal or negatives of each other.

Equationif and only ifSolution (for somekZ{\displaystyle k\in \mathbb {Z} })Also a solution to
sinθ=sinφ{\displaystyle {\phantom {-}}\sin \theta =\sin \varphi }{\displaystyle \iff }θ=(1)kφ+2πk+π{\displaystyle \theta ={\phantom {\quad }}(-1)^{k}\varphi +{\phantom {2}}\pi k{\phantom {+\pi }}}cscθ=cscφ{\displaystyle {\phantom {-}}\csc \theta =\csc \varphi }
cosθ=cosφ{\displaystyle {\phantom {-}}\cos \theta =\cos \varphi }{\displaystyle \iff }θ=1±φ+2πk+π{\displaystyle \theta ={\phantom {-1\quad }}\pm \varphi +2\pi k{\phantom {+\pi }}}secθ=secφ{\displaystyle {\phantom {-}}\sec \theta =\sec \varphi }
tanθ=tanφ{\displaystyle {\phantom {-}}\tan \theta =\tan \varphi }{\displaystyle \iff }θ=(1)k+1φ+2πk+π{\displaystyle \theta ={\phantom {(-1)^{k+1}}}\varphi +{\phantom {2}}\pi k{\phantom {+\pi }}}cotθ=cotφ{\displaystyle {\phantom {-}}\cot \theta =\cot \varphi }
sinθ=sinφ{\displaystyle -\sin \theta =\sin \varphi }{\displaystyle \iff }θ=(1)k+1φ+2πk+π{\displaystyle \theta =(-1)^{k+1}\varphi +{\phantom {2}}\pi k{\phantom {+\pi }}}cscθ=cscφ{\displaystyle -\csc \theta =\csc \varphi }
cosθ=cosφ{\displaystyle -\cos \theta =\cos \varphi }{\displaystyle \iff }θ=1±φ+2πk+π+π{\displaystyle \theta ={\phantom {-1\quad }}\pm \varphi +2\pi k+\pi {\phantom {+\pi }}}secθ=secφ{\displaystyle -\sec \theta =\sec \varphi }
tanθ=tanφ{\displaystyle -\tan \theta =\tan \varphi }{\displaystyle \iff }θ=1φ+2πk+π{\displaystyle \theta ={\phantom {-1\quad }}-\varphi +{\phantom {2}}\pi k{\phantom {+\pi }}}cotθ=cotφ{\displaystyle -\cot \theta =\cot \varphi }
|sinθ|=|sinφ||cosθ|=|cosφ|{\displaystyle {\begin{aligned}{\phantom {-}}\left|\sin \theta \right|&=\left|\sin \varphi \right|\\&\Updownarrow \\{\phantom {-}}\left|\cos \theta \right|&=\left|\cos \varphi \right|\end{aligned}}}{\displaystyle \iff }θ=1±φ+2πk+π{\displaystyle \theta ={\phantom {-1\quad }}\pm \varphi +{\phantom {2}}\pi k{\phantom {+\pi }}}|tanθ|=|tanφ||cscθ|=|cscφ||secθ|=|secφ||cotθ|=|cotφ|{\displaystyle {\begin{aligned}{\phantom {-}}\left|\tan \theta \right|&=\left|\tan \varphi \right|\\\left|\csc \theta \right|&=\left|\csc \varphi \right|\\\left|\sec \theta \right|&=\left|\sec \varphi \right|\\\left|\cot \theta \right|&=\left|\cot \varphi \right|\end{aligned}}}

The vertical double arrow{\displaystyle \Updownarrow } in the last row indicates thatθ{\displaystyle \theta } andφ{\displaystyle \varphi } satisfy|sinθ|=|sinφ|{\displaystyle \left|\sin \theta \right|=\left|\sin \varphi \right|} if and only if they satisfy|cosθ|=|cosφ|.{\displaystyle \left|\cos \theta \right|=\left|\cos \varphi \right|.}

Set of all solutions to elementary trigonometric equations

Thus given a single solutionθ{\displaystyle \theta } to an elementary trigonometric equation (sinθ=y{\displaystyle \sin \theta =y} is such an equation, for instance, and becausesin(arcsiny)=y{\displaystyle \sin(\arcsin y)=y} always holds,θ:=arcsiny{\displaystyle \theta :=\arcsin y} is always a solution), the set of all solutions to it are:

Ifθ{\displaystyle \theta } solvesthenSet of all solutions (in terms ofθ{\displaystyle \theta })
sinθ=y{\displaystyle \;\sin \theta =y}then{φ:sinφ=y}={\displaystyle \{\varphi :\sin \varphi =y\}=\,}(θ{\displaystyle (\theta }+2{\displaystyle \,+\,2}πZ){\displaystyle \pi \mathbb {Z} )}(θ{\displaystyle \,\cup \,(-\theta }π{\displaystyle -\pi }+2πZ){\displaystyle +2\pi \mathbb {Z} )}
cscθ=r{\displaystyle \;\csc \theta =r}then{φ:cscφ=r}={\displaystyle \{\varphi :\csc \varphi =r\}=\,}(θ{\displaystyle (\theta }+2{\displaystyle \,+\,2}πZ){\displaystyle \pi \mathbb {Z} )}(θ{\displaystyle \,\cup \,(-\theta }π{\displaystyle -\pi }+2πZ){\displaystyle +2\pi \mathbb {Z} )}
cosθ=x{\displaystyle \;\cos \theta =x}then{φ:cosφ=x}={\displaystyle \{\varphi :\cos \varphi =x\}=\,}(θ{\displaystyle (\theta }+2{\displaystyle \,+\,2}πZ){\displaystyle \pi \mathbb {Z} )}(θ{\displaystyle \,\cup \,(-\theta }+2πZ){\displaystyle +2\pi \mathbb {Z} )}
secθ=r{\displaystyle \;\sec \theta =r}then{φ:secφ=r}={\displaystyle \{\varphi :\sec \varphi =r\}=\,}(θ{\displaystyle (\theta }+2{\displaystyle \,+\,2}πZ){\displaystyle \pi \mathbb {Z} )}(θ{\displaystyle \,\cup \,(-\theta }+2πZ){\displaystyle +2\pi \mathbb {Z} )}
tanθ=s{\displaystyle \;\tan \theta =s}then{φ:tanφ=s}={\displaystyle \{\varphi :\tan \varphi =s\}=\,}θ{\displaystyle \theta }+{\displaystyle \,+\,}πZ{\displaystyle \pi \mathbb {Z} }
cotθ=r{\displaystyle \;\cot \theta =r}then{φ:cotφ=r}={\displaystyle \{\varphi :\cot \varphi =r\}=\,}θ{\displaystyle \theta }+{\displaystyle \,+\,}πZ{\displaystyle \pi \mathbb {Z} }

Transforming equations

[edit]

The equations above can be transformed by using the reflection and shift identities:[13]

Transforming equations by shifts and reflections
Argument:      _={\displaystyle {\underline {\;~~~~~~\;}}=}θ{\displaystyle -\theta }π2±θ{\displaystyle {\frac {\pi }{2}}\pm \theta }π±θ{\displaystyle \pi \pm \theta }3π2±θ{\displaystyle {\frac {3\pi }{2}}\pm \theta }2kπ±θ,{\displaystyle 2k\pi \pm \theta ,}
(kZ){\displaystyle (k\in \mathbb {Z} )}
sin              _={\displaystyle \sin {\underline {\;~~~~~~~~~~~~~~\;}}=}sinθ{\displaystyle -\sin \theta }cosθ{\displaystyle {\phantom {-}}\cos \theta }sinθ{\displaystyle \mp \sin \theta }cosθ{\displaystyle -\cos \theta }±sinθ{\displaystyle \pm \sin \theta }
csc              _={\displaystyle \csc {\underline {\;~~~~~~~~~~~~~~\;}}=}cscθ{\displaystyle -\csc \theta }secθ{\displaystyle {\phantom {-}}\sec \theta }cscθ{\displaystyle \mp \csc \theta }secθ{\displaystyle -\sec \theta }±cscθ{\displaystyle \pm \csc \theta }
cos              _={\displaystyle \cos {\underline {\;~~~~~~~~~~~~~~\;}}=}cosθ{\displaystyle {\phantom {-}}\cos \theta }sinθ{\displaystyle \mp \sin \theta }cosθ{\displaystyle -\cos \theta }±sinθ{\displaystyle \pm \sin \theta }cosθ{\displaystyle {\phantom {-}}\cos \theta }
sec              _={\displaystyle \sec {\underline {\;~~~~~~~~~~~~~~\;}}=}secθ{\displaystyle {\phantom {-}}\sec \theta }cscθ{\displaystyle \mp \csc \theta }secθ{\displaystyle -\sec \theta }±cscθ{\displaystyle \pm \csc \theta }secθ{\displaystyle {\phantom {-}}\sec \theta }
tan              _={\displaystyle \tan {\underline {\;~~~~~~~~~~~~~~\;}}=}tanθ{\displaystyle -\tan \theta }cotθ{\displaystyle \mp \cot \theta }±tanθ{\displaystyle \pm \tan \theta }cotθ{\displaystyle \mp \cot \theta }±tanθ{\displaystyle \pm \tan \theta }
cot              _={\displaystyle \cot {\underline {\;~~~~~~~~~~~~~~\;}}=}cotθ{\displaystyle -\cot \theta }tanθ{\displaystyle \mp \tan \theta }±cotθ{\displaystyle \pm \cot \theta }tanθ{\displaystyle \mp \tan \theta }±cotθ{\displaystyle \pm \cot \theta }

These formulas imply, in particular, that the following hold:

sinθ=sin(θ)=sin(π+θ)=sin(πθ)=cos(π2+θ)=cos(π2θ)=cos(π2θ)=cos(π2+θ)=cos(3π2θ)=cos(3π2+θ)cosθ=cos(θ)=cos(π+θ)=cos(πθ)=sin(π2+θ)=sin(π2θ)=sin(π2θ)=sin(π2+θ)=sin(3π2θ)=sin(3π2+θ)tanθ=tan(θ)=tan(π+θ)=tan(πθ)=cot(π2+θ)=cot(π2θ)=cot(π2θ)=cot(π2+θ)=cot(3π2θ)=cot(3π2+θ){\displaystyle {\begin{aligned}\sin \theta &=-\sin(-\theta )&&=-\sin(\pi +\theta )&&={\phantom {-}}\sin(\pi -\theta )\\&=-\cos \left({\frac {\pi }{2}}+\theta \right)&&={\phantom {-}}\cos \left({\frac {\pi }{2}}-\theta \right)&&=-\cos \left(-{\frac {\pi }{2}}-\theta \right)\\&={\phantom {-}}\cos \left(-{\frac {\pi }{2}}+\theta \right)&&=-\cos \left({\frac {3\pi }{2}}-\theta \right)&&=-\cos \left(-{\frac {3\pi }{2}}+\theta \right)\\[0.3ex]\cos \theta &={\phantom {-}}\cos(-\theta )&&=-\cos(\pi +\theta )&&=-\cos(\pi -\theta )\\&={\phantom {-}}\sin \left({\frac {\pi }{2}}+\theta \right)&&={\phantom {-}}\sin \left({\frac {\pi }{2}}-\theta \right)&&=-\sin \left(-{\frac {\pi }{2}}-\theta \right)\\&=-\sin \left(-{\frac {\pi }{2}}+\theta \right)&&=-\sin \left({\frac {3\pi }{2}}-\theta \right)&&={\phantom {-}}\sin \left(-{\frac {3\pi }{2}}+\theta \right)\\[0.3ex]\tan \theta &=-\tan(-\theta )&&={\phantom {-}}\tan(\pi +\theta )&&=-\tan(\pi -\theta )\\&=-\cot \left({\frac {\pi }{2}}+\theta \right)&&={\phantom {-}}\cot \left({\frac {\pi }{2}}-\theta \right)&&={\phantom {-}}\cot \left(-{\frac {\pi }{2}}-\theta \right)\\&=-\cot \left(-{\frac {\pi }{2}}+\theta \right)&&={\phantom {-}}\cot \left({\frac {3\pi }{2}}-\theta \right)&&=-\cot \left(-{\frac {3\pi }{2}}+\theta \right)\\[0.3ex]\end{aligned}}}

where swappingsincsc,{\displaystyle \sin \leftrightarrow \csc ,} swappingcossec,{\displaystyle \cos \leftrightarrow \sec ,} and swappingtancot{\displaystyle \tan \leftrightarrow \cot } gives the analogous equations forcsc,sec, and cot,{\displaystyle \csc ,\sec ,{\text{ and }}\cot ,} respectively.

So for example, by using the equalitysin(π2θ)=cosθ,{\textstyle \sin \left({\frac {\pi }{2}}-\theta \right)=\cos \theta ,} the equationcosθ=x{\displaystyle \cos \theta =x} can be transformed intosin(π2θ)=x,{\textstyle \sin \left({\frac {\pi }{2}}-\theta \right)=x,} which allows for the solution to the equationsinφ=x{\displaystyle \;\sin \varphi =x\;} (whereφ:=π2θ{\textstyle \varphi :={\frac {\pi }{2}}-\theta }) to be used; that solution being:φ=(1)karcsin(x)+πk for some kZ,{\displaystyle \varphi =(-1)^{k}\arcsin(x)+\pi k\;{\text{ for some }}k\in \mathbb {Z} ,}which becomes:π2θ = (1)karcsin(x)+πk for some kZ{\displaystyle {\frac {\pi }{2}}-\theta ~=~(-1)^{k}\arcsin(x)+\pi k\quad {\text{ for some }}k\in \mathbb {Z} }where using the fact that(1)k=(1)k{\displaystyle (-1)^{k}=(-1)^{-k}} and substitutingh:=k{\displaystyle h:=-k} proves that another solution tocosθ=x{\displaystyle \;\cos \theta =x\;} is:θ = (1)h+1arcsin(x)+πh+π2 for some hZ.{\displaystyle \theta ~=~(-1)^{h+1}\arcsin(x)+\pi h+{\frac {\pi }{2}}\quad {\text{ for some }}h\in \mathbb {Z} .}The substitutionarcsinx=π2arccosx{\displaystyle \;\arcsin x={\frac {\pi }{2}}-\arccos x\;} may be used express the right hand side of the above formula in terms ofarccosx{\displaystyle \;\arccos x\;} instead ofarcsinx.{\displaystyle \;\arcsin x.\;}

Relationships between trigonometric functions and inverse trigonometric functions

[edit]

Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of lengthx,{\displaystyle x,} then applying thePythagorean theorem and definitions of the trigonometric ratios. It is worth noting that for arcsecant and arccosecant, the diagram assumes thatx{\displaystyle x} is positive, and thus the result has to be corrected through the use ofabsolute values and thesignum (sgn) operation.

θ{\displaystyle \theta }sin(θ){\displaystyle \sin(\theta )}cos(θ){\displaystyle \cos(\theta )}tan(θ){\displaystyle \tan(\theta )}Diagram
arcsin(x){\displaystyle \arcsin(x)}sin(arcsin(x))=x{\displaystyle \sin(\arcsin(x))=x}cos(arcsin(x))=1x2{\displaystyle \cos(\arcsin(x))={\sqrt {1-x^{2}}}}tan(arcsin(x))=x1x2{\displaystyle \tan(\arcsin(x))={\frac {x}{\sqrt {1-x^{2}}}}}
arccos(x){\displaystyle \arccos(x)}sin(arccos(x))=1x2{\displaystyle \sin(\arccos(x))={\sqrt {1-x^{2}}}}cos(arccos(x))=x{\displaystyle \cos(\arccos(x))=x}tan(arccos(x))=1x2x{\displaystyle \tan(\arccos(x))={\frac {\sqrt {1-x^{2}}}{x}}}
arctan(x){\displaystyle \arctan(x)}sin(arctan(x))=x1+x2{\displaystyle \sin(\arctan(x))={\frac {x}{\sqrt {1+x^{2}}}}}cos(arctan(x))=11+x2{\displaystyle \cos(\arctan(x))={\frac {1}{\sqrt {1+x^{2}}}}}tan(arctan(x))=x{\displaystyle \tan(\arctan(x))=x}
arccot(x){\displaystyle \operatorname {arccot}(x)}sin(arccot(x))=11+x2{\displaystyle \sin(\operatorname {arccot}(x))={\frac {1}{\sqrt {1+x^{2}}}}}cos(arccot(x))=x1+x2{\displaystyle \cos(\operatorname {arccot}(x))={\frac {x}{\sqrt {1+x^{2}}}}}tan(arccot(x))=1x{\displaystyle \tan(\operatorname {arccot}(x))={\frac {1}{x}}}
arcsec(x){\displaystyle \operatorname {arcsec}(x)}sin(arcsec(x))=x21|x|{\displaystyle \sin(\operatorname {arcsec}(x))={\frac {\sqrt {x^{2}-1}}{|x|}}}cos(arcsec(x))=1x{\displaystyle \cos(\operatorname {arcsec}(x))={\frac {1}{x}}}tan(arcsec(x))=sgn(x)x21{\displaystyle \tan(\operatorname {arcsec}(x))=\operatorname {sgn}(x){\sqrt {x^{2}-1}}}
arccsc(x){\displaystyle \operatorname {arccsc}(x)}sin(arccsc(x))=1x{\displaystyle \sin(\operatorname {arccsc}(x))={\frac {1}{x}}}cos(arccsc(x))=x21|x|{\displaystyle \cos(\operatorname {arccsc}(x))={\frac {\sqrt {x^{2}-1}}{|x|}}}tan(arccsc(x))=sgn(x)x21{\displaystyle \tan(\operatorname {arccsc}(x))={\frac {\operatorname {sgn}(x)}{\sqrt {x^{2}-1}}}}

Relationships among the inverse trigonometric functions

[edit]
The usual principal values of the arcsin(x) (red) and arccos(x) (blue) functions graphed on the cartesian plane.
The usual principal values of the arctan(x) and arccot(x) functions graphed on the cartesian plane.
Principal values of the arcsec(x) and arccsc(x) functions graphed on the cartesian plane.

Complementary angles:

arccos(x)=π2arcsin(x)arccot(x)=π2arctan(x)arccsc(x)=π2arcsec(x){\displaystyle {\begin{aligned}\arccos(x)&={\frac {\pi }{2}}-\arcsin(x)\\[0.5em]\operatorname {arccot}(x)&={\frac {\pi }{2}}-\arctan(x)\\[0.5em]\operatorname {arccsc}(x)&={\frac {\pi }{2}}-\operatorname {arcsec}(x)\end{aligned}}}

Negative arguments:

arcsin(x)=arcsin(x)arccsc(x)=arccsc(x)arccos(x)=πarccos(x)arcsec(x)=πarcsec(x)arctan(x)=arctan(x)arccot(x)=πarccot(x){\displaystyle {\begin{aligned}\arcsin(-x)&=-\arcsin(x)\\\operatorname {arccsc}(-x)&=-\operatorname {arccsc}(x)\\\arccos(-x)&=\pi -\arccos(x)\\\operatorname {arcsec}(-x)&=\pi -\operatorname {arcsec}(x)\\\arctan(-x)&=-\arctan(x)\\\operatorname {arccot}(-x)&=\pi -\operatorname {arccot}(x)\end{aligned}}}

Reciprocal arguments:

arcsin(1x)=arccsc(x)arccsc(1x)=arcsin(x)arccos(1x)=arcsec(x)arcsec(1x)=arccos(x)arctan(1x)=arccot(x)=π2arctan(x), if x>0arctan(1x)=arccot(x)π=π2arctan(x), if x<0arccot(1x)=arctan(x)=π2arccot(x), if x>0arccot(1x)=arctan(x)+π=3π2arccot(x), if x<0{\displaystyle {\begin{aligned}\arcsin \left({\frac {1}{x}}\right)&=\operatorname {arccsc}(x)&\\[0.3em]\operatorname {arccsc} \left({\frac {1}{x}}\right)&=\arcsin(x)&\\[0.3em]\arccos \left({\frac {1}{x}}\right)&=\operatorname {arcsec}(x)&\\[0.3em]\operatorname {arcsec} \left({\frac {1}{x}}\right)&=\arccos(x)&\\[0.3em]\arctan \left({\frac {1}{x}}\right)&=\operatorname {arccot}(x)&={\frac {\pi }{2}}-\arctan(x)\,,{\text{ if }}x>0\\[0.3em]\arctan \left({\frac {1}{x}}\right)&=\operatorname {arccot}(x)-\pi &=-{\frac {\pi }{2}}-\arctan(x)\,,{\text{ if }}x<0\\[0.3em]\operatorname {arccot} \left({\frac {1}{x}}\right)&=\arctan(x)&={\frac {\pi }{2}}-\operatorname {arccot}(x)\,,{\text{ if }}x>0\\[0.3em]\operatorname {arccot} \left({\frac {1}{x}}\right)&=\arctan(x)+\pi &={\frac {3\pi }{2}}-\operatorname {arccot}(x)\,,{\text{ if }}x<0\end{aligned}}}

The identities above can be used with (and derived from) the fact thatsin{\displaystyle \sin } andcsc{\displaystyle \csc } arereciprocals (i.e.csc=1sin{\displaystyle \csc ={\tfrac {1}{\sin }}}), as arecos{\displaystyle \cos } andsec,{\displaystyle \sec ,} andtan{\displaystyle \tan } andcot.{\displaystyle \cot .}

Useful identities if one only has a fragment of a sine table:

arcsin(x)=12arccos(12x2), if 0x1arcsin(x)=arctan(x1x2)arccos(x)=12arccos(2x21), if 0x1arccos(x)=arctan(1x2x)arccos(x)=arcsin(1x2), if 0x1 , from which you get arccos(1x21+x2)=arcsin(2x1+x2), if 0x1arcsin(1x2)=π2sgn(x)arcsin(x)arctan(x)=arcsin(x1+x2)arccot(x)=arccos(x1+x2){\displaystyle {\begin{aligned}\arcsin(x)&={\frac {1}{2}}\arccos \left(1-2x^{2}\right)\,,{\text{ if }}0\leq x\leq 1\\\arcsin(x)&=\arctan \left({\frac {x}{\sqrt {1-x^{2}}}}\right)\\\arccos(x)&={\frac {1}{2}}\arccos \left(2x^{2}-1\right)\,,{\text{ if }}0\leq x\leq 1\\\arccos(x)&=\arctan \left({\frac {\sqrt {1-x^{2}}}{x}}\right)\\\arccos(x)&=\arcsin \left({\sqrt {1-x^{2}}}\right)\,,{\text{ if }}0\leq x\leq 1{\text{ , from which you get }}\\\arccos &\left({\frac {1-x^{2}}{1+x^{2}}}\right)=\arcsin \left({\frac {2x}{1+x^{2}}}\right)\,,{\text{ if }}0\leq x\leq 1\\\arcsin &\left({\sqrt {1-x^{2}}}\right)={\frac {\pi }{2}}-\operatorname {sgn}(x)\arcsin(x)\\\arctan(x)&=\arcsin \left({\frac {x}{\sqrt {1+x^{2}}}}\right)\\\operatorname {arccot}(x)&=\arccos \left({\frac {x}{\sqrt {1+x^{2}}}}\right)\end{aligned}}}

Whenever the square root of a complex number is used here, we choose the root with the positive real part (or positive imaginary part if the square was negative real).

A useful form that follows directly from the table above is

arctan(x)=arccos(11+x2), if x0{\displaystyle \arctan(x)=\arccos \left({\sqrt {\frac {1}{1+x^{2}}}}\right)\,,{\text{ if }}x\geq 0}.

It is obtained by recognizing thatcos(arctan(x))=11+x2=cos(arccos(11+x2)){\displaystyle \cos \left(\arctan \left(x\right)\right)={\sqrt {\frac {1}{1+x^{2}}}}=\cos \left(\arccos \left({\sqrt {\frac {1}{1+x^{2}}}}\right)\right)}.

From thehalf-angle formula,tan(θ2)=sin(θ)1+cos(θ){\displaystyle \tan \left({\tfrac {\theta }{2}}\right)={\tfrac {\sin(\theta )}{1+\cos(\theta )}}}, we get:

arcsin(x)=2arctan(x1+1x2)arccos(x)=2arctan(1x21+x), if 1<x1arctan(x)=2arctan(x1+1+x2){\displaystyle {\begin{aligned}\arcsin(x)&=2\arctan \left({\frac {x}{1+{\sqrt {1-x^{2}}}}}\right)\\[0.5em]\arccos(x)&=2\arctan \left({\frac {\sqrt {1-x^{2}}}{1+x}}\right)\,,{\text{ if }}-1<x\leq 1\\[0.5em]\arctan(x)&=2\arctan \left({\frac {x}{1+{\sqrt {1+x^{2}}}}}\right)\end{aligned}}}

Arctangent addition formula

[edit]
arctan(u)±arctan(v)=arctan(u±v1uv)(modπ),uv1.{\displaystyle \arctan(u)\pm \arctan(v)=\arctan \left({\frac {u\pm v}{1\mp uv}}\right){\pmod {\pi }}\,,\quad uv\neq 1\,.}

This is derived from the tangentaddition formula

tan(α±β)=tan(α)±tan(β)1tan(α)tan(β),{\displaystyle \tan(\alpha \pm \beta )={\frac {\tan(\alpha )\pm \tan(\beta )}{1\mp \tan(\alpha )\tan(\beta )}}\,,}

by letting

α=arctan(u),β=arctan(v).{\displaystyle \alpha =\arctan(u)\,,\quad \beta =\arctan(v)\,.}

In calculus

[edit]

Derivatives of inverse trigonometric functions

[edit]
Main article:Differentiation of trigonometric functions

Thederivatives for complex values ofz are as follows:

ddzarcsin(z)=11z2;z1,+1ddzarccos(z)=11z2;z1,+1ddzarctan(z)=11+z2;zi,+iddzarccot(z)=11+z2;zi,+iddzarcsec(z)=1z211z2;z1,0,+1ddzarccsc(z)=1z211z2;z1,0,+1{\displaystyle {\begin{aligned}{\frac {d}{dz}}\arcsin(z)&{}={\frac {1}{\sqrt {1-z^{2}}}}\;;&z&{}\neq -1,+1\\{\frac {d}{dz}}\arccos(z)&{}=-{\frac {1}{\sqrt {1-z^{2}}}}\;;&z&{}\neq -1,+1\\{\frac {d}{dz}}\arctan(z)&{}={\frac {1}{1+z^{2}}}\;;&z&{}\neq -i,+i\\{\frac {d}{dz}}\operatorname {arccot}(z)&{}=-{\frac {1}{1+z^{2}}}\;;&z&{}\neq -i,+i\\{\frac {d}{dz}}\operatorname {arcsec}(z)&{}={\frac {1}{z^{2}{\sqrt {1-{\frac {1}{z^{2}}}}}}}\;;&z&{}\neq -1,0,+1\\{\frac {d}{dz}}\operatorname {arccsc}(z)&{}=-{\frac {1}{z^{2}{\sqrt {1-{\frac {1}{z^{2}}}}}}}\;;&z&{}\neq -1,0,+1\end{aligned}}}

Only for real values ofx:

ddxarcsec(x)=1|x|x21;|x|>1ddxarccsc(x)=1|x|x21;|x|>1{\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arcsec}(x)&{}={\frac {1}{|x|{\sqrt {x^{2}-1}}}}\;;&|x|>1\\{\frac {d}{dx}}\operatorname {arccsc}(x)&{}=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}\;;&|x|>1\end{aligned}}}

These formulas can be derived in terms of the derivatives of trigonometric functions. For example, ifx=sinθ{\displaystyle x=\sin \theta }, thendx/dθ=cosθ=1x2,{\textstyle dx/d\theta =\cos \theta ={\sqrt {1-x^{2}}},} so

ddxarcsin(x)=dθdx=1dx/dθ=11x2.{\displaystyle {\frac {d}{dx}}\arcsin(x)={\frac {d\theta }{dx}}={\frac {1}{dx/d\theta }}={\frac {1}{\sqrt {1-x^{2}}}}.}

Expression as definite integrals

[edit]

Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:

arcsin(x)=0x11z2dz,|x|1arccos(x)=x111z2dz,|x|1arctan(x)=0x1z2+1dz,arccot(x)=x1z2+1dz,arcsec(x)=1x1zz21dz=π+x11zz21dz,x1arccsc(x)=x1zz21dz=x1zz21dz,x1{\displaystyle {\begin{aligned}\arcsin(x)&{}=\int _{0}^{x}{\frac {1}{\sqrt {1-z^{2}}}}\,dz\;,&|x|&{}\leq 1\\\arccos(x)&{}=\int _{x}^{1}{\frac {1}{\sqrt {1-z^{2}}}}\,dz\;,&|x|&{}\leq 1\\\arctan(x)&{}=\int _{0}^{x}{\frac {1}{z^{2}+1}}\,dz\;,\\\operatorname {arccot}(x)&{}=\int _{x}^{\infty }{\frac {1}{z^{2}+1}}\,dz\;,\\\operatorname {arcsec}(x)&{}=\int _{1}^{x}{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz=\pi +\int _{-x}^{-1}{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz\;,&x&{}\geq 1\\\operatorname {arccsc}(x)&{}=\int _{x}^{\infty }{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz=\int _{-\infty }^{-x}{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz\;,&x&{}\geq 1\\\end{aligned}}}

Whenx equals 1, the integrals with limited domains areimproper integrals, but still well-defined.

Infinite series

[edit]

Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated usingpower series, as follows. For arcsine, the series can be derived by expanding its derivative,11z2{\textstyle {\tfrac {1}{\sqrt {1-z^{2}}}}}, as abinomial series, and integrating term by term (using the integral definition as above). The series for arctangent can similarly be derived by expanding its derivative11+z2{\textstyle {\frac {1}{1+z^{2}}}} in ageometric series, and applying the integral definition above (seeLeibniz series).

arcsin(z)=z+(12)z33+(1324)z55+(135246)z77+=n=0(2n1)!!(2n)!!z2n+12n+1=n=0(2n)!(2nn!)2z2n+12n+1;|z|1{\displaystyle {\begin{aligned}\arcsin(z)&=z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots \\[5pt]&=\sum _{n=0}^{\infty }{\frac {(2n-1)!!}{(2n)!!}}{\frac {z^{2n+1}}{2n+1}}\\[5pt]&=\sum _{n=0}^{\infty }{\frac {(2n)!}{(2^{n}n!)^{2}}}{\frac {z^{2n+1}}{2n+1}}\,;\qquad |z|\leq 1\end{aligned}}}
arctan(z)=zz33+z55z77+=n=0(1)nz2n+12n+1;|z|1zi,i{\displaystyle \arctan(z)=z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots =\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}}\,;\qquad |z|\leq 1\qquad z\neq i,-i}

Series for the other inverse trigonometric functions can be given in terms of these according to the relationships given above. For example,arccos(x)=π/2arcsin(x){\displaystyle \arccos(x)=\pi /2-\arcsin(x)},arccsc(x)=arcsin(1/x){\displaystyle \operatorname {arccsc}(x)=\arcsin(1/x)}, and so on. Another series is given by:[14]

2(arcsin(x2))2=n=1x2nn2(2nn).{\displaystyle 2\left(\arcsin \left({\frac {x}{2}}\right)\right)^{2}=\sum _{n=1}^{\infty }{\frac {x^{2n}}{n^{2}{\binom {2n}{n}}}}.}

Leonhard Euler found a series for the arctangent that converges more quickly than itsTaylor series:

arctan(z)=z1+z2n=0k=1n2kz2(2k+1)(1+z2).{\displaystyle \arctan(z)={\frac {z}{1+z^{2}}}\sum _{n=0}^{\infty }\prod _{k=1}^{n}{\frac {2kz^{2}}{(2k+1)(1+z^{2})}}.}[15]

(The term in the sum forn = 0 is theempty product, so is 1.)

Alternatively, this can be expressed as

arctan(z)=n=022n(n!)2(2n+1)!z2n+1(1+z2)n+1.{\displaystyle \arctan(z)=\sum _{n=0}^{\infty }{\frac {2^{2n}(n!)^{2}}{(2n+1)!}}{\frac {z^{2n+1}}{(1+z^{2})^{n+1}}}.}

Another series for the arctangent function is given by

arctan(z)=in=112n1(1(1+2i/z)2n11(12i/z)2n1),{\displaystyle \arctan(z)=i\sum _{n=1}^{\infty }{\frac {1}{2n-1}}\left({\frac {1}{(1+2i/z)^{2n-1}}}-{\frac {1}{(1-2i/z)^{2n-1}}}\right),}

wherei=1{\displaystyle i={\sqrt {-1}}} is theimaginary unit.[16]

Continued fractions for arctangent

[edit]

Two alternatives to the power series for arctangent are thesegeneralized continued fractions:

arctan(z)=z1+(1z)231z2+(3z)253z2+(5z)275z2+(7z)297z2+=z1+(1z)23+(2z)25+(3z)27+(4z)29+{\displaystyle \arctan(z)={\frac {z}{1+{\cfrac {(1z)^{2}}{3-1z^{2}+{\cfrac {(3z)^{2}}{5-3z^{2}+{\cfrac {(5z)^{2}}{7-5z^{2}+{\cfrac {(7z)^{2}}{9-7z^{2}+\ddots }}}}}}}}}}={\frac {z}{1+{\cfrac {(1z)^{2}}{3+{\cfrac {(2z)^{2}}{5+{\cfrac {(3z)^{2}}{7+{\cfrac {(4z)^{2}}{9+\ddots }}}}}}}}}}}

The second of these is valid in the cut complex plane. There are two cuts, from −i to thepoint at infinity, going down the imaginary axis, and fromi to the point at infinity, going up the same axis. It works best for real numbers running from −1 to 1. The partial denominators are the odd natural numbers, and the partial numerators (after the first) are just (nz)2, with each perfect square appearing once. The first was developed byLeonhard Euler; the second byCarl Friedrich Gauss utilizing theGaussian hypergeometric series.

Indefinite integrals of inverse trigonometric functions

[edit]

For real and complex values ofz:

arcsin(z)dz=zarcsin(z)+1z2+Carccos(z)dz=zarccos(z)1z2+Carctan(z)dz=zarctan(z)12ln(1+z2)+Carccot(z)dz=zarccot(z)+12ln(1+z2)+Carcsec(z)dz=zarcsec(z)ln[z(1+z21z2)]+Carccsc(z)dz=zarccsc(z)+ln[z(1+z21z2)]+C{\displaystyle {\begin{aligned}\int \arcsin(z)\,dz&{}=z\,\arcsin(z)+{\sqrt {1-z^{2}}}+C\\\int \arccos(z)\,dz&{}=z\,\arccos(z)-{\sqrt {1-z^{2}}}+C\\\int \arctan(z)\,dz&{}=z\,\arctan(z)-{\frac {1}{2}}\ln \left(1+z^{2}\right)+C\\\int \operatorname {arccot}(z)\,dz&{}=z\,\operatorname {arccot}(z)+{\frac {1}{2}}\ln \left(1+z^{2}\right)+C\\\int \operatorname {arcsec}(z)\,dz&{}=z\,\operatorname {arcsec}(z)-\ln \left[z\left(1+{\sqrt {\frac {z^{2}-1}{z^{2}}}}\right)\right]+C\\\int \operatorname {arccsc}(z)\,dz&{}=z\,\operatorname {arccsc}(z)+\ln \left[z\left(1+{\sqrt {\frac {z^{2}-1}{z^{2}}}}\right)\right]+C\end{aligned}}}

For realx ≥ 1:

arcsec(x)dx=xarcsec(x)ln(x+x21)+Carccsc(x)dx=xarccsc(x)+ln(x+x21)+C{\displaystyle {\begin{aligned}\int \operatorname {arcsec}(x)\,dx&{}=x\,\operatorname {arcsec}(x)-\ln \left(x+{\sqrt {x^{2}-1}}\right)+C\\\int \operatorname {arccsc}(x)\,dx&{}=x\,\operatorname {arccsc}(x)+\ln \left(x+{\sqrt {x^{2}-1}}\right)+C\end{aligned}}}

For all realx not between -1 and 1:

arcsec(x)dx=xarcsec(x)sgn(x)ln|x+x21|+Carccsc(x)dx=xarccsc(x)+sgn(x)ln|x+x21|+C{\displaystyle {\begin{aligned}\int \operatorname {arcsec}(x)\,dx&{}=x\,\operatorname {arcsec}(x)-\operatorname {sgn}(x)\ln \left|x+{\sqrt {x^{2}-1}}\right|+C\\\int \operatorname {arccsc}(x)\,dx&{}=x\,\operatorname {arccsc}(x)+\operatorname {sgn}(x)\ln \left|x+{\sqrt {x^{2}-1}}\right|+C\end{aligned}}}

The absolute value is necessary to compensate for both negative and positive values of the arcsecant and arccosecant functions. The signum function is also necessary due to the absolute values in thederivatives of the two functions, which create two different solutions for positive and negative values of x. These can be further simplified using the logarithmic definitions of theinverse hyperbolic functions:

arcsec(x)dx=xarcsec(x)arcosh(|x|)+Carccsc(x)dx=xarccsc(x)+arcosh(|x|)+C{\displaystyle {\begin{aligned}\int \operatorname {arcsec}(x)\,dx&{}=x\,\operatorname {arcsec}(x)-\operatorname {arcosh} (|x|)+C\\\int \operatorname {arccsc}(x)\,dx&{}=x\,\operatorname {arccsc}(x)+\operatorname {arcosh} (|x|)+C\\\end{aligned}}}

The absolute value in the argument of the arcosh function creates a negative half of its graph, making it identical to the signum logarithmic function shown above.

All of these antiderivatives can be derived usingintegration by parts and the simple derivative forms shown above.

Example

[edit]

Usingudv=uvvdu{\displaystyle \int u\,dv=uv-\int v\,du} (i.e.integration by parts), set

u=arcsin(x)dv=dxdu=dx1x2v=x{\displaystyle {\begin{aligned}u&=\arcsin(x)&dv&=dx\\du&={\frac {dx}{\sqrt {1-x^{2}}}}&v&=x\end{aligned}}}

Then

arcsin(x)dx=xarcsin(x)x1x2dx,{\displaystyle \int \arcsin(x)\,dx=x\arcsin(x)-\int {\frac {x}{\sqrt {1-x^{2}}}}\,dx,}

which by the simplesubstitutionw=1x2, dw=2xdx{\displaystyle w=1-x^{2},\ dw=-2x\,dx} yields the final result:

arcsin(x)dx=xarcsin(x)+1x2+C{\displaystyle \int \arcsin(x)\,dx=x\arcsin(x)+{\sqrt {1-x^{2}}}+C}

Extension to the complex plane

[edit]
ARiemann surface for the argument of the relationtanz =x. The orange sheet in the middle is the principal sheet representingarctanx. The blue sheet above and green sheet below are displaced by2π and−2π respectively.

Since the inverse trigonometric functions areanalytic functions, they can be extended from thereal line to the complex plane. This results in functions with multiple sheets andbranch points. One possible way of defining the extension is:

arctan(z)=0zdx1+x2zi,+i{\displaystyle \arctan(z)=\int _{0}^{z}{\frac {dx}{1+x^{2}}}\quad z\neq -i,+i}

where the part of the imaginary axis which does not lie strictly between the branch points (−i and +i) is thebranch cut between the principal sheet and other sheets. The path of the integral must not cross a branch cut. Forz not on a branch cut, a straight line path from 0 toz is such a path. Forz on a branch cut, the path must approach fromRe[x] > 0 for the upper branch cut and fromRe[x] < 0 for the lower branch cut.

The arcsine function may then be defined as:

arcsin(z)=arctan(z1z2)z1,+1{\displaystyle \arcsin(z)=\arctan \left({\frac {z}{\sqrt {1-z^{2}}}}\right)\quad z\neq -1,+1}

where (the square-root function has its cut along the negative real axis and) the part of the real axis which does not lie strictly between −1 and +1 is the branch cut between the principal sheet of arcsin and other sheets;

arccos(z)=π2arcsin(z)z1,+1{\displaystyle \arccos(z)={\frac {\pi }{2}}-\arcsin(z)\quad z\neq -1,+1}

which has the same cut as arcsin;

arccot(z)=π2arctan(z)zi,i{\displaystyle \operatorname {arccot}(z)={\frac {\pi }{2}}-\arctan(z)\quad z\neq -i,i}

which has the same cut as arctan;

arcsec(z)=arccos(1z)z1,0,+1{\displaystyle \operatorname {arcsec}(z)=\arccos \left({\frac {1}{z}}\right)\quad z\neq -1,0,+1}

where the part of the real axis between −1 and +1 inclusive is the cut between the principal sheet of arcsec and other sheets;

arccsc(z)=arcsin(1z)z1,0,+1{\displaystyle \operatorname {arccsc}(z)=\arcsin \left({\frac {1}{z}}\right)\quad z\neq -1,0,+1}

which has the same cut as arcsec.

Logarithmic forms

[edit]

These functions may also be expressed usingcomplex logarithms. This extends theirdomains to thecomplex plane in a natural fashion. The following identities for principal values of the functions hold everywhere that they are defined, even on their branch cuts.

arcsin(z)=iln(1z2+iz)=iln(1z2iz)=arccsc(1z)arccos(z)=iln(i1z2+z)=π2arcsin(z)=arcsec(1z)arctan(z)=i2ln(izi+z)=i2ln(1+iz1iz)=arccot(1z)arccot(z)=i2ln(z+izi)=i2ln(iz1iz+1)=arctan(1z)arcsec(z)=iln(i11z2+1z)=π2arccsc(z)=arccos(1z)arccsc(z)=iln(11z2+iz)=iln(11z2iz)=arcsin(1z){\displaystyle {\begin{aligned}\arcsin(z)&{}=-i\ln \left({\sqrt {1-z^{2}}}+iz\right)=i\ln \left({\sqrt {1-z^{2}}}-iz\right)&{}=\operatorname {arccsc} \left({\frac {1}{z}}\right)\\[10pt]\arccos(z)&{}=-i\ln \left(i{\sqrt {1-z^{2}}}+z\right)={\frac {\pi }{2}}-\arcsin(z)&{}=\operatorname {arcsec} \left({\frac {1}{z}}\right)\\[10pt]\arctan(z)&{}=-{\frac {i}{2}}\ln \left({\frac {i-z}{i+z}}\right)=-{\frac {i}{2}}\ln \left({\frac {1+iz}{1-iz}}\right)&{}=\operatorname {arccot} \left({\frac {1}{z}}\right)\\[10pt]\operatorname {arccot}(z)&{}=-{\frac {i}{2}}\ln \left({\frac {z+i}{z-i}}\right)=-{\frac {i}{2}}\ln \left({\frac {iz-1}{iz+1}}\right)&{}=\arctan \left({\frac {1}{z}}\right)\\[10pt]\operatorname {arcsec}(z)&{}=-i\ln \left(i{\sqrt {1-{\frac {1}{z^{2}}}}}+{\frac {1}{z}}\right)={\frac {\pi }{2}}-\operatorname {arccsc}(z)&{}=\arccos \left({\frac {1}{z}}\right)\\[10pt]\operatorname {arccsc}(z)&{}=-i\ln \left({\sqrt {1-{\frac {1}{z^{2}}}}}+{\frac {i}{z}}\right)=i\ln \left({\sqrt {1-{\frac {1}{z^{2}}}}}-{\frac {i}{z}}\right)&{}=\arcsin \left({\frac {1}{z}}\right)\end{aligned}}}

Generalization

[edit]

Because all of the inverse trigonometric functions output an angle of a right triangle, they can be generalized by usingEuler's formula to form a right triangle in the complex plane. Algebraically, this gives us:

ceiθ=ccos(θ)+icsin(θ){\displaystyle ce^{i\theta }=c\cos(\theta )+ic\sin(\theta )}

or

ceiθ=a+ib{\displaystyle ce^{i\theta }=a+ib}

wherea{\displaystyle a} is the adjacent side,b{\displaystyle b} is the opposite side, andc{\displaystyle c} is thehypotenuse. From here, we can solve forθ{\displaystyle \theta }.

eln(c)+iθ=a+iblnc+iθ=ln(a+ib)θ=Im(ln(a+ib)){\displaystyle {\begin{aligned}e^{\ln(c)+i\theta }&=a+ib\\\ln c+i\theta &=\ln(a+ib)\\\theta &=\operatorname {Im} \left(\ln(a+ib)\right)\end{aligned}}}

or

θ=iln(a+ibc){\displaystyle \theta =-i\ln \left({\frac {a+ib}{c}}\right)}

Simply taking the imaginary part works for any real-valueda{\displaystyle a} andb{\displaystyle b}, but ifa{\displaystyle a} orb{\displaystyle b} is complex-valued, we have to use the final equation so that the real part of the result isn't excluded. Since the length of the hypotenuse doesn't change the angle, ignoring the real part ofln(a+bi){\displaystyle \ln(a+bi)} also removesc{\displaystyle c} from the equation. In the final equation, we see that the angle of the triangle in the complex plane can be found by inputting the lengths of each side. By setting one of the three sides equal to 1 and one of the remaining sides equal to our inputz{\displaystyle z}, we obtain a formula for one of the inverse trig functions, for a total of six equations. Because the inverse trig functions require only one input, we must put the final side of the triangle in terms of the other two using thePythagorean Theorem relation

a2+b2=c2{\displaystyle a^{2}+b^{2}=c^{2}}

The table below shows the values of a, b, and c for each of the inverse trig functions and the equivalent expressions forθ{\displaystyle \theta } that result from plugging the values into the equationsθ=iln(a+ibc){\displaystyle \theta =-i\ln \left({\tfrac {a+ib}{c}}\right)} above and simplifying.

abciln(a+ibc)θθa,bRarcsin(z)  1z2z1iln(1z2+iz1)=iln(1z2+iz)Im(ln(1z2+iz))arccos(z)  z1z21iln(z+i1z21)=iln(z+z21)Im(ln(z+z21))arctan(z)  1z1+z2iln(1+iz1+z2)=i2ln(izi+z)Im(ln(1+iz))arccot(z)  z1z2+1iln(z+iz2+1)=i2ln(z+izi)Im(ln(z+i))arcsec(z)  1z21ziln(1+iz21z)=iln(1z+1z21)Im(ln(1z+1z21))arccsc(z)  z211ziln(z21+iz)=iln(11z2+iz)Im(ln(11z2+iz)){\displaystyle {\begin{aligned}&a&&b&&c&&-i\ln \left({\frac {a+ib}{c}}\right)&&\theta &&\theta _{a,b\in \mathbb {R} }\\\arcsin(z)\ \ &{\sqrt {1-z^{2}}}&&z&&1&&-i\ln \left({\frac {{\sqrt {1-z^{2}}}+iz}{1}}\right)&&=-i\ln \left({\sqrt {1-z^{2}}}+iz\right)&&\operatorname {Im} \left(\ln \left({\sqrt {1-z^{2}}}+iz\right)\right)\\\arccos(z)\ \ &z&&{\sqrt {1-z^{2}}}&&1&&-i\ln \left({\frac {z+i{\sqrt {1-z^{2}}}}{1}}\right)&&=-i\ln \left(z+{\sqrt {z^{2}-1}}\right)&&\operatorname {Im} \left(\ln \left(z+{\sqrt {z^{2}-1}}\right)\right)\\\arctan(z)\ \ &1&&z&&{\sqrt {1+z^{2}}}&&-i\ln \left({\frac {1+iz}{\sqrt {1+z^{2}}}}\right)&&=-{\frac {i}{2}}\ln \left({\frac {i-z}{i+z}}\right)&&\operatorname {Im} \left(\ln \left(1+iz\right)\right)\\\operatorname {arccot}(z)\ \ &z&&1&&{\sqrt {z^{2}+1}}&&-i\ln \left({\frac {z+i}{\sqrt {z^{2}+1}}}\right)&&=-{\frac {i}{2}}\ln \left({\frac {z+i}{z-i}}\right)&&\operatorname {Im} \left(\ln \left(z+i\right)\right)\\\operatorname {arcsec}(z)\ \ &1&&{\sqrt {z^{2}-1}}&&z&&-i\ln \left({\frac {1+i{\sqrt {z^{2}-1}}}{z}}\right)&&=-i\ln \left({\frac {1}{z}}+{\sqrt {{\frac {1}{z^{2}}}-1}}\right)&&\operatorname {Im} \left(\ln \left({\frac {1}{z}}+{\sqrt {{\frac {1}{z^{2}}}-1}}\right)\right)\\\operatorname {arccsc}(z)\ \ &{\sqrt {z^{2}-1}}&&1&&z&&-i\ln \left({\frac {{\sqrt {z^{2}-1}}+i}{z}}\right)&&=-i\ln \left({\sqrt {1-{\frac {1}{z^{2}}}}}+{\frac {i}{z}}\right)&&\operatorname {Im} \left(\ln \left({\sqrt {1-{\frac {1}{z^{2}}}}}+{\frac {i}{z}}\right)\right)\\\end{aligned}}}

The particular form of the simplified expression can cause the output to differ from theusual principal branch of each of the inverse trig functions. The formulations given will output the usual principal branch when using theIm(lnz)(π,π]{\displaystyle \operatorname {Im} \left(\ln z\right)\in (-\pi ,\pi ]} andRe(z)0{\displaystyle \operatorname {Re} \left({\sqrt {z}}\right)\geq 0} principal branch for every function except arccotangent in theθ{\displaystyle \theta } column. Arccotangent in theθ{\displaystyle \theta } column will output on its usual principal branch by using theIm(lnz)[0,2π){\displaystyle \operatorname {Im} \left(\ln z\right)\in [0,2\pi )} andIm(z)0{\displaystyle \operatorname {Im} \left({\sqrt {z}}\right)\geq 0} convention.

In this sense, all of the inverse trig functions can be thought of as specific cases of the complex-valued log function. Since these definition work for any complex-valuedz{\displaystyle z}, the definitions allow forhyperbolic angles as outputs and can be used to further define theinverse hyperbolic functions. It's possible to algebraically prove these relations by starting with the exponential forms of the trigonometric functions and solving for the inverse function.

Example proof

[edit]
sin(ϕ)=zϕ=arcsin(z){\displaystyle {\begin{aligned}\sin(\phi )&=z\\\phi &=\arcsin(z)\end{aligned}}}

Using theexponential definition of sine, and lettingξ=eiϕ,{\displaystyle \xi =e^{i\phi },}

z=eiϕeiϕ2i2iz=ξ1ξ0=ξ22izξ1ξ=iz±1z2ϕ=iln(iz±1z2){\displaystyle {\begin{aligned}z&={\frac {e^{i\phi }-e^{-i\phi }}{2i}}\\[10mu]2iz&=\xi -{\frac {1}{\xi }}\\[5mu]0&=\xi ^{2}-2iz\xi -1\\[5mu]\xi &=iz\pm {\sqrt {1-z^{2}}}\\[5mu]\phi &=-i\ln \left(iz\pm {\sqrt {1-z^{2}}}\right)\end{aligned}}}

(the positive branch is chosen)

ϕ=arcsin(z)=iln(iz+1z2){\displaystyle \phi =\arcsin(z)=-i\ln \left(iz+{\sqrt {1-z^{2}}}\right)}
Color wheel graphs ofinverse trigonometric functions in thecomplex plane
Arcsine of z in the complex plane.Arccosine of z in the complex plane.Arctangent of z in the complex plane.
arcsin(z){\displaystyle \arcsin(z)}arccos(z){\displaystyle \arccos(z)}arctan(z){\displaystyle \arctan(z)}
Arccosecant of z in the complex plane.Arcsecant of z in the complex plane.Arccotangent of z in the complex plane.
arccsc(z){\displaystyle \operatorname {arccsc}(z)}arcsec(z){\displaystyle \operatorname {arcsec}(z)}arccot(z){\displaystyle \operatorname {arccot}(z)}

Applications

[edit]

Finding the angle of a right triangle

[edit]
Aright triangle with sides relative to an angle at theA{\displaystyle A} point.

Inverse trigonometric functions are useful when trying to determine the remaining two angles of aright triangle when the lengths of the sides of the triangle are known. Recalling the right-triangle definitions of sine and cosine, it follows that

θ=arcsin(oppositehypotenuse)=arccos(adjacenthypotenuse).{\displaystyle \theta =\arcsin \left({\frac {\text{opposite}}{\text{hypotenuse}}}\right)=\arccos \left({\frac {\text{adjacent}}{\text{hypotenuse}}}\right).}

Often, the hypotenuse is unknown and would need to be calculated before using arcsine or arccosine using thePythagorean Theorem:a2+b2=h2{\displaystyle a^{2}+b^{2}=h^{2}} whereh{\displaystyle h} is the length of the hypotenuse. Arctangent comes in handy in this situation, as the length of the hypotenuse is not needed.

θ=arctan(oppositeadjacent).{\displaystyle \theta =\arctan \left({\frac {\text{opposite}}{\text{adjacent}}}\right)\,.}

For example, suppose a roof drops 8 feet as it runs out 20 feet. The roof makes an angleθ with the horizontal, whereθ may be computed as follows:

θ=arctan(oppositeadjacent)=arctan(riserun)=arctan(820)21.8.{\displaystyle \theta =\arctan \left({\frac {\text{opposite}}{\text{adjacent}}}\right)=\arctan \left({\frac {\text{rise}}{\text{run}}}\right)=\arctan \left({\frac {8}{20}}\right)\approx 21.8^{\circ }\,.}

In computer science and engineering

[edit]

Two-argument variant of arctangent

[edit]

Main article:atan2

The two-argumentatan2 function computes the arctangent ofy/x giveny andx, but with a range of(−π, π]. In other words,atan2(y,x) is the angle between the positivex-axis of a plane and the point(x,y) on it, with positive sign for counter-clockwise angles (upper half-plane,y > 0), and negative sign for clockwise angles (lower half-plane,y < 0). It was first introduced in many computer programming languages, but it is now also common in other fields of science and engineering.

In terms of the standardarctan function, that is with range of(−π/2, π/2), it can be expressed as follows:

atan2(y,x)={arctan(yx)x>0arctan(yx)+πy0,x<0arctan(yx)πy<0,x<0π2y>0,x=0π2y<0,x=0undefinedy=0,x=0{\displaystyle \operatorname {atan2} (y,x)={\begin{cases}\arctan \left({\frac {y}{x}}\right)&\quad x>0\\\arctan \left({\frac {y}{x}}\right)+\pi &\quad y\geq 0,\;x<0\\\arctan \left({\frac {y}{x}}\right)-\pi &\quad y<0,\;x<0\\{\frac {\pi }{2}}&\quad y>0,\;x=0\\-{\frac {\pi }{2}}&\quad y<0,\;x=0\\{\text{undefined}}&\quad y=0,\;x=0\end{cases}}}

It also equals theprincipal value of theargument of thecomplex numberx +iy.

This limited version of the function above may also be defined using thetangent half-angle formulae as follows:atan2(y,x)=2arctan(yx2+y2+x){\displaystyle \operatorname {atan2} (y,x)=2\arctan \left({\frac {y}{{\sqrt {x^{2}+y^{2}}}+x}}\right)}provided that eitherx > 0 ory ≠ 0. However this fails if givenx ≤ 0 andy = 0 so the expression is unsuitable for computational use.

The above argument order (y,x) seems to be the most common, and in particular is used inISO standards such as theC programming language, but a few authors may use the opposite convention (x,y) so some caution is warranted.(See variations atatan2 § Realizations of the function in common computer languages.)

Arctangent function with location parameter

[edit]

In many applications[17] the solutiony{\displaystyle y} of the equationx=tan(y){\displaystyle x=\tan(y)} is to come as close as possible to a given value<η<{\displaystyle -\infty <\eta <\infty }. The adequate solution is produced by the parameter modified arctangent function

y=arctanη(x):=arctan(x)+πrni(ηarctan(x)π).{\displaystyle y=\arctan _{\eta }(x):=\arctan(x)+\pi \,\operatorname {rni} \left({\frac {\eta -\arctan(x)}{\pi }}\right)\,.}

The functionrni{\displaystyle \operatorname {rni} } rounds to the nearest integer.

Numerical accuracy

[edit]

For angles near 0 andπ, arccosine isill-conditioned, and similarly with arcsine for angles near −π/2 andπ/2. Computer applications thus need to consider the stability of inputs to these functions and the sensitivity of their calculations, or use alternate methods.[18]

See also

[edit]

Notes

[edit]
  1. ^The expression "LHS{\displaystyle \,\iff \,} RHS" indicates thateither (a) the left hand side (i.e. LHS) and right hand side (i.e. RHS) areboth true, or else (b) the left hand side and right hand side areboth false; there isno option (c) (e.g. it isnot possible for the LHS statement to be true and also simultaneously for the RHS statement to be false), because otherwise "LHS{\displaystyle \,\iff \,} RHS" would not have been written.
    To clarify, suppose that it is written "LHS{\displaystyle \,\iff \,} RHS" where LHS (which abbreviatesleft hand side) and RHS are both statements that can individually be either be true or false. For example, ifθ{\displaystyle \theta } ands{\displaystyle s} are some given and fixed numbers and if the following is written:tanθ=sθ=arctan(s)+πk for some kZ{\displaystyle \tan \theta =s\,\iff \,\theta =\arctan(s)+\pi k\quad {\text{ for some }}k\in \mathbb {Z} }then LHS is the statement "tanθ=s{\displaystyle \tan \theta =s}". Depending on what specific valuesθ{\displaystyle \theta } ands{\displaystyle s} have, this LHS statement can either be true or false. For instance, LHS is true ifθ=0{\displaystyle \theta =0} ands=0{\displaystyle s=0} (because in this casetanθ=tan0=s{\displaystyle \tan \theta =\tan 0=s}) but LHS is false ifθ=0{\displaystyle \theta =0} ands=2{\displaystyle s=2} (because in this casetanθ=tan0=s{\displaystyle \tan \theta =\tan 0=s} which is not equal tos=2{\displaystyle s=2}); more generally, LHS is false ifθ=0{\displaystyle \theta =0} ands0.{\displaystyle s\neq 0.} Similarly, RHS is the statement "θ=arctan(s)+πk{\displaystyle \theta =\arctan(s)+\pi k} for somekZ{\displaystyle k\in \mathbb {Z} }". The RHS statement can also either true or false (as before, whether the RHS statement is true or false depends on what specific valuesθ{\displaystyle \theta } ands{\displaystyle s} have). The logical equality symbol{\displaystyle \,\iff \,} means that (a) if the LHS statement is true then the RHS statement is alsonecessarily true, and moreover (b) if the LHS statement is false then the RHS statement is alsonecessarily false. Similarly,{\displaystyle \,\iff \,}also means that (c) if the RHS statement is true then the LHS statement is alsonecessarily true, and moreover (d) if the RHS statement is false then the LHS statement is alsonecessarily false.

References

[edit]
  1. ^abcdHall, Arthur Graham; Frink, Fred Goodrich (Jan 1909)."Chapter II. The Acute Angle [14] Inverse trigonometric functions". Written at Ann Arbor, Michigan, USA.Trigonometry. Vol. Part I: Plane Trigonometry. New York, USA:Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. p. 15. Retrieved2017-08-12.[…]α = arcsin m: It is frequently read "arc-sinem" or "anti-sinem," since two mutually inverse functions are said each to be theanti-function of the other. […] A similar symbolic relation holds for the othertrigonometric functions. […] This notation is universally used in Europe and is fast gaining ground in this country. A less desirable symbol,α = sin-1m, is still found in English and American texts. The notationα = inv sinm is perhaps better still on account of its general applicability. […]
  2. ^Klein, Felix (1924) [1902].Elementarmathematik vom höheren Standpunkt aus: Arithmetik, Algebra, Analysis (in German). Vol. 1 (3rd ed.). Berlin: J. Springer. Translated asElementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis. Translated by Hedrick, E. R.; Noble, C. A. Macmillan. 1932.ISBN 978-0-486-43480-3.{{cite book}}:ISBN / Date incompatibility (help)
  3. ^Hazewinkel, Michiel (1994) [1987].Encyclopaedia of Mathematics (unabridged reprint ed.).Kluwer Academic Publishers /Springer Science & Business Media.ISBN 978-155608010-4.
    Bronshtein, I. N.; Semendyayev, K. A.; Musiol, Gerhard; Mühlig, Heiner. "Cyclometric or Inverse Trigonometric Functions".Handbook of Mathematics (6th ed.). Berlin: Springer.§ 2.8, pp. 85–89.doi:10.1007/978-3-663-46221-8 (inactive 1 Jul 2025).{{cite book}}: CS1 maint: DOI inactive as of July 2025 (link)
    However, the term "arcus function" can also refer to the function giving theargument of a complex number, sometimes called thearcus.
  4. ^Weisstein, Eric W."Inverse Trigonometric Functions".mathworld.wolfram.com. Retrieved2020-08-29.
  5. ^Beach, Frederick Converse; Rines, George Edwin, eds. (1912). "Inverse trigonometric functions".The Americana: a universal reference library. Vol. 21.
  6. ^Cook, John D. (11 Feb 2021)."Trig functions across programming languages".johndcook.com (blog). Retrieved2021-03-10.
  7. ^Cajori, Florian (1919).A History of Mathematics (2 ed.). New York, NY:The Macmillan Company. p. 272.
  8. ^Herschel, John Frederick William (1813)."On a remarkable Application of Cotes's Theorem".Philosophical Transactions.103 (1). Royal Society, London: 8.doi:10.1098/rstl.1813.0005.
  9. ^"Inverse trigonometric functions". Wiki.Brilliant Math & Science (brilliant.org). Retrieved2020-08-29.
  10. ^Korn, Grandino Arthur;Korn, Theresa M. (2000) [1961]. "21.2.-4. Inverse Trigonometric Functions".Mathematical handbook for scientists and engineers: Definitions, theorems, and formulars for reference and review (3 ed.). Mineola, New York, USA:Dover Publications, Inc. p. 811.ISBN 978-0-486-41147-7.
  11. ^Bhatti, Sanaullah; Nawab-ud-Din; Ahmed, Bashir; Yousuf, S. M.; Taheem, Allah Bukhsh (1999). "Differentiation of Trigonometric, Logarithmic and Exponential Functions". In Ellahi, Mohammad Maqbool; Dar, Karamat Hussain; Hussain, Faheem (eds.).Calculus and Analytic Geometry (1 ed.).Lahore: Punjab Textbook Board. p. 140.
  12. ^For example:
    Stewart, James; Clegg, Daniel; Watson, Saleem (2021). "Inverse Functions and Logarithms".Calculus: Early Transcendentals (9th ed.). Cengage Learning. § 1.5, p. 64.ISBN 978-1-337-61392-7.
  13. ^Abramowitz & Stegun 1972, p. 73, 4.3.44
  14. ^Borwein, Jonathan; Bailey, David; Gingersohn, Roland (2004).Experimentation in Mathematics: Computational Paths to Discovery (1 ed.). Wellesley, MA, USA:A. K. Peters. p. 51.ISBN 978-1-56881-136-9.
  15. ^Hwang Chien-Lih (2005), "An elementary derivation of Euler's series for the arctangent function",The Mathematical Gazette,89 (516):469–470,doi:10.1017/S0025557200178404,S2CID 123395287
  16. ^S. M. Abrarov and B. M. Quine (2018), "A formula for pi involving nested radicals",The Ramanujan Journal,46 (3):657–665,arXiv:1610.07713,doi:10.1007/s11139-018-9996-8,S2CID 119150623
  17. ^when a time varying angle crossing±π/2{\displaystyle \pm \pi /2} should be mapped by a smooth line instead of a saw toothed one (robotics, astronomy, angular movement in general)[citation needed]
  18. ^Gade, Kenneth (2010)."A non-singular horizontal position representation"(PDF).The Journal of Navigation.63 (3).Cambridge University Press:395–417.Bibcode:2010JNav...63..395G.doi:10.1017/S0373463309990415.

External links

[edit]
Trigonometric and hyperbolic functions
Groups
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Inverse_trigonometric_functions&oldid=1318316035"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp