Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Inverse-chi-squared distribution

From Wikipedia, the free encyclopedia
Probability distribution
Inverse-chi-squared
Probability density function
Cumulative distribution function
Parametersν>0{\displaystyle \nu >0\!}
Supportx(0,){\displaystyle x\in (0,\infty )\!}
PDF2ν/2Γ(ν/2)xν/21e1/(2x){\displaystyle {\frac {2^{-\nu /2}}{\Gamma (\nu /2)}}\,x^{-\nu /2-1}e^{-1/(2x)}\!}
CDFΓ(ν2,12x)/Γ(ν2){\displaystyle \Gamma \!\left({\frac {\nu }{2}},{\frac {1}{2x}}\right){\bigg /}\,\Gamma \!\left({\frac {\nu }{2}}\right)\!}
Mean1ν2{\displaystyle {\frac {1}{\nu -2}}\!} forν>2{\displaystyle \nu >2\!}
Median1ν(129ν)3{\displaystyle \approx {\dfrac {1}{\nu {\bigg (}1-{\dfrac {2}{9\nu }}{\bigg )}^{3}}}}
Mode1ν+2{\displaystyle {\frac {1}{\nu +2}}\!}
Variance2(ν2)2(ν4){\displaystyle {\frac {2}{(\nu -2)^{2}(\nu -4)}}\!} forν>4{\displaystyle \nu >4\!}
Skewness4ν62(ν4){\displaystyle {\frac {4}{\nu -6}}{\sqrt {2(\nu -4)}}\!} forν>6{\displaystyle \nu >6\!}
Excess kurtosis12(5ν22)(ν6)(ν8){\displaystyle {\frac {12(5\nu -22)}{(\nu -6)(\nu -8)}}\!} forν>8{\displaystyle \nu >8\!}
Entropy

ν2+ln(ν2Γ(ν2)){\displaystyle {\frac {\nu }{2}}\!+\!\ln \!\left({\frac {\nu }{2}}\Gamma \!\left({\frac {\nu }{2}}\right)\right)}

(1+ν2)ψ(ν2){\displaystyle \!-\!\left(1\!+\!{\frac {\nu }{2}}\right)\psi \!\left({\frac {\nu }{2}}\right)}
MGF2Γ(ν2)(t2i)ν4Kν2(2t){\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-t}{2i}}\right)^{\!\!{\frac {\nu }{4}}}K_{\frac {\nu }{2}}\!\left({\sqrt {-2t}}\right)}; does not exist asreal valued function
CF2Γ(ν2)(it2)ν4Kν2(2it){\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-it}{2}}\right)^{\!\!{\frac {\nu }{4}}}K_{\frac {\nu }{2}}\!\left({\sqrt {-2it}}\right)}

In probability and statistics, theinverse-chi-squared distribution (orinverted-chi-square distribution[1]) is acontinuous probability distribution of a positive-valued random variable. It is closely related to thechi-squared distribution. It is used inBayesian inference asconjugate prior for thevariance of thenormal distribution.[2]

Definition

[edit]

The inverse chi-squared distribution (or inverted-chi-square distribution[1] ) is theprobability distribution of a random variable whosemultiplicative inverse (reciprocal) has achi-squared distribution.

IfX{\displaystyle X} follows a chi-squared distribution withν{\displaystyle \nu }degrees of freedom then1/X{\displaystyle 1/X} follows the inverse chi-squared distribution withν{\displaystyle \nu } degrees of freedom.

Theprobability density function of the inverse chi-squared distribution is given by

f(x;ν)=2ν/2Γ(ν/2)xν/21e1/(2x){\displaystyle f(x;\nu )={\frac {2^{-\nu /2}}{\Gamma (\nu /2)}}\,x^{-\nu /2-1}e^{-1/(2x)}}

In the abovex>0{\displaystyle x>0} andν{\displaystyle \nu } is thedegrees of freedom parameter. Further,Γ{\displaystyle \Gamma } is thegamma function.

The inverse chi-squared distribution is a special case of theinverse-gamma distribution. with shape parameterα=ν2{\displaystyle \alpha ={\frac {\nu }{2}}} and scale parameterβ=12{\displaystyle \beta ={\frac {1}{2}}}.

Related distributions

[edit]

See also

[edit]

References

[edit]
  1. ^abBernardo, J.M.; Smith, A.F.M. (1993)Bayesian Theory, Wiley (pages 119, 431)ISBN 0-471-49464-X
  2. ^Gelman, Andrew; et al. (2014). "Normal data with a conjugate prior distribution".Bayesian Data Analysis (Third ed.). Boca Raton: CRC Press. pp. 67–68.ISBN 978-1-4398-4095-5.

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Inverse-chi-squared_distribution&oldid=1250847226"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp