Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Interpolation space

From Wikipedia, the free encyclopedia

In the field ofmathematical analysis, aninterpolation space is a space which lies "in between" two otherBanach spaces. The main applications are inSobolev spaces, where spaces of functions that have a noninteger number ofderivatives are interpolated from the spaces of functions with integer number of derivatives.

History

[edit]

The theory of interpolation of vector spaces began by an observation ofJózef Marcinkiewicz, later generalized and now known as theRiesz-Thorin theorem. In simple terms, if a linear function is continuous on a certainspaceLp and also on a certain spaceLq, then it is also continuous on the spaceLr, for any intermediater betweenp andq. In other words,Lr is a space which is intermediate betweenLp andLq.

In the development of Sobolev spaces, it became clear that thetrace spaces were not any of the usual function spaces (with integer number of derivatives), andJacques-Louis Lions discovered that indeed these trace spaces were constituted of functions that have a noninteger degree of differentiability.

Many methods were designed to generate such spaces of functions, including theFourier transform, complex interpolation,[1] real interpolation,[2] as well as other tools (see e.g.fractional derivative).

The setting of interpolation

[edit]

ABanach spaceX is said to becontinuously embedded in aHausdorfftopological vector spaceZ whenX is a linear subspace ofZ such that the inclusion map fromX intoZ is continuous. Acompatible couple(X0,X1) of Banach spaces consists of two Banach spacesX0 andX1 that are continuously embedded in the same Hausdorff topological vector spaceZ.[3] The embedding in a linear spaceZ allows to consider the two linear subspaces

X0X1{\displaystyle X_{0}\cap X_{1}}

and

X0+X1={zZ:z=x0+x1, x0X0,x1X1}.{\displaystyle X_{0}+X_{1}=\left\{z\in Z:z=x_{0}+x_{1},\ x_{0}\in X_{0},\,x_{1}\in X_{1}\right\}.}

Interpolation does not depend only upon the isomorphic (nor isometric) equivalence classes ofX0 andX1. It depends in an essential way from the specificrelative position thatX0 andX1 occupy in a larger spaceZ.

One can define norms onX0X1 andX0 +X1 by

xX0X1:=max(xX0,xX1),{\displaystyle \|x\|_{X_{0}\cap X_{1}}:=\max \left(\left\|x\right\|_{X_{0}},\left\|x\right\|_{X_{1}}\right),}
xX0+X1:=inf{x0X0+x1X1 : x=x0+x1,x0X0,x1X1}.{\displaystyle \|x\|_{X_{0}+X_{1}}:=\inf \left\{\left\|x_{0}\right\|_{X_{0}}+\left\|x_{1}\right\|_{X_{1}}\ :\ x=x_{0}+x_{1},\;x_{0}\in X_{0},\;x_{1}\in X_{1}\right\}.}

Equipped with these norms, the intersection and the sum are Banach spaces. The following inclusions are all continuous:

X0X1X0, X1X0+X1.{\displaystyle X_{0}\cap X_{1}\subset X_{0},\ X_{1}\subset X_{0}+X_{1}.}

Interpolation studies the family of spacesX that areintermediate spaces betweenX0 andX1 in the sense that

X0X1XX0+X1,{\displaystyle X_{0}\cap X_{1}\subset X\subset X_{0}+X_{1},}

where the two inclusions maps are continuous.

An example of this situation is the pair(L1(R),L(R)), where the two Banach spaces are continuously embedded in the spaceZ of measurable functions on the real line, equipped with the topology of convergence in measure. In this situation, the spacesLp(R), for1 ≤p ≤ ∞ are intermediate betweenL1(R) andL(R). More generally,

Lp0(R)Lp1(R)Lp(R)Lp0(R)+Lp1(R),  when  1p0pp1,{\displaystyle L^{p_{0}}(\mathbf {R} )\cap L^{p_{1}}(\mathbf {R} )\subset L^{p}(\mathbf {R} )\subset L^{p_{0}}(\mathbf {R} )+L^{p_{1}}(\mathbf {R} ),\ \ {\text{when}}\ \ 1\leq p_{0}\leq p\leq p_{1}\leq \infty ,}

with continuous injections, so that, under the given condition,Lp(R) is intermediate betweenLp0(R) andLp1(R).

Definition. Given two compatible couples(X0,X1) and(Y0,Y1), aninterpolation pair is a couple(X,Y) of Banach spaces with the two following properties:
  • The spaceX is intermediate betweenX0 andX1, andY is intermediate betweenY0 andY1.
  • IfL is any linear operator fromX0 +X1 toY0 +Y1, which maps continuouslyX0 toY0 andX1 toY1, then it also maps continuouslyX toY.

The interpolation pair(X,Y) is said to be ofexponentθ (with0 <θ < 1) if there exists a constantC such that

LX,YCLX0,Y01θLX1,Y1θ{\displaystyle \|L\|_{X,Y}\leq C\|L\|_{X_{0},Y_{0}}^{1-\theta }\;\|L\|_{X_{1},Y_{1}}^{\theta }}

for all operatorsL as above. The notation||L||X,Y is for the norm ofL as a map fromX toY. IfC = 1, we say that(X,Y) is anexact interpolation pair of exponentθ.

Complex interpolation

[edit]

If the scalars arecomplex numbers, properties of complexanalytic functions are used to define an interpolation space. Given a compatible couple (X0,X1) of Banach spaces, the linear spaceF(X0,X1){\displaystyle {\mathcal {F}}(X_{0},X_{1})} consists of all functionsf  :CX0 +X1, that are analytic onS = {z : 0 < Re(z) < 1}, continuous onS = {z : 0 ≤ Re(z) ≤ 1}, and for which all the following subsets are bounded:

{ f (z) :zS} ⊂X0 +X1,
{ f (it) :tR} ⊂X0,
{ f (1 +it) :tR} ⊂X1.

F(X0,X1){\displaystyle {\mathcal {F}}(X_{0},X_{1})} is a Banach space under the norm

fF(X0,X1)=max{suptRf(it)X0,suptRf(1+it)X1}.{\displaystyle \|f\|_{{\mathcal {F}}(X_{0},X_{1})}=\max \left\{\sup _{t\in \mathbf {R} }\|f(it)\|_{X_{0}},\;\sup _{t\in \mathbf {R} }\|f(1+it)\|_{X_{1}}\right\}.}

Definition.[4] For0 <θ < 1, thecomplex interpolation space(X0,X1)θ is the linear subspace ofX0 +X1 consisting of all valuesf(θ) whenf varies in the preceding space of functions,

(X0,X1)θ={xX0+X1:x=f(θ),fF(X0,X1)}.{\displaystyle (X_{0},X_{1})_{\theta }=\left\{x\in X_{0}+X_{1}:x=f(\theta ),\;f\in {\mathcal {F}}(X_{0},X_{1})\right\}.}

The norm on the complex interpolation space(X0,X1)θ is defined by

 xθ=inf{fF(X0,X1) : f(θ)=x,fF(X0,X1)}.{\displaystyle \ \|x\|_{\theta }=\inf \left\{\|f\|_{{\mathcal {F}}(X_{0},X_{1})}\ :\ f(\theta )=x,\;f\in {\mathcal {F}}(X_{0},X_{1})\right\}.}

Equipped with this norm, the complex interpolation space(X0,X1)θ is a Banach space.

Theorem.[5] Given two compatible couples of Banach spaces(X0,X1) and(Y0,Y1), the pair((X0,X1)θ, (Y0,Y1)θ) is an exact interpolation pair of exponentθ, i.e., ifT :X0 +X1Y0 +Y1, is a linear operator bounded fromXj toYj,j = 0, 1, thenT is bounded from(X0,X1)θ to(Y0,Y1)θ andTθT01θT1θ.{\displaystyle \|T\|_{\theta }\leq \|T\|_{0}^{1-\theta }\|T\|_{1}^{\theta }.}

The family ofLp spaces (consisting of complex valued functions) behaves well under complex interpolation.[6] If(R, Σ,μ) is an arbitrarymeasure space, if1 ≤p0,p1 ≤ ∞ and0 <θ < 1, then

(Lp0(R,Σ,μ),Lp1(R,Σ,μ))θ=Lp(R,Σ,μ),1p=1θp0+θp1,{\displaystyle \left(L^{p_{0}}(R,\Sigma ,\mu ),L^{p_{1}}(R,\Sigma ,\mu )\right)_{\theta }=L^{p}(R,\Sigma ,\mu ),\qquad {\frac {1}{p}}={\frac {1-\theta }{p_{0}}}+{\frac {\theta }{p_{1}}},}

with equality of norms. This fact is closely related to theRiesz–Thorin theorem.

Real interpolation

[edit]

There are two ways for introducing thereal interpolation method. The first and most commonly used when actually identifying examples of interpolation spaces is the K-method. The second method, the J-method, gives the same interpolation spaces as the K-method when the parameterθ is in(0, 1). That the J- and K-methods agree is important for the study of duals of interpolation spaces: basically, the dual of an interpolation space constructed by the K-method appears to be a space constructed from the dual couple by the J-method;see below.

K-method

[edit]

The K-method of real interpolation[7] can be used for Banach spaces over the fieldR ofreal numbers.

Definition. Let(X0,X1) be a compatible couple of Banach spaces. Fort > 0 and everyxX0 +X1, let

K(x,t;X0,X1)=inf{x0X0+tx1X1 : x=x0+x1,x0X0,x1X1}.{\displaystyle K(x,t;X_{0},X_{1})=\inf \left\{\left\|x_{0}\right\|_{X_{0}}+t\left\|x_{1}\right\|_{X_{1}}\ :\ x=x_{0}+x_{1},\;x_{0}\in X_{0},\,x_{1}\in X_{1}\right\}.}

Changing the order of the two spaces results in:[8]

K(x,t;X0,X1)=tK(x,t1;X1,X0).{\displaystyle K(x,t;X_{0},X_{1})=tK\left(x,t^{-1};X_{1},X_{0}\right).}

Let

xθ,q;K=(0(tθK(x,t;X0,X1))qdtt)1q,0<θ<1,1q<,xθ,;K=supt>0tθK(x,t;X0,X1),0θ1.{\displaystyle {\begin{aligned}\|x\|_{\theta ,q;K}&=\left(\int _{0}^{\infty }\left(t^{-\theta }K(x,t;X_{0},X_{1})\right)^{q}\,{\tfrac {dt}{t}}\right)^{\frac {1}{q}},&&0<\theta <1,1\leq q<\infty ,\\\|x\|_{\theta ,\infty ;K}&=\sup _{t>0}\;t^{-\theta }K(x,t;X_{0},X_{1}),&&0\leq \theta \leq 1.\end{aligned}}}

The K-method of real interpolation consists in takingKθ,q(X0,X1) to be the linear subspace ofX0 +X1 consisting of allx such that||x||θ,q;K < ∞.

Example

[edit]

An important example is that of the couple(L1(R, Σ,μ),L(R, Σ,μ)), where the functionalK(t,f ;L1,L) can be computed explicitly. The measureμ is supposedσ-finite. In this context, the best way of cutting the functionf  ∈L1 +L as sum of two functionsf0L1 andf1L is, for somes > 0 to be chosen as function oft, to letf1(x) be given for allxR by

f1(x)={f(x)|f(x)|<s,sf(x)|f(x)|otherwise{\displaystyle f_{1}(x)={\begin{cases}f(x)&|f(x)|<s,\\{\frac {sf(x)}{|f(x)|}}&{\text{otherwise}}\end{cases}}}

The optimal choice ofs leads to the formula[9]

K(f,t;L1,L)=0tf(u)du,{\displaystyle K\left(f,t;L^{1},L^{\infty }\right)=\int _{0}^{t}f^{*}(u)\,du,}

wheref ∗ is thedecreasing rearrangement off.

J-method

[edit]

As with the K-method, the J-method can be used for real Banach spaces.

Definition. Let(X0,X1) be a compatible couple of Banach spaces. Fort > 0 and for every vectorxX0X1, letJ(x,t;X0,X1)=max(xX0,txX1).{\displaystyle J(x,t;X_{0},X_{1})=\max \left(\|x\|_{X_{0}},t\|x\|_{X_{1}}\right).}

A vectorx inX0 +X1 belongs to the interpolation spaceJθ,q(X0,X1) if and only if it can be written as

x=0v(t)dtt,{\displaystyle x=\int _{0}^{\infty }v(t)\,{\frac {dt}{t}},}

wherev(t) is measurable with values inX0X1 and such that

Φ(v)=(0(tθJ(v(t),t;X0,X1))qdtt)1q<.{\displaystyle \Phi (v)=\left(\int _{0}^{\infty }\left(t^{-\theta }J(v(t),t;X_{0},X_{1})\right)^{q}\,{\tfrac {dt}{t}}\right)^{\frac {1}{q}}<\infty .}

The norm ofx inJθ,q(X0,X1) is given by the formula

xθ,q;J:=infv{Φ(v) : x=0v(t)dtt}.{\displaystyle \|x\|_{\theta ,q;J}:=\inf _{v}\left\{\Phi (v)\ :\ x=\int _{0}^{\infty }v(t)\,{\tfrac {dt}{t}}\right\}.}

Relations between the interpolation methods

[edit]

The two real interpolation methods are equivalent when0 <θ < 1.[10]

Theorem. Let(X0,X1) be a compatible couple of Banach spaces. If0 <θ < 1 and1 ≤q ≤ ∞, thenJθ,q(X0,X1)=Kθ,q(X0,X1),{\displaystyle J_{\theta ,q}(X_{0},X_{1})=K_{\theta ,q}(X_{0},X_{1}),} withequivalence of norms.

The theorem covers degenerate cases that have not been excluded: for example ifX0 andX1 form a direct sum, then the intersection and the J-spaces are the null space, and a simple computation shows that the K-spaces are also null.

When0 <θ < 1, one can speak, up to an equivalent renorming, aboutthe Banach space obtained by the real interpolation method with parametersθ andq. The notation for this real interpolation space is(X0,X1)θ,q. One has that

(X0,X1)θ,q=(X1,X0)1θ,q,0<θ<1,1q.{\displaystyle (X_{0},X_{1})_{\theta ,q}=(X_{1},X_{0})_{1-\theta ,q},\qquad 0<\theta <1,1\leq q\leq \infty .}

For a given value ofθ, the real interpolation spaces increase withq:[11] if0 <θ < 1 and 1 ≤qr ≤ ∞, the following continuous inclusion holds true:

(X0,X1)θ,q(X0,X1)θ,r.{\displaystyle (X_{0},X_{1})_{\theta ,q}\subset (X_{0},X_{1})_{\theta ,r}.}
Theorem. Given0 <θ < 1,1 ≤q ≤ ∞ and two compatible couples(X0,X1) and(Y0,Y1), the pair((X0,X1)θ,q, (Y0,Y1)θ,q) is an exact interpolation pair of exponentθ.[12]

A complex interpolation space is usually not isomorphic to one of the spaces given by the real interpolation method. However, there is a general relationship.

Theorem. Let(X0,X1) be a compatible couple of Banach spaces. If0 <θ < 1, then(X0,X1)θ,1(X0,X1)θ(X0,X1)θ,.{\displaystyle (X_{0},X_{1})_{\theta ,1}\subset (X_{0},X_{1})_{\theta }\subset (X_{0},X_{1})_{\theta ,\infty }.}

Examples

[edit]

WhenX0 =C([0, 1]) andX1 =C1([0, 1]), the space of continuously differentiable functions on[0, 1], the(θ, ∞) interpolation method, for0 <θ < 1, gives theHölder spaceC0,θ of exponentθ. This is because the K-functionalK(f,t;X0,X1) of this couple is equivalent to

sup{|f(u)|,|f(u)f(v)|1+t1|uv| : u,v[0,1]}.{\displaystyle \sup \left\{|f(u)|,\,{\frac {|f(u)-f(v)|}{1+t^{-1}|u-v|}}\ :\ u,v\in [0,1]\right\}.}

Only values0 <t < 1 are interesting here.

Real interpolation betweenLp spaces gives[13] the family ofLorentz spaces. Assuming0 <θ < 1 and1 ≤q ≤ ∞, one has:

(L1(R,Σ,μ),L(R,Σ,μ))θ,q=Lp,q(R,Σ,μ),where 1p=1θ,{\displaystyle \left(L^{1}(\mathbf {R} ,\Sigma ,\mu ),L^{\infty }(\mathbf {R} ,\Sigma ,\mu )\right)_{\theta ,q}=L^{p,q}(\mathbf {R} ,\Sigma ,\mu ),\qquad {\text{where }}{\tfrac {1}{p}}=1-\theta ,}

with equivalent norms. This follows from aninequality of Hardy and from the value given above of the K-functional for this compatible couple. Whenq =p, the Lorentz spaceLp,p is equal toLp, up to renorming. Whenq = ∞, the Lorentz spaceLp,∞ is equal toweak-Lp.

The reiteration theorem

[edit]

An intermediate spaceX of the compatible couple(X0,X1) is said to be ofclassθ if[14]

(X0,X1)θ,1X(X0,X1)θ,,{\displaystyle (X_{0},X_{1})_{\theta ,1}\subset X\subset (X_{0},X_{1})_{\theta ,\infty },}

with continuous injections. Beside all real interpolation spaces(X0,X1)θ,q with parameterθ and1 ≤q ≤ ∞, the complex interpolation space(X0,X1)θ is an intermediate space of classθ of the compatible couple(X0,X1).

The reiteration theorems says, in essence, that interpolating with a parameterθ behaves, in some way, like forming aconvex combinationa = (1 −θ)x0 +θx1: taking a further convex combination of two convex combinations gives another convex combination.

Theorem.[15] LetA0,A1 be intermediate spaces of the compatible couple(X0,X1), of classθ0 andθ1 respectively, with0 <θ0θ1 < 1. When0 <θ < 1 and1 ≤q ≤ ∞, one has(A0,A1)θ,q=(X0,X1)η,q,η=(1θ)θ0+θθ1.{\displaystyle (A_{0},A_{1})_{\theta ,q}=(X_{0},X_{1})_{\eta ,q},\qquad \eta =(1-\theta )\theta _{0}+\theta \theta _{1}.}

It is notable that when interpolating with the real method betweenA0 = (X0,X1)θ0,q0 andA1 = (X0,X1)θ1,q1, only the values ofθ0 andθ1 matter. Also,A0 andA1 can be complex interpolation spaces betweenX0 andX1, with parametersθ0 andθ1 respectively.

There is also a reiteration theorem for the complex method.

Theorem.[16] Let(X0,X1) be a compatible couple of complex Banach spaces, and assume thatX0X1 is dense inX0 and inX1. LetA0 = (X0,X1)θ0 andA1 = (X0,X1)θ1, where0 ≤θ0θ1 ≤ 1. Assume further thatX0X1 is dense inA0A1. Then, for every0 ≤θ ≤ 1,((X0,X1)θ0,(X0,X1)θ1)θ=(X0,X1)η,η=(1θ)θ0+θθ1.{\displaystyle \left(\left(X_{0},X_{1}\right)_{\theta _{0}},\left(X_{0},X_{1}\right)_{\theta _{1}}\right)_{\theta }=(X_{0},X_{1})_{\eta },\qquad \eta =(1-\theta )\theta _{0}+\theta \theta _{1}.}

The density condition is always satisfied whenX0X1 orX1X0.

Duality

[edit]

Let(X0,X1) be a compatible couple, and assume thatX0X1 is dense inX0 and inX1. In this case, the restriction map from the (continuous)dualXj{\displaystyle X'_{j}} ofXj,j = 0, 1, to the dual ofX0X1 is one-to-one. It follows that the pair of duals(X0,X1){\displaystyle \left(X'_{0},X'_{1}\right)} is a compatible couple continuously embedded in the dual(X0X1)′.

For the complex interpolation method, the following duality result holds:

Theorem.[17] Let(X0,X1) be a compatible couple of complex Banach spaces, and assume thatX0X1 is dense inX0 and inX1. IfX0 andX1 arereflexive, then the dual of the complex interpolation space is obtained by interpolating the duals,((X0,X1)θ)=(X0,X1)θ,0<θ<1.{\displaystyle ((X_{0},X_{1})_{\theta })'=\left(X'_{0},X'_{1}\right)_{\theta },\qquad 0<\theta <1.}

In general, the dual of the space(X0,X1)θ is equal[17] to(X0,X1)θ,{\displaystyle \left(X'_{0},X'_{1}\right)^{\theta },} a space defined by a variant of the complex method.[18] The upper-θ and lower-θ methods do not coincide in general, but they do if at least one ofX0,X1 is a reflexive space.[19]

For the real interpolation method, the duality holds provided that the parameter q is finite:

Theorem.[20] Let0 <θ < 1, 1 ≤q < ∞ and(X0,X1) a compatible couple of real Banach spaces. Assume thatX0X1 is dense inX0 and inX1. Then((X0,X1)θ,q)=(X0,X1)θ,q,{\displaystyle \left(\left(X_{0},X_{1}\right)_{\theta ,q}\right)'=\left(X'_{0},X'_{1}\right)_{\theta ,q'},} where1q=11q.{\displaystyle {\tfrac {1}{q'}}=1-{\tfrac {1}{q}}.}

Discrete definitions

[edit]

Since the functiontK(x,t) varies regularly (it is increasing, but1/tK(x,t) is decreasing), the definition of theKθ,q-norm of a vectorn, previously given by an integral, is equivalent to a definition given by a series.[21] This series is obtained by breaking(0, ∞) into pieces(2n, 2n+1) of equal mass for the measuredt/t,

xθ,q;K(nZ(2θnK(x,2n;X0,X1))q)1q.{\displaystyle \|x\|_{\theta ,q;K}\simeq \left(\sum _{n\in \mathbf {Z} }\left(2^{-\theta n}K\left(x,2^{n};X_{0},X_{1}\right)\right)^{q}\right)^{\frac {1}{q}}.}

In the special case whereX0 is continuously embedded inX1, one can omit the part of the series with negative indicesn. In this case, each of the functionsxK(x, 2n;X0,X1) defines an equivalent norm onX1.

The interpolation space(X0,X1)θ,q is a "diagonal subspace" of an q-sum of a sequence of Banach spaces (each one being isomorphic toX0 +X1). Therefore, whenq is finite, the dual of(X0,X1)θ,q is aquotient of the p-sum of the duals,1/p +1/q = 1, which leads to the following formula for the discreteJθ,p-norm of a functionalx' in the dual of(X0,X1)θ,q:

xθ,p;Jinf{(nZ(2θnmax(xnX0,2nxnX1))p)1p : x=nZxn}.{\displaystyle \|x'\|_{\theta ,p;J}\simeq \inf \left\{\left(\sum _{n\in \mathbf {Z} }\left(2^{\theta n}\max \left(\left\|x'_{n}\right\|_{X'_{0}},2^{-n}\left\|x'_{n}\right\|_{X'_{1}}\right)\right)^{p}\right)^{\frac {1}{p}}\ :\ x'=\sum _{n\in \mathbf {Z} }x'_{n}\right\}.}

The usual formula for the discreteJθ,p-norm is obtained by changingn ton.

The discrete definition makes several questions easier to study, among which the already mentioned identification of the dual. Other such questions are compactness or weak-compactness of linear operators. Lions and Peetre have proved that:

Theorem.[22] If the linear operatorT iscompact fromX0 to a Banach spaceY and bounded fromX1 toY, thenT is compact from(X0,X1)θ,q toY when0 <θ < 1,1 ≤q ≤ ∞.

Davis, Figiel, Johnson and Pełczyński have used interpolation in their proof of the following result:

Theorem.[23] A bounded linear operator between two Banach spaces isweakly compact if and only if it factors through areflexive space.

A general interpolation method

[edit]

The space q used for the discrete definition can be replaced by an arbitrarysequence spaceY withunconditional basis, and the weightsan = 2θn,bn = 2(1−θ)n, that are used for theKθ,q-norm, can be replaced by general weights

an,bn>0,  n=1min(an,bn)<.{\displaystyle a_{n},b_{n}>0,\ \ \sum _{n=1}^{\infty }\min(a_{n},b_{n})<\infty .}

The interpolation spaceK(X0,X1,Y, {an}, {bn}) consists of the vectorsx inX0 +X1 such that[24]

xK(X0,X1)=supm1n=1manK(x,bnan;X0,X1)ynY<,{\displaystyle \|x\|_{K(X_{0},X_{1})}=\sup _{m\geq 1}\left\|\sum _{n=1}^{m}a_{n}K\left(x,{\tfrac {b_{n}}{a_{n}}};X_{0},X_{1}\right)\,y_{n}\right\|_{Y}<\infty ,}

where {yn} is the unconditional basis ofY. This abstract method can be used, for example, for the proof of the following result:

Theorem.[25] A Banach space with unconditional basis is isomorphic to a complemented subspace of a space withsymmetric basis.

Interpolation of Sobolev and Besov spaces

[edit]

Several interpolation results are available forSobolev spaces andBesov spaces onRn,[26]

HpssR,1pBp,qssR,1p,q{\displaystyle {\begin{aligned}&H_{p}^{s}&&s\in \mathbf {R} ,1\leq p\leq \infty \\&B_{p,q}^{s}&&s\in \mathbf {R} ,1\leq p,q\leq \infty \end{aligned}}}

These spaces are spaces ofmeasurable functions onRn whens ≥ 0, and oftempered distributions onRn whens < 0. For the rest of the section, the following setting and notation will be used:

0<θ<1,1p,p0,p1,q,q0,q1,s,s0,s1R,sθ=(1θ)s0+θs1,1pθ=1θp0+θp1,1qθ=1θq0+θq1.{\displaystyle {\begin{aligned}0&<\theta <1,\\1&\leq p,p_{0},p_{1},q,q_{0},q_{1}\leq \infty ,\\s,&s_{0},s_{1}\in \mathbf {R} ,\\s_{\theta }&=(1-\theta )s_{0}+\theta s_{1},\\[4pt]{\frac {1}{p_{\theta }}}&={\frac {1-\theta }{p_{0}}}+{\frac {\theta }{p_{1}}},\\[4pt]{\frac {1}{q_{\theta }}}&={\frac {1-\theta }{q_{0}}}+{\frac {\theta }{q_{1}}}.\end{aligned}}}

Complex interpolation works well on the class of Sobolev spacesHps{\displaystyle H_{p}^{s}} (theBessel potential spaces) as well as Besov spaces:

(Hp0s0,Hp1s1)θ=Hpθsθ,s0s1,1<p0,p1<.(Bp0,q0s0,Bp1,q1s1)θ=Bpθ,qθsθ,s0s1.{\displaystyle {\begin{aligned}\left(H_{p_{0}}^{s_{0}},H_{p_{1}}^{s_{1}}\right)_{\theta }&=H_{p_{\theta }}^{s_{\theta }},&&s_{0}\neq s_{1},1<p_{0},p_{1}<\infty .\\\left(B_{p_{0},q_{0}}^{s_{0}},B_{p_{1},q_{1}}^{s_{1}}\right)_{\theta }&=B_{p_{\theta },q_{\theta }}^{s_{\theta }},&&s_{0}\neq s_{1}.\end{aligned}}}

Real interpolation between Sobolev spaces may give Besov spaces, except whens0 =s1,

(Hp0s,Hp1s)θ,pθ=Hpθs.{\displaystyle \left(H_{p_{0}}^{s},H_{p_{1}}^{s}\right)_{\theta ,p_{\theta }}=H_{p_{\theta }}^{s}.}

Whens0s1 butp0 =p1, real interpolation between Sobolev spaces gives a Besov space:

(Hps0,Hps1)θ,q=Bp,qsθ,s0s1.{\displaystyle \left(H_{p}^{s_{0}},H_{p}^{s_{1}}\right)_{\theta ,q}=B_{p,q}^{s_{\theta }},\qquad s_{0}\neq s_{1}.}

Also,

(Bp,q0s0,Bp,q1s1)θ,q=Bp,qsθ,s0s1.(Bp,q0s,Bp,q1s)θ,q=Bp,qθs.(Bp0,q0s0,Bp1,q1s1)θ,qθ=Bpθ,qθsθ,s0s1,pθ=qθ.{\displaystyle {\begin{aligned}\left(B_{p,q_{0}}^{s_{0}},B_{p,q_{1}}^{s_{1}}\right)_{\theta ,q}&=B_{p,q}^{s_{\theta }},&&s_{0}\neq s_{1}.\\\left(B_{p,q_{0}}^{s},B_{p,q_{1}}^{s}\right)_{\theta ,q}&=B_{p,q_{\theta }}^{s}.\\\left(B_{p_{0},q_{0}}^{s_{0}},B_{p_{1},q_{1}}^{s_{1}}\right)_{\theta ,q_{\theta }}&=B_{p_{\theta },q_{\theta }}^{s_{\theta }},&&s_{0}\neq s_{1},p_{\theta }=q_{\theta }.\end{aligned}}}

See also

[edit]

Notes

[edit]
  1. ^The seminal papers in this direction areLions, Jacques-Louis (1960), "Une construction d'espaces d'interpolation",C. R. Acad. Sci. Paris (in French),251:1853–1855 andCalderón (1964).
  2. ^first defined inLions, Jacques-Louis; Peetre, Jaak (1961), "Propriétés d'espaces d'interpolation",C. R. Acad. Sci. Paris (in French),253:1747–1749, developed inLions & Peetre (1964), with notation slightly different (and more complicated, with four parameters instead of two) from today's notation. It was put later in today's form inPeetre, Jaak (1963), "Nouvelles propriétés d'espaces d'interpolation",C. R. Acad. Sci. Paris (in French),256:1424–1426, andPeetre, Jaak (1968),A theory of interpolation of normed spaces, Notas de Matemática, vol. 39, Rio de Janeiro: Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, pp. iii+86.
  3. ^seeBennett & Sharpley (1988), pp. 96–105.
  4. ^see p. 88 inBergh & Löfström (1976).
  5. ^see Theorem 4.1.2, p. 88 inBergh & Löfström (1976).
  6. ^see Chapter 5, p. 106 inBergh & Löfström (1976).
  7. ^see pp. 293–302 inBennett & Sharpley (1988).
  8. ^see Proposition 1.2, p. 294 inBennett & Sharpley (1988).
  9. ^see p. 298 inBennett & Sharpley (1988).
  10. ^see Theorem 2.8, p. 314 inBennett & Sharpley (1988).
  11. ^see Proposition 1.10, p. 301 inBennett & Sharpley (1988)
  12. ^see Theorem 1.12, pp. 301–302 inBennett & Sharpley (1988).
  13. ^see Theorem 1.9, p. 300 inBennett & Sharpley (1988).
  14. ^see Definition 2.2, pp. 309–310 inBennett & Sharpley (1988)
  15. ^see Theorem 2.4, p. 311 inBennett & Sharpley (1988)
  16. ^see 12.3, p. 121 inCalderón (1964).
  17. ^absee 12.1 and 12.2, p. 121 inCalderón (1964).
  18. ^Theorem 4.1.4, p. 89 inBergh & Löfström (1976).
  19. ^Theorem 4.3.1, p. 93 inBergh & Löfström (1976).
  20. ^see Théorème 3.1, p. 23 inLions & Peetre (1964), or Theorem 3.7.1, p. 54 inBergh & Löfström (1976).
  21. ^see chap. II inLions & Peetre (1964).
  22. ^see chap. 5, Théorème 2.2, p. 37 inLions & Peetre (1964).
  23. ^Davis, William J.; Figiel, Tadeusz;Johnson, William B.; Pełczyński, Aleksander (1974), "Factoring weakly compact operators",Journal of Functional Analysis,17 (3):311–327,doi:10.1016/0022-1236(74)90044-5, see also Theorem 2.g.11, p. 224 inLindenstrauss & Tzafriri (1979).
  24. ^Johnson, William B.; Lindenstrauss, Joram (2001), "Basic concepts in the geometry of Banach spaces",Handbook of the geometry of Banach spaces, Vol. I, Amsterdam: North-Holland, pp. 1–84, and section 2.g inLindenstrauss & Tzafriri (1979).
  25. ^see Theorem 3.b.1, p. 123 inLindenstrauss, Joram; Tzafriri, Lior (1977),Classical Banach Spaces I, Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92, Berlin: Springer-Verlag, pp. xiii+188,ISBN 978-3-540-08072-5.
  26. ^Theorem 6.4.5, p. 152 inBergh & Löfström (1976).

References

[edit]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Retrieved from "https://en.wikipedia.org/w/index.php?title=Interpolation_space&oldid=1275116748"
Categories:
Hidden category:

[8]ページ先頭

©2009-2025 Movatter.jp