Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Interface Region Imaging Spectrograph

From Wikipedia, the free encyclopedia
NASA satellite of the Explorer program
Not to be confused withInfrared Astronomical Satellite (IRAS).

Interface Region Imaging Spectrograph
The IRIS satellite with solar arrays in deployed configuration and telescope front door closed
NamesExplorer 94
IRIS
SMEX-12
Mission typeHeliophysics
OperatorNASA /Lockheed Martin
COSPAR ID2013-033AEdit this at Wikidata
SATCATno.39197
Mission duration2 years (planned)
12 years, 7 months, 21 days(in progress)
Spacecraft properties
SpacecraftExplorer XCIV
Spacecraft typeInterface Region Imaging Spectrograph
BusIRIS
ManufacturerLockheed Martin
Launch mass200 kg (440 lb)
Start of mission
Launch date28 June 2013, 02:27:46UTC
RocketPegasus-XL (F42)
Launch siteVandenberg,Stargazer
ContractorOrbital Sciences Corporation
Orbital parameters
Reference systemGeocentric orbit
RegimeSun-synchronous orbit
Perigee altitude623 km (387 mi)
Apogee altitude665 km (413 mi)
Inclination97.90°
Period97.47 minutes
Instruments
Interface Region Imaging Spectrograph (IRIS)
Explorer program
← NuSTAR (Explorer 93)
GEMS (Explorer) →

Interface Region Imaging Spectrograph (IRIS),[1] also calledExplorer 94 andSMEX-12,[2] is aNASA solar observation satellite. The mission was funded through theSmall Explorer program to investigate the physical conditions of the solar limb, particularly the interface region made up of thechromosphere andtransition region. The spacecraft consists of asatellite bus andspectrometer built by theLockheed Martin Solar and Astrophysics Laboratory (LMSAL), and a telescope provided by theSmithsonian Astrophysical Observatory (SAO). IRIS is operated by LMSAL and NASA'sAmes Research Center.

The satellite's instrument is a high-frame-rate ultravioletimaging spectrometer, providing one image per second at 0.3-arcsecond angular resolution and sub-ångström spectral resolution.

NASA announced, on 19 June 2009, that IRIS was selected from six Small Explorer mission candidates for further study,[3] along with theGravity and Extreme Magnetism (GEMS) space observatory.[4]

Mission

[edit]

IRIS is intended to advance Sun-Earth connection studies by tracing the flow of energy and plasma into the corona andheliosphere for which no suitable observations exist. To achieve this IRIS obtains a high-resolution UV spectra and images of the Sun's chromosphere, specifically on the non-thermal energy that creates thecorona and thesolar wind. IRIS seeks to determine: (1) the types of non-thermal energy which dominate in the chromosphere and beyond; (2) the means by which the chromosphere regulates mass and energy supply to the corona and heliosphere; and, (3) how magnetic flux and matter rise through the lower solar atmosphere, and the role played by flux emergence in flares and mass ejections. To answer these questions, IRIS utilize a single instrument, a multi-channel imaging spectrograph.[1]

Launch

[edit]

The spacecraft arrived atVandenberg Air Force Base,California, on 16 April 2013 and was successfully deployed from anOrbital L-1011 carrier aircraft flying over the Pacific Ocean at an altitude of 12,000 m (39,000 ft), roughly 160 km (99 mi) northwest of Vandenberg. The launch vehicle was dropped at 02:27:46 UTC on 28 June 2013 (7:27 p.m. PDT on 27 June 2013) by aPegasus-XL launch vehicle.[5][6][1]

Experiment

[edit]

Interface Region Imaging Spectrograph (IRIS)

[edit]

The IRIS instrument is a multi-channel imaging spectrograph with a 19 cm (7.5 in)ultraviolet telescope. IRIS obtains a spectra along a slit (1/3 arcsecond wide), and slit-jaw images. Thecharge-coupled device (CCD) detectors has 1/6 arcsecondpixels. IRIS will have an effectivespatial resolution between 0.33 and 0.40 arcsecond and a maximumfield of view (FoV) of 120 arcseconds. The far-ultraviolet channel covers 133.2-135.8 nm and 139.0-140.6 nm with an 0.04 nm resolution and an effective area of 2.8 cm2 (0.43 sq in). The near-ultraviolet channel covers 278.5-283.5 nm with an 0.08 nm resolution and an effective area of 0.3 cm2 (0.047 sq in).[7] Slit-jaw imaging has fourpassbands: 133.5 nm and 140.0 nm with a 4 nm bandpass each; and 279.6 nm and 283.1 nm with a 0.4 nm bandpass each. IRIS has a high data rate (0.7Mbit/s on average) so that the baseline cadence is 5 seconds for slit-jaw images and 1 second for six spectral windows, including rapid rastering to map solar regions.[8]

Science results

[edit]

IRIS achievedfirst light on 17 July 2013.[9] NASA noted that "IRIS's first images showed a multitude of thin, fibril-like structures that have never been seen before, revealing enormous contrasts in density and temperature occur throughout this region even between neighboring loops that are only a few hundred miles apart".[9] On 31 October 2013, calibrated IRIS data and images were released on the project website.[10] An open-access article describing the satellite and initial data was published in the journalSolar Physics.[11]

Data collected from the IRIS spacecraft has shown that the interface region of theSun is significantly more complex than previously thought. This includes features described as solar heat bombs, high-speed plasma jets, nano-flares, and mini-tornadoes. These features are an important step in understanding the transfer of heat to the corona.[12]

In 2019, IRIS detected tadpole like jets coming out from the Sun according to NASA.[13]

  • Video of IRIS data from a solar flare on 11 March 2015
  • X-class solar flare on Sept. 10, 2014
    X-class solar flare on Sept. 10, 2014
  • IRIS captured several large solar prominences on the edge of the Sun
    IRIS captured several large solar prominences on the edge of the Sun
  • IRIS view above the Sun's surface extending well out into the solar atmosphere
    IRIS view above the Sun's surface extending well out into the solar atmosphere

IRIS team

[edit]

Science and engineering team members include:[10]

References

[edit]
  1. ^abc"Display: IRIS (Explorer 94) 2013-033A". NASA. 28 October 2021. Retrieved12 December 2021.Public Domain This article incorporates text from this source, which is in thepublic domain.
  2. ^"NASA's Explorer Program Satellites". NASA. 22 July 2019. Retrieved12 December 2021.Public Domain This article incorporates text from this source, which is in thepublic domain.
  3. ^Harrington, J. D. (29 May 2008)."NASA Selects Small Explorer Investigations for Concept Studies". NASA.Public Domain This article incorporates text from this source, which is in thepublic domain.
  4. ^Harrington, J. D. (19 June 2009)."NASA Awards Two Small Explorer Development Contracts". NASA.Public Domain This article incorporates text from this source, which is in thepublic domain.
  5. ^Hendrix, Susan; Diller, George (17 April 2013)."NASA'S Newest Solar Satellite Arrives at Vandenberg AFB for Launch". NASA. Archived fromthe original on 3 July 2013. Retrieved18 April 2013.Public Domain This article incorporates text from this source, which is in thepublic domain.
  6. ^"IRIS Solar Observatory Launches, Begins Mission". NASA. 28 June 2013.Public Domain This article incorporates text from this source, which is in thepublic domain.
  7. ^"Interface Region Imaging Spectrograph (IRIS) Concept Study Report (CSR)"(PDF). LMSAL. 16 December 2008. Retrieved20 April 2024.
  8. ^"Experiment: Interface Region Imaging Spectrograph (IRIS)". NASA. 28 October 2021. Retrieved12 December 2021.Public Domain This article incorporates text from this source, which is in thepublic domain.
  9. ^abFox, Karen C. (25 July 2013)."NASA's IRIS Telescope Offers First Glimpse of Sun's Mysterious Atmosphere". NASA. Archived fromthe original on 10 September 2015. Retrieved29 July 2013.Public Domain This article incorporates text from this source, which is in thepublic domain.
  10. ^ab"Interface Region Imaging Spectrograph". Lockheed Martin Solar and Astrophysics Laboratory.
  11. ^De Pontieu, B.; Title, A. M.; Lemen, J.; Kushner, G. D.; Akin, D. J.; et al. (July 2014). "The Interface Region Imaging Spectrograph (IRIS)".Solar Physics.289 (7):2733–2779.arXiv:1401.2491.Bibcode:2014SoPh..289.2733D.doi:10.1007/s11207-014-0485-y.S2CID 53596913.
  12. ^De Pontieu, B.; Rouppe van der Voort, L.; McIntosh, S. W.; Pereira, T. M. D.; Carlsson, M.; et al. (October 2014). "On the prevalence of small-scale twist in the solar chromosphere and transition region".Science.346 (6207) 1255732.arXiv:1410.6862.Bibcode:2014Sci...346D.315D.doi:10.1126/science.1255732.PMID 25324398.S2CID 51601695.
  13. ^"Tadpole-Like Jets From Sun Add New Clue to Age-Old Mystery". NASA. 19 February 2019. Retrieved10 April 2019.Public Domain This article incorporates text from this source, which is in thepublic domain.

External links

[edit]
Wikimedia Commons has media related toIRIS (satellite).
Missions
1958–1992
Medium class
(since 1992)
Small class
(since 1992)
University-class/
Missions of opportunity/
International missions
Proposals
  • Green titles indicates active current missions
  • Grey titles indicates cancelled missions
  • Italics indicate missions yet to launch
  • Symbol indicates failure en route or before intended mission data returned
Current
Past
Planned
Proposed
Cancelled
Lost
Sun-Earth
Operating
Radio and
Microwave
Infrared
Optical
Ultraviolet
X-ray and
Gamma-ray
Other
(particle or
unclassified)
Planned
Proposed
Retired
Hibernating
(Mission completed)
Lost/Failed
Cancelled
Related
January
February
March
April
May
June
July
August
September
October
November
December
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ).
Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).
2013 in space
Space probe launchesSpace probes launched in 2013
Space probes
Space observatories
  • IRIS (solar observation; Jun 2013)
  • Hisaki (ultraviolet observation; Sep 2013)
  • Gaia (astrometric observation; Dec 2013)


Impact events
SelectedNEOs
ExoplanetsExoplanets discovered in 2013
Discoveries
Novae
CometsComets in 2013
Space exploration
Retrieved from "https://en.wikipedia.org/w/index.php?title=Interface_Region_Imaging_Spectrograph&oldid=1313746301"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp