Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Integration using Euler's formula

From Wikipedia, the free encyclopedia
Use of complex numbers to evaluate integrals
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Integration using Euler's formula" – news ·newspapers ·books ·scholar ·JSTOR
(July 2019) (Learn how and when to remove this message)
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Inintegral calculus,Euler's formula forcomplex numbers may be used to evaluateintegrals involvingtrigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namelyeix{\displaystyle e^{ix}} andeix{\displaystyle e^{-ix}} and then integrated. This technique is often simpler and faster than usingtrigonometric identities orintegration by parts, and is sufficiently powerful to integrate anyrational expression involving trigonometric functions.[1]

Euler's formula

[edit]

Euler's formula states that[2]

eix=cosx+isinx.{\displaystyle e^{ix}=\cos x+i\,\sin x.}

Substitutingx{\displaystyle -x} forx{\displaystyle x} gives the equation

eix=cosxisinx{\displaystyle e^{-ix}=\cos x-i\,\sin x}

because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine to give

cosx=eix+eix2andsinx=eixeix2i.{\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}}\quad {\text{and}}\quad \sin x={\frac {e^{ix}-e^{-ix}}{2i}}.}

Examples

[edit]

First example

[edit]

Consider the integral

cos2xdx.{\displaystyle \int \cos ^{2}x\,dx.}

The standard approach to this integral is to use ahalf-angle formula to simplify the integrand. We can use Euler's identity instead:

cos2xdx=(eix+eix2)2dx=14(e2ix+2+e2ix)dx{\displaystyle {\begin{aligned}\int \cos ^{2}x\,dx\,&=\,\int \left({\frac {e^{ix}+e^{-ix}}{2}}\right)^{2}dx\\[6pt]&=\,{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx\end{aligned}}}

At this point, it would be possible to change back to real numbers using the formulae2ix +e−2ix = 2 cos 2x. Alternatively, we can integrate the complex exponentials and not change back to trigonometric functions until the end:

14(e2ix+2+e2ix)dx=14(e2ix2i+2xe2ix2i)+C=14(2x+sin2x)+C.{\displaystyle {\begin{aligned}{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx&={\frac {1}{4}}\left({\frac {e^{2ix}}{2i}}+2x-{\frac {e^{-2ix}}{2i}}\right)+C\\[6pt]&={\frac {1}{4}}\left(2x+\sin 2x\right)+C.\end{aligned}}}

Second example

[edit]

Consider the integral

sin2xcos4xdx.{\displaystyle \int \sin ^{2}x\cos 4x\,dx.}

This integral would be extremely tedious to solve using trigonometric identities, but using Euler's identity makes it relatively painless:

sin2xcos4xdx=(eixeix2i)2(e4ix+e4ix2)dx=18(e2ix2+e2ix)(e4ix+e4ix)dx=18(e6ix2e4ix+e2ix+e2ix2e4ix+e6ix)dx.{\displaystyle {\begin{aligned}\int \sin ^{2}x\cos 4x\,dx&=\int \left({\frac {e^{ix}-e^{-ix}}{2i}}\right)^{2}\left({\frac {e^{4ix}+e^{-4ix}}{2}}\right)dx\\[6pt]&=-{\frac {1}{8}}\int \left(e^{2ix}-2+e^{-2ix}\right)\left(e^{4ix}+e^{-4ix}\right)dx\\[6pt]&=-{\frac {1}{8}}\int \left(e^{6ix}-2e^{4ix}+e^{2ix}+e^{-2ix}-2e^{-4ix}+e^{-6ix}\right)dx.\end{aligned}}}

At this point we can either integrate directly, or we can first change the integrand to2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there.Either method gives

sin2xcos4xdx=124sin6x+18sin4x18sin2x+C.{\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24}}\sin 6x+{\frac {1}{8}}\sin 4x-{\frac {1}{8}}\sin 2x+C.}

Using real parts

[edit]

In addition to Euler's identity, it can be helpful to make judicious use of thereal parts of complex expressions. For example, consider the integral

excosxdx.{\displaystyle \int e^{x}\cos x\,dx.}

Sincecosx is the real part ofeix, we know that

excosxdx=Reexeixdx.{\displaystyle \int e^{x}\cos x\,dx=\operatorname {Re} \int e^{x}e^{ix}\,dx.}

The integral on the right is easy to evaluate:

exeixdx=e(1+i)xdx=e(1+i)x1+i+C.{\displaystyle \int e^{x}e^{ix}\,dx=\int e^{(1+i)x}\,dx={\frac {e^{(1+i)x}}{1+i}}+C.}

Thus:

excosxdx=Re(e(1+i)x1+i)+C=exRe(eix1+i)+C=exRe(eix(1i)2)+C=excosx+sinx2+C.{\displaystyle {\begin{aligned}\int e^{x}\cos x\,dx&=\operatorname {Re} \left({\frac {e^{(1+i)x}}{1+i}}\right)+C\\[6pt]&=e^{x}\operatorname {Re} \left({\frac {e^{ix}}{1+i}}\right)+C\\[6pt]&=e^{x}\operatorname {Re} \left({\frac {e^{ix}(1-i)}{2}}\right)+C\\[6pt]&=e^{x}{\frac {\cos x+\sin x}{2}}+C.\end{aligned}}}

Fractions

[edit]

In general, this technique may be used to evaluate any fractions involving trigonometric functions. For example, consider the integral

1+cos2xcosx+cos3xdx.{\displaystyle \int {\frac {1+\cos ^{2}x}{\cos x+\cos 3x}}\,dx.}

Using Euler's identity, this integral becomes

126+e2ix+e2ixeix+eix+e3ix+e3ixdx.{\displaystyle {\frac {1}{2}}\int {\frac {6+e^{2ix}+e^{-2ix}}{e^{ix}+e^{-ix}+e^{3ix}+e^{-3ix}}}\,dx.}

If we now make thesubstitutionu=eix{\displaystyle u=e^{ix}}, the result is the integral of arational function:

i21+6u2+u41+u2+u4+u6du.{\displaystyle -{\frac {i}{2}}\int {\frac {1+6u^{2}+u^{4}}{1+u^{2}+u^{4}+u^{6}}}\,du.}

One may proceed usingpartial fraction decomposition.

See also

[edit]

References

[edit]
  1. ^Kilburn, Korey (2019)."Applying Euler's Formula to Integrate".American Review of Mathematics and Statistics.7. American Research Institute for Policy Development:1–2.doi:10.15640/arms.v7n2a1 (inactive 12 July 2025).eISSN 2374-2356.hdl:2158/1183208.ISSN 2374-2348.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  2. ^Weisstein, Eric W."Euler Formula".mathworld.wolfram.com. Retrieved2021-03-17.
Types of
integrals
Integration
techniques
Improper integrals
Stochastic integrals
Miscellaneous
Retrieved from "https://en.wikipedia.org/w/index.php?title=Integration_using_Euler%27s_formula&oldid=1300076330"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp