Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Integral of the secant function

From Wikipedia, the free encyclopedia
Antiderivative of the secant function
A graph of the secant function (red) and its antiderivative (blue)
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Incalculus, theintegral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing theantiderivative, all of which can be shown to be equivalent viatrigonometric identities,

secθdθ={12ln1+sinθ1sinθ+Cln|secθ+tanθ|+Cln|tan(θ2+π4)|+C{\displaystyle \int \sec \theta \,d\theta ={\begin{cases}{\dfrac {1}{2}}\ln {\dfrac {1+\sin \theta }{1-\sin \theta }}+C\\[15mu]\ln {{\bigl |}\sec \theta +\tan \theta \,{\bigr |}}+C\\[15mu]\ln {\left|\,{\tan }{\biggl (}{\dfrac {\theta }{2}}+{\dfrac {\pi }{4}}{\biggr )}\right|}+C\end{cases}}}

This formula is useful for evaluating varioustrigonometric integrals. In particular, it can be used to evaluate theintegral of the secant cubed, which, though seemingly special, comes up rather frequently in applications.[1]

The definite integral of the secant function starting from0{\displaystyle 0} is the inverseGudermannian function,gd1.{\textstyle \operatorname {gd} ^{-1}.} For numerical applications, all of the above expressions result inloss of significance for some arguments. An alternative expression in terms of theinverse hyperbolic sinearsinh is numerically well behaved for real arguments|ϕ|<12π{\textstyle |\phi |<{\tfrac {1}{2}}\pi }:[2]

gd1ϕ=0ϕsecθdθ=arsinh(tanϕ).{\displaystyle \operatorname {gd} ^{-1}\phi =\int _{0}^{\phi }\sec \theta \,d\theta =\operatorname {arsinh} (\tan \phi ).}

The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of theMercator projection, used formarine navigation with constant compass bearing.

Proof that the different antiderivatives are equivalent

[edit]

Trigonometric forms

[edit]

Three common expressions for the integral of the secant,

secθdθ=12ln1+sinθ1sinθ+C=ln|secθ+tanθ|+C=ln|tan(θ2+π4)|+C,{\displaystyle {\begin{aligned}\int \sec \theta \,d\theta &={\dfrac {1}{2}}\ln {\dfrac {1+\sin \theta }{1-\sin \theta }}+C\\[5mu]&=\ln {{\bigl |}\sec \theta +\tan \theta \,{\bigr |}}+C\\[5mu]&=\ln {\left|\,{\tan }{\biggl (}{\frac {\theta }{2}}+{\frac {\pi }{4}}{\biggr )}\right|}+C,\end{aligned}}}

are equivalent because

1+sinθ1sinθ=|secθ+tanθ|=|tan(θ2+π4)|.{\displaystyle {\sqrt {\dfrac {1+\sin \theta }{1-\sin \theta }}}={\bigl |}\sec \theta +\tan \theta \,{\bigr |}=\left|\,{\tan }{\biggl (}{\frac {\theta }{2}}+{\frac {\pi }{4}}{\biggr )}\right|.}

Proof: we can separately apply thetangent half-angle substitutiont=tan12θ{\displaystyle t=\tan {\tfrac {1}{2}}\theta } to each of the three forms, and show them equivalent to the same expression in terms oft.{\displaystyle t.} Under this substitutioncosθ=(1t2)/(1+t2){\displaystyle \cos \theta =(1-t^{2}){\big /}(1+t^{2})} andsinθ=2t/(1+t2).{\displaystyle \sin \theta =2t{\big /}(1+t^{2}).}

First,

1+sinθ1sinθ=1+2t1+t212t1+t2=1+t2+2t1+t22t=(1+t)2(1t)2=|1+t1t|.{\displaystyle {\begin{aligned}{\sqrt {\dfrac {1+\sin \theta }{1-\sin \theta }}}&={\sqrt {\frac {1+{\dfrac {2t}{1+t^{2}}}}{1-{\dfrac {2t}{1+t^{2}}}}}}={\sqrt {\frac {1+t^{2}+2t}{1+t^{2}-2t}}}={\sqrt {\frac {(1+t)^{2}}{(1-t)^{2}}}}\\[5mu]&=\left|{\frac {1+t}{1-t}}\right|.\end{aligned}}}

Second,

|secθ+tanθ|=|1cosθ+sinθcosθ|=|1+t21t2+2t1t2|=|(1+t)2(1+t)(1t)|=|1+t1t|.{\displaystyle {\begin{aligned}{\bigl |}\sec \theta +\tan \theta \,{\bigr |}&=\left|{\frac {1}{\cos \theta }}+{\frac {\sin \theta }{\cos \theta }}\right|=\left|{\frac {1+t^{2}}{1-t^{2}}}+{\frac {2t}{1-t^{2}}}\right|=\left|{\frac {(1+t)^{2}}{(1+t)(1-t)}}\right|\\[5mu]&=\left|{\frac {1+t}{1-t}}\right|.\end{aligned}}}

Third, using the tangent addition identitytan(ϕ+ψ)=(tanϕ+tanψ)/(1tanϕtanψ),{\displaystyle \tan(\phi +\psi )=(\tan \phi +\tan \psi ){\big /}(1-\tan \phi \,\tan \psi ),}

|tan(θ2+π4)|=|tan12θ+tan14π1tan12θtan14π|=|t+11t1|=|1+t1t|.{\displaystyle {\begin{aligned}\left|\,{\tan }{\biggl (}{\frac {\theta }{2}}+{\frac {\pi }{4}}{\biggr )}\right|&=\left|{\frac {\tan {\tfrac {1}{2}}\theta +\tan {\tfrac {1}{4}}\pi }{1-\tan {\tfrac {1}{2}}\theta \,\tan {\tfrac {1}{4}}\pi }}\right|=\left|{\frac {t+1}{1-t\cdot 1}}\right|\\[5mu]&=\left|{\frac {1+t}{1-t}}\right|.\end{aligned}}}

So all three expressions describe the same quantity.

The conventional solution for theMercator projection ordinate may be written without theabsolute value signs since the latitudeφ{\displaystyle \varphi } lies between12π{\textstyle -{\tfrac {1}{2}}\pi } and12π{\textstyle {\tfrac {1}{2}}\pi },

y=lntan(φ2+π4).{\displaystyle y=\ln \,{\tan }{\biggl (}{\frac {\varphi }{2}}+{\frac {\pi }{4}}{\biggr )}.}

Hyperbolic forms

[edit]

Let

ψ=ln(secθ+tanθ),eψ=secθ+tanθ,sinhψ=eψeψ2=tanθ,coshψ=1+sinh2ψ=|secθ|,tanhψ=sinθ.{\displaystyle {\begin{aligned}\psi &=\ln(\sec \theta +\tan \theta ),\\[4pt]e^{\psi }&=\sec \theta +\tan \theta ,\\[4pt]\sinh \psi &={\frac {e^{\psi }-e^{-\psi }}{2}}=\tan \theta ,\\[4pt]\cosh \psi &={\sqrt {1+\sinh ^{2}\psi }}=|\sec \theta \,|,\\[4pt]\tanh \psi &=\sin \theta .\end{aligned}}}

Therefore,

secθdθ=artanh(sinθ)+C=sgn(cosθ)arsinh(tanθ)+C=sgn(sinθ)arcosh|secθ|+C.{\displaystyle {\begin{aligned}\int \sec \theta \,d\theta &=\operatorname {artanh} \left(\sin \theta \right)+C\\[-2mu]&=\operatorname {sgn}(\cos \theta )\operatorname {arsinh} \left(\tan \theta \right)+C\\[7mu]&=\operatorname {sgn}(\sin \theta )\operatorname {arcosh} {\left|\sec \theta \right|}+C.\end{aligned}}}

History

[edit]
For broader coverage of this topic, seeMercator projection § History.

Theintegral of thesecant function was one of the "outstanding open problems of the mid-seventeenth century", solved in 1668 byJames Gregory.[3] He applied his result to a problem concerning nautical tables.[1] In 1599,Edward Wright evaluated the integral bynumerical methods – what today we would callRiemann sums.[4] He wanted the solution for the purposes ofcartography – specifically for constructing an accurateMercator projection.[3] In the 1640s, Henry Bond, a teacher of navigation, surveying, and other mathematical topics, compared Wright's numerically computed table of values of the integral of the secant with a table of logarithms of the tangent function, and consequentlyconjectured that[3]

0φsecθdθ=lntan(φ2+π4).{\displaystyle \int _{0}^{\varphi }\sec \theta \,d\theta =\ln \tan \left({\frac {\varphi }{2}}+{\frac {\pi }{4}}\right).}

This conjecture became widely known, and in 1665,Isaac Newton was aware of it.[5]

Evaluations

[edit]

By a standard substitution (Gregory's approach)

[edit]

A standard method of evaluating the secant integral presented in various references involves multiplying the numerator and denominator bysec θ + tan θ and then using the substitutionu = sec θ + tan θ. This substitution can be obtained from thederivatives of secant and tangent added together, which have secant as a common factor.[6]

Starting with

ddθsecθ=secθtanθandddθtanθ=sec2θ,{\displaystyle {\frac {d}{d\theta }}\sec \theta =\sec \theta \tan \theta \quad {\text{and}}\quad {\frac {d}{d\theta }}\tan \theta =\sec ^{2}\theta ,}

adding them gives

ddθ(secθ+tanθ)=secθtanθ+sec2θ=secθ(tanθ+secθ).{\displaystyle {\begin{aligned}{\frac {d}{d\theta }}(\sec \theta +\tan \theta )&=\sec \theta \tan \theta +\sec ^{2}\theta \\&=\sec \theta (\tan \theta +\sec \theta ).\end{aligned}}}

The derivative of the sum is thus equal to the sum multiplied bysec θ. This enables multiplyingsec θ bysec θ + tan θ in the numerator and denominator and performing the following substitutions:

u=secθ+tanθdu=(secθtanθ+sec2θ)dθ.{\displaystyle {\begin{aligned}u&=\sec \theta +\tan \theta \\du&=\left(\sec \theta \tan \theta +\sec ^{2}\theta \right)\,d\theta .\end{aligned}}}

The integral is evaluated as follows:

secθdθ=secθ(secθ+tanθ)secθ+tanθdθ=sec2θ+secθtanθsecθ+tanθdθu=secθ+tanθ=1ududu=(secθtanθ+sec2θ)dθ=ln|u|+C=ln|secθ+tanθ|+C,{\displaystyle {\begin{aligned}\int \sec \theta \,d\theta &=\int {\frac {\sec \theta (\sec \theta +\tan \theta )}{\sec \theta +\tan \theta }}\,d\theta \\[6pt]&=\int {\frac {\sec ^{2}\theta +\sec \theta \tan \theta }{\sec \theta +\tan \theta }}\,d\theta &u&=\sec \theta +\tan \theta \\[6pt]&=\int {\frac {1}{u}}\,du&du&=\left(\sec \theta \tan \theta +\sec ^{2}\theta \right)\,d\theta \\[6pt]&=\ln |u|+C\\[4pt]&=\ln |\sec \theta +\tan \theta |+C,\end{aligned}}}

as claimed. This was the formula discovered by James Gregory.[1]

By partial fractions and a substitution (Barrow's approach)

[edit]

Although Gregoryproved the conjecture in 1668 in hisExercitationes Geometricae,[7] the proof was presented in a form that renders it nearly impossible for modern readers to comprehend;Isaac Barrow, in hisLectiones Geometricae of 1670,[8] gave the first "intelligible" proof, though even that was "couched in the geometric idiom of the day."[3] Barrow's proof of the result was the earliest use ofpartial fractions in integration.[3] Adapted to modern notation, Barrow's proof began as follows:

secθdθ=1cosθdθ=cosθcos2θdθ=cosθ1sin2θdθ{\displaystyle \int \sec \theta \,d\theta =\int {\frac {1}{\cos \theta }}\,d\theta =\int {\frac {\cos \theta }{\cos ^{2}\theta }}\,d\theta =\int {\frac {\cos \theta }{1-\sin ^{2}\theta }}\,d\theta }

Substitutingu = sin θ,du = cos θ, reduces the integral to

11u2du=1(1+u)(1u)du=12(11+u+11u)dupartial fraction decomposition=12(ln|1+u|ln|1u|)+C=12ln|1+u1u|+C{\displaystyle {\begin{aligned}\int {\frac {1}{1-u^{2}}}\,du&=\int {\frac {1}{(1+u)(1-u)}}\,du\\[6pt]&=\int {\frac {1}{2}}\!\left({\frac {1}{1+u}}+{\frac {1}{1-u}}\right)du&&{\text{partial fraction decomposition}}\\[6pt]&={\frac {1}{2}}{\bigl (}\ln \left|1+u\right|-\ln \left|1-u\right|{\bigr )}+C\\[6pt]&={\frac {1}{2}}\ln \left|{\frac {1+u}{1-u}}\right|+C\end{aligned}}}

Therefore,

secθdθ=12ln1+sinθ1sinθ+C,{\displaystyle \int \sec \theta \,d\theta ={\frac {1}{2}}\ln {\frac {1+\sin \theta }{1-\sin \theta }}+C,}

as expected. Taking the absolute value is not necessary because1+sinθ{\displaystyle 1+\sin \theta } and1sinθ{\displaystyle 1-\sin \theta } are always non-negative for real values ofθ.{\displaystyle \theta .}

By the tangent half-angle substitution

[edit]

Standard

[edit]

Under thetangent half-angle substitutiont=tan12θ,{\textstyle t=\tan {\tfrac {1}{2}}\theta ,}[9]

sinθ=2t1+t2,cosθ=1t21+t2,dθ=21+t2dt,tanθ=sinθcosθ=2t1t2,secθ=1cosθ=1+t21t2,secθ+tanθ=1+2t+t21t2=1+t1t.{\displaystyle {\begin{aligned}&\sin \theta ={\frac {2t}{1+t^{2}}},\quad \cos \theta ={\frac {1-t^{2}}{1+t^{2}}},\quad d\theta ={\frac {2}{1+t^{2}}}\,dt,\\[10mu]&\tan \theta ={\frac {\sin \theta }{\cos \theta }}={\frac {2t}{1-t^{2}}},\quad \sec \theta ={\frac {1}{\cos \theta }}={\frac {1+t^{2}}{1-t^{2}}},\\[10mu]&\sec \theta +\tan \theta ={\frac {1+2t+t^{2}}{1-t^{2}}}={\frac {1+t}{1-t}}.\end{aligned}}}

Therefore the integral of the secant function is

secθdθ=(1+t21t2)(21+t2)dtt=tanθ2=2(1t)(1+t)dt=(11+t+11t)dtpartial fraction decomposition=ln|1+t|ln|1t|+C=ln|1+t1t|+C=ln|secθ+tanθ|+C,{\displaystyle {\begin{aligned}\int \sec \theta \,d\theta &=\int \left({\frac {1+t^{2}}{1-t^{2}}}\right)\!\left({\frac {2}{1+t^{2}}}\right)dt&&t=\tan {\frac {\theta }{2}}\\[6pt]&=\int {\frac {2}{(1-t)(1+t)}}\,dt\\[6pt]&=\int \left({\frac {1}{1+t}}+{\frac {1}{1-t}}\right)dt&&{\text{partial fraction decomposition}}\\[6pt]&=\ln |1+t|-\ln |1-t|+C\\[6pt]&=\ln \left|{\frac {1+t}{1-t}}\right|+C\\[6pt]&=\ln |\sec \theta +\tan \theta |+C,\end{aligned}}}

as before.

Non-standard

[edit]

The integral can also be derived by using a somewhat non-standard version of the tangent half-angle substitution, which is simpler in the case of this particular integral, published in 2013,[10] is as follows:

x=tan(π4+θ2)2x1+x2=2tan(π4+θ2)sec2(π4+θ2)=2sin(π4+θ2)cos(π4+θ2)=sin(π2+θ)=cosθby the double-angle formuladx=12sec2(π4+θ2)dθ=12(1+x2)dθdθ=21+x2dx.{\displaystyle {\begin{aligned}x&=\tan \left({\frac {\pi }{4}}+{\frac {\theta }{2}}\right)\\[10pt]{\frac {2x}{1+x^{2}}}&={\frac {2\tan \left({\frac {\pi }{4}}+{\frac {\theta }{2}}\right)}{\sec ^{2}\left({\frac {\pi }{4}}+{\frac {\theta }{2}}\right)}}=2\sin \left({\frac {\pi }{4}}+{\frac {\theta }{2}}\right)\cos \left({\frac {\pi }{4}}+{\frac {\theta }{2}}\right)\\[6pt]&=\sin \left({\frac {\pi }{2}}+\theta \right)=\cos \theta &&{\text{by the double-angle formula}}\\[10pt]dx&={\frac {1}{2}}\sec ^{2}\left({\frac {\pi }{4}}+{\frac {\theta }{2}}\right)d\theta ={\frac {1}{2}}\left(1+x^{2}\right)d\theta \\[10pt]d\theta &={\frac {2}{1+x^{2}}}\,dx.\end{aligned}}}

Substituting:

secθdθ=1cosθdθ=1+x22x21+x2dx=1xdx=ln|x|+C=ln|tan(π4+θ2)|+C.{\displaystyle {\begin{aligned}\int \sec \theta \,d\theta =\int {\frac {1}{\cos \theta }}\,d\theta &=\int {\frac {1+x^{2}}{2x}}\cdot {\frac {2}{1+x^{2}}}\,dx\\[6pt]&=\int {\frac {1}{x}}\,dx\\[6pt]&=\ln |x|+C\\[6pt]&=\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {\theta }{2}}\right)\right|+C.\end{aligned}}}

By two successive substitutions

[edit]

The integral can also be solved by manipulating theintegrand and substituting twice. Using the definitionsec θ =1/cos θ and the identitycos2θ + sin2θ = 1, the integral can be rewritten as

secθdθ=1cosθdθ=cosθcos2θdθ=cosθ1sin2θdθ.{\displaystyle \int \sec \theta \,d\theta =\int {\frac {1}{\cos \theta }}\,d\theta =\int {\frac {\cos \theta }{\cos ^{2}\theta }}\,d\theta =\int {\frac {\cos \theta }{1-\sin ^{2}\theta }}\,d\theta .}

Substitutingu = sin θ,du = cos θ reduces the integral to

11u2du.{\displaystyle \int {\frac {1}{1-u^{2}}}\,du.}

The reduced integral can be evaluated by substitutingu = tanh t,du = sech2tdt, and then using the identity1 − tanh2t = sech2t.

sech2t1tanh2tdt=sech2tsech2tdt=dt.{\displaystyle \int {\frac {\operatorname {sech} ^{2}t}{1-\tanh ^{2}t}}\,dt=\int {\frac {\operatorname {sech} ^{2}t}{\operatorname {sech} ^{2}t}}\,dt=\int dt.}

The integral is now reduced to a simple integral, and back-substituting gives

dt=t+C=artanhu+C=artanh(sinθ)+C,{\displaystyle {\begin{aligned}\int dt&=t+C\\&=\operatorname {artanh} u+C\\[4pt]&=\operatorname {artanh} (\sin \theta )+C,\end{aligned}}}

which is one of the hyperbolic forms of the integral.

A similar strategy can be used to integrate thecosecant,hyperbolic secant, andhyperbolic cosecant functions.

Other hyperbolic forms

[edit]

It is also possible to find the other two hyperbolic forms directly, by again multiplying and dividing by a convenient term:

secθdθ=sec2θsecθdθ=sec2θ±1+tan2θdθ,{\displaystyle \int \sec \theta \,d\theta =\int {\frac {\sec ^{2}\theta }{\sec \theta }}\,d\theta =\int {\frac {\sec ^{2}\theta }{\pm {\sqrt {1+\tan ^{2}\theta }}}}\,d\theta ,}

where±{\displaystyle \pm } stands forsgn(cosθ){\displaystyle \operatorname {sgn}(\cos \theta )} because1+tan2θ=|secθ|.{\displaystyle {\sqrt {1+\tan ^{2}\theta }}=|\sec \theta \,|.} Substitutingu = tan θ,du = sec2θ, reduces to a standard integral:

1±1+u2du=±arsinhu+C=sgn(cosθ)arsinh(tanθ)+C,{\displaystyle {\begin{aligned}\int {\frac {1}{\pm {\sqrt {1+u^{2}}}}}\,du&=\pm \operatorname {arsinh} u+C\\&=\operatorname {sgn}(\cos \theta )\operatorname {arsinh} \left(\tan \theta \right)+C,\end{aligned}}}

wheresgn is thesign function.

Likewise:

secθdθ=secθtanθtanθdθ=secθtanθ±sec2θ1dθ.{\displaystyle \int \sec \theta \,d\theta =\int {\frac {\sec \theta \tan \theta }{\tan \theta }}\,d\theta =\int {\frac {\sec \theta \tan \theta }{\pm {\sqrt {\sec ^{2}\theta -1}}}}\,d\theta .}

Substitutingu = |sec θ|,du = |sec θ| tan θ, reduces to a standard integral:

1±u21du=±arcoshu+C=sgn(sinθ)arcosh|secθ|+C.{\displaystyle {\begin{aligned}\int {\frac {1}{\pm {\sqrt {u^{2}-1}}}}\,du&=\pm \operatorname {arcosh} u+C\\&=\operatorname {sgn}(\sin \theta )\operatorname {arcosh} \left|\sec \theta \right|+C.\end{aligned}}}

Using complex exponential form

[edit]

Under the substitutionz=eiθ,{\displaystyle z=e^{i\theta },}

θ=ilnz,dθ=izdz,cosθ=z+z12,sinθ=zz12i,secθ=2z+z1,tanθ=izz1z+z1,secθ+tanθ=i2i+zz1z+z1=i(z+i)(1+iz1)(zi)(1+iz1)=iz+izi{\displaystyle {\begin{aligned}&\theta =-i\ln z,\quad d\theta ={\frac {-i}{z}}dz,\quad \cos \theta ={\frac {z+z^{-1}}{2}},\quad \sin \theta ={\frac {z-z^{-1}}{2i}},\quad \\[5mu]&\sec \theta ={\frac {2}{z+z^{-1}}},\quad \tan \theta =-i{\frac {z-z^{-1}}{z+z^{-1}}},\quad \\[5mu]&\sec \theta +\tan \theta =-i{\frac {2i+z-z^{-1}}{z+z^{-1}}}=-i{\frac {(z+i)(1+iz^{-1})}{(z-i)(1+iz^{-1})}}=-i{\frac {z+i}{z-i}}\end{aligned}}}

So the integral can be solved as:

secθdθ=2z+z1izdzz=eiθ=2iz2+1dz=1z+i1zidzpartial fraction decomposition=ln(z+i)ln(zi)+C=lnz+izi+C=ln(i(secθ+tanθ))+C=ln(secθ+tanθ)+lni+C{\displaystyle {\begin{aligned}\int \sec \theta \,d\theta &=\int {\frac {2}{z+z^{-1}}}\,{\frac {-i}{z}}dz&&z=e^{i\theta }\\[5mu]&=\int {\frac {-2i}{z^{2}+1}}dz\\&=\int {\frac {1}{z+i}}-{\frac {1}{z-i}}\,dz&&{\text{partial fraction decomposition}}\\[5mu]&=\ln(z+i)-\ln(z-i)+C\\[5mu]&=\ln {\frac {z+i}{z-i}}+C\\[5mu]&=\ln {\bigl (}i(\sec \theta +\tan \theta ){\bigr )}+C\\[5mu]&=\ln(\sec \theta +\tan \theta )+\ln i+C\end{aligned}}}

Because the constant of integration can be anything, the additional constant term can be absorbed into it. Finally, if theta isreal-valued, we can indicate this with absolute value brackets in order to get the equation into its most familiar form:

secθdθ=ln|tanθ+secθ|+C{\displaystyle \int \sec \theta \,d\theta =\ln \left|\tan \theta +\sec \theta \right|+C}

Gudermannian and Lambertian

[edit]
The Gudermannian function relates thearea of acircular sector to the area of ahyperbolic sector, via a commonstereographic projection. If twice the area of the blue hyperbolic sector isψ, then twice the area of the red circular sector isϕ = gdψ. Twice the area of the purple triangle is the stereographic projections = tan 1/2ϕ = tanh 1/2ψ. The blue point has coordinates(cosh ψ, sinh ψ). The red point has coordinates(cos ϕ, sin ϕ). The purple point has coordinates(0,s).

The integral of the hyperbolic secant function defines theGudermannian function:

0ψsechudu=gdψ.{\displaystyle \int _{0}^{\psi }\operatorname {sech} u\,du=\operatorname {gd} \psi .}

The integral of the secant function defines the Lambertian function, which is theinverse of the Gudermannian function:

0φsectdt=lamφ=gd1φ.{\displaystyle \int _{0}^{\varphi }\sec t\,dt=\operatorname {lam} \varphi =\operatorname {gd} ^{-1}\varphi .}

These functions are encountered in the theory of map projections: theMercator projection of a point on thesphere with longitudeλ and latitudeϕ may be written[11] as:

(x,y)=(λ,lamφ).{\displaystyle (x,y)={\bigl (}\lambda ,\operatorname {lam} \varphi {\bigr )}.}

See also

[edit]

Notes

[edit]
  1. ^abcStewart, James (2012). "Section 7.2: Trigonometric Integrals".Calculus - Early Transcendentals. Cengage Learning. pp. 475–6.ISBN 978-0-538-49790-9.
  2. ^For example this form is used inKarney, Charles F.F. (2011). "Transverse Mercator with an accuracy of a few nanometers".Journal of Geodesy.85:475–485.
  3. ^abcdeV. Frederick Rickey and Philip M. Tuchinsky,An Application of Geography to Mathematics: History of the Integral of the Secant inMathematics Magazine, volume 53, number 3, May 1980, pages 162–166.
  4. ^Edward Wright,Certaine Errors in Navigation, Arising either of the ordinaire erroneous making or vsing of the sea Chart, Compasse, Crosse staffe, and Tables of declination of the Sunne, and fixed Starres detected and corrected, Valentine Simms, London, 1599.
  5. ^H. W. Turnbull, editor,The Correspondence of Isaac Newton, Cambridge University Press, 1959–1960, volume 1, pages 13–16 and volume 2, pages 99–100.

    D. T. Whiteside, editor,The Mathematical Papers of Isaac Newton, Cambridge University Press, 1967, volume 1, pages 466–467 and 473–475.

  6. ^Feldman, Joel."Integration of sec x and sec3 x"(PDF).University of British Columbia Mathematics Department.

    "Integral of Secant".MIT OpenCourseWare.

  7. ^Gregory, James (1668)."Analogia Inter Lineam Meridianam Planispherii Nautici & Tangentes Artificiales Geometricè Demonstrata, &c." [Analogy Between the Meridian Line of the Nautical Planisphere & Artificial Tangents Geometrically Demonstrated, &c.].Exercitationes Geometricae [Geometrical Exercises] (in Latin). Moses Pitt. pp. 14–24.
  8. ^Barrow, Isaac (1674) [1670]."Lectiones geometricae: XII, Appendicula I".Lectiones Opticae & Geometricae (in Latin). Typis Guilielmi Godbid. pp. 110–114. In English,"Lecture XII, Appendix I".The Geometrical Lectures of Isaac Barrow. Translated by Child, James Mark. Open Court. 1916. pp. 165–169.
  9. ^Stewart, James (2012). "Section 7.4: Integration of Rational Functions by Partial Fractions".Calculus: Early Transcendentals (7th ed.). Belmont, CA, USA: Cengage Learning. pp. 493.ISBN 978-0-538-49790-9.
  10. ^Hardy, Michael (2013)."Efficiency in Antidifferentiation of the Secant Function".American Mathematical Monthly.120 (6): 580.
  11. ^Lee, L. P. (1976).Conformal Projections Based on Elliptic Functions.Cartographica Monographs. Vol. 16. Toronto: B. V. Gutsell, York University.ISBN 0-919870-16-3. Supplement No. 1 toThe Canadian Cartographer13.

References

[edit]
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Integral_of_the_secant_function&oldid=1295728261"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp