Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Floor and ceiling functions

From Wikipedia, the free encyclopedia
(Redirected fromInteger part)
Nearest integers from a number

Floor and ceiling functions
Floor function
Ceiling function

Inmathematics, thefloor function is thefunction that takes as input areal numberx, and gives as output the greatestinteger less than or equal tox, denotedx orfloor(x). Similarly, theceiling function mapsx to the least integer greater than or equal tox, denotedx orceil(x).[1]

For example, for floor:⌊2.4⌋ = 2,⌊−2.4⌋ = −3, and for ceiling:⌈2.4⌉ = 3, and⌈−2.4⌉ = −2.

The floor ofx is also called theintegral part,integer part,greatest integer, orentier ofx, and was historically denoted[x] (among other notations).[2] However, the same term,integer part, is also used fortruncation towards zero, which differs from the floor function for negative numbers.

For an integern,n⌋ = ⌈n⌉ =n.

Althoughfloor(x + 1) andceil(x) produce graphs that appear exactly alike, they are not the same when the value ofx is an exact integer. For example, whenx = 2.0001,⌊2.0001 + 1⌋ = ⌈2.0001⌉ = 3. However, ifx = 2, then⌊2 + 1⌋ = 3, while⌈2⌉ = 2.

Examples
xFloorxCeilingxFractional part{x}
2220
2.0001230.0001
2.4230.4
2.9230.9
2.999230.999
−2.7−3−20.3
−2−2−20

Notation

[edit]

Theintegral part orinteger part of a number (partie entière in the original) was first defined in 1798 byAdrien-Marie Legendre in his proof of theLegendre's formula.

Carl Friedrich Gauss introduced the square bracket notation[x] in his third proof ofquadratic reciprocity (1808).[3] This remained the standard[4] in mathematics untilKenneth E. Iverson introduced, in his 1962 bookA Programming Language, the names "floor" and "ceiling" and the corresponding notationsx andx.[5][6] (Iverson used square brackets for a different purpose, theIverson bracket notation.) Both notations are now used in mathematics, although Iverson's notation will be followed in this article.

In some sources, boldface or double bracketsx are used for floor, and reversed bracketsx or]x[ for ceiling.[7][8]

Thefractional part is thesawtooth function, denoted by{x} for realx and defined by the formula

{x} =x − ⌊x[9]

For allx,

0 ≤ {x} < 1.

These characters are provided in Unicode:

  • U+2308 LEFT CEILING (&lceil;, &LeftCeiling;)
  • U+2309 RIGHT CEILING (&rceil;, &RightCeiling;)
  • U+230A LEFT FLOOR (&LeftFloor;, &lfloor;)
  • U+230B RIGHT FLOOR (&rfloor;, &RightFloor;)

In theLaTeX typesetting system, these symbols can be specified with the\lceil, \rceil, \lfloor, and\rfloor commands in math mode. LaTeX has supported UTF-8 since 2018, so the Unicode characters can now be used directly.[10] Larger versions are\left\lceil, \right\rceil, \left\lfloor, and\right\rfloor.

Definition and properties

[edit]

Given real numbersx andy, integersm andn and the set ofintegersZ{\displaystyle \mathbb {Z} }, floor and ceiling may be defined by the equations

x=max{mZmx},{\displaystyle \lfloor x\rfloor =\max\{m\in \mathbb {Z} \mid m\leq x\},}
x=min{nZnx}.{\displaystyle \lceil x\rceil =\min\{n\in \mathbb {Z} \mid n\geq x\}.}

Since there is exactly one integer in ahalf-open interval of length one, for any real numberx, there are unique integersm andn satisfying the equation

x1<mxn<x+1.{\displaystyle x-1<m\leq x\leq n<x+1.}

wherex=m{\displaystyle \lfloor x\rfloor =m} andx=n{\displaystyle \lceil x\rceil =n} may also be taken as the definition of floor and ceiling.

Equivalences

[edit]

These formulas can be used to simplify expressions involving floors and ceilings.[11]

x=m   if and only if mx<m+1,x=n if and only if   n1<xn,x=m if and only if x1<mx,x=n if and only if xn<x+1.{\displaystyle {\begin{alignedat}{3}\lfloor x\rfloor &=m\ \ &&{\mbox{ if and only if }}&m&\leq x<m+1,\\\lceil x\rceil &=n&&{\mbox{ if and only if }}&\ \ n-1&<x\leq n,\\\lfloor x\rfloor &=m&&{\mbox{ if and only if }}&x-1&<m\leq x,\\\lceil x\rceil &=n&&{\mbox{ if and only if }}&x&\leq n<x+1.\end{alignedat}}}

In the language oforder theory, the floor function is aresiduated mapping, that is, part of aGalois connection: it is the upper adjoint of the function that embeds the integers into the reals.

x<n if and only if x<n,n<x if and only if n<x,xn if and only if xn,nx if and only if nx.{\displaystyle {\begin{aligned}x<n&\;\;{\mbox{ if and only if }}&\lfloor x\rfloor &<n,\\n<x&\;\;{\mbox{ if and only if }}&n&<\lceil x\rceil ,\\x\leq n&\;\;{\mbox{ if and only if }}&\lceil x\rceil &\leq n,\\n\leq x&\;\;{\mbox{ if and only if }}&n&\leq \lfloor x\rfloor .\end{aligned}}}

These formulas show how adding an integern to the arguments affects the functions:

x+n=x+n,x+n=x+n,{x+n}={x}.{\displaystyle {\begin{aligned}\lfloor x+n\rfloor &=\lfloor x\rfloor +n,\\\lceil x+n\rceil &=\lceil x\rceil +n,\\\{x+n\}&=\{x\}.\end{aligned}}}

The above are never true ifn is not an integer; however, for everyx andy, the following inequalities hold:

x+yx+yx+y+1,x+y1x+yx+y.{\displaystyle {\begin{aligned}\lfloor x\rfloor +\lfloor y\rfloor &\leq \lfloor x+y\rfloor \leq \lfloor x\rfloor +\lfloor y\rfloor +1,\\[3mu]\lceil x\rceil +\lceil y\rceil -1&\leq \lceil x+y\rceil \leq \lceil x\rceil +\lceil y\rceil .\end{aligned}}}

Monotonicity

[edit]

Both floor and ceiling functions aremonotonically non-decreasing functions:

x1x2x1x2,x1x2x1x2.{\displaystyle {\begin{aligned}x_{1}\leq x_{2}&\Rightarrow \lfloor x_{1}\rfloor \leq \lfloor x_{2}\rfloor ,\\x_{1}\leq x_{2}&\Rightarrow \lceil x_{1}\rceil \leq \lceil x_{2}\rceil .\end{aligned}}}

Relations among the functions

[edit]

It is clear from the definitions that

xx,{\displaystyle \lfloor x\rfloor \leq \lceil x\rceil ,} with equality if and only ifx is an integer, i.e.
xx={0 if xZ1 if xZ{\displaystyle \lceil x\rceil -\lfloor x\rfloor ={\begin{cases}0&{\mbox{ if }}x\in \mathbb {Z} \\1&{\mbox{ if }}x\not \in \mathbb {Z} \end{cases}}}

In fact, for integersn, both floor and ceiling functions are theidentity:

n=n=n.{\displaystyle \lfloor n\rfloor =\lceil n\rceil =n.}

Negating the argument switches floor and ceiling and changes the sign:

x+x=0x=xx=x{\displaystyle {\begin{aligned}\lfloor x\rfloor +\lceil -x\rceil &=0\\-\lfloor x\rfloor &=\lceil -x\rceil \\-\lceil x\rceil &=\lfloor -x\rfloor \end{aligned}}}

and:

x+x={0if xZ1if xZ,{\displaystyle \lfloor x\rfloor +\lfloor -x\rfloor ={\begin{cases}0&{\text{if }}x\in \mathbb {Z} \\-1&{\text{if }}x\not \in \mathbb {Z} ,\end{cases}}}
x+x={0if xZ1if xZ.{\displaystyle \lceil x\rceil +\lceil -x\rceil ={\begin{cases}0&{\text{if }}x\in \mathbb {Z} \\1&{\text{if }}x\not \in \mathbb {Z} .\end{cases}}}

Negating the argument complements the fractional part:

{x}+{x}={0if xZ1if xZ.{\displaystyle \{x\}+\{-x\}={\begin{cases}0&{\text{if }}x\in \mathbb {Z} \\1&{\text{if }}x\not \in \mathbb {Z} .\end{cases}}}

The floor, ceiling, and fractional part functions areidempotent:

x=x,x=x,{{x}}={x}.{\displaystyle {\begin{aligned}{\big \lfloor }\lfloor x\rfloor {\big \rfloor }&=\lfloor x\rfloor ,\\{\big \lceil }\lceil x\rceil {\big \rceil }&=\lceil x\rceil ,\\{\big \{}\{x\}{\big \}}&=\{x\}.\end{aligned}}}

The result of nested floor or ceiling functions is the innermost function:

x=x,x=x{\displaystyle {\begin{aligned}{\big \lfloor }\lceil x\rceil {\big \rfloor }&=\lceil x\rceil ,\\{\big \lceil }\lfloor x\rfloor {\big \rceil }&=\lfloor x\rfloor \end{aligned}}}

due to the identity property for integers.

Quotients

[edit]

Ifm andn are integers andn ≠ 0,

0{mn}11|n|.{\displaystyle 0\leq \left\{{\frac {m}{n}}\right\}\leq 1-{\frac {1}{|n|}}.}

Ifn is positive[12]

x+mn=x+mn,{\displaystyle \left\lfloor {\frac {x+m}{n}}\right\rfloor =\left\lfloor {\frac {\lfloor x\rfloor +m}{n}}\right\rfloor ,}
x+mn=x+mn.{\displaystyle \left\lceil {\frac {x+m}{n}}\right\rceil =\left\lceil {\frac {\lceil x\rceil +m}{n}}\right\rceil .}

Ifm is positive[13]

n=n1m+n1m++nm+1m,{\displaystyle n=\left\lceil {\frac {n{\vphantom {1}}}{m}}\right\rceil +\left\lceil {\frac {n-1}{m}}\right\rceil +\dots +\left\lceil {\frac {n-m+1}{m}}\right\rceil ,}
n=n1m+n+1m++n+m1m.{\displaystyle n=\left\lfloor {\frac {n{\vphantom {1}}}{m}}\right\rfloor +\left\lfloor {\frac {n+1}{m}}\right\rfloor +\dots +\left\lfloor {\frac {n+m-1}{m}}\right\rfloor .}

Form = 2 these imply

n=n12+n12.{\displaystyle n=\left\lfloor {\frac {n{\vphantom {1}}}{2}}\right\rfloor +\left\lceil {\frac {n{\vphantom {1}}}{2}}\right\rceil .}

More generally,[14] for positivem (SeeHermite's identity)

mx=x+x1m++xm1m,{\displaystyle \lceil mx\rceil =\left\lceil x\right\rceil +\left\lceil x-{\frac {1}{m}}\right\rceil +\dots +\left\lceil x-{\frac {m-1}{m}}\right\rceil ,}
mx=x+x+1m++x+m1m.{\displaystyle \lfloor mx\rfloor =\left\lfloor x\right\rfloor +\left\lfloor x+{\frac {1}{m}}\right\rfloor +\dots +\left\lfloor x+{\frac {m-1}{m}}\right\rfloor .}

The following can be used to convert floors to ceilings and vice versa (withm being positive)[15]

n1m=n+m1m=n1m+1,{\displaystyle \left\lceil {\frac {n{\vphantom {1}}}{m}}\right\rceil =\left\lfloor {\frac {n+m-1}{m}}\right\rfloor =\left\lfloor {\frac {n-1}{m}}\right\rfloor +1,}
n1m=nm+1m=n+1m1,{\displaystyle \left\lfloor {\frac {n{\vphantom {1}}}{m}}\right\rfloor =\left\lceil {\frac {n-m+1}{m}}\right\rceil =\left\lceil {\frac {n+1}{m}}\right\rceil -1,}

For allm andn strictly positive integers:[16]

k=1n1kmn=(m1)(n1)+gcd(m,n)12,{\displaystyle \sum _{k=1}^{n-1}\left\lfloor {\frac {km}{n}}\right\rfloor ={\frac {(m-1)(n-1)+\gcd(m,n)-1}{2}},}

which, for positive andcoprimem andn, reduces to

k=1n1kmn=12(m1)(n1),{\displaystyle \sum _{k=1}^{n-1}\left\lfloor {\frac {km}{n}}\right\rfloor ={\tfrac {1}{2}}(m-1)(n-1),}

and similarly for the ceiling and fractional part functions (still for positive andcoprimem andn),

k=1n1kmn=12(m+1)(n1),{\displaystyle \sum _{k=1}^{n-1}\left\lceil {\frac {km}{n}}\right\rceil ={\tfrac {1}{2}}(m+1)(n-1),}
k=1n1{kmn}=12(n1).{\displaystyle \sum _{k=1}^{n-1}\left\{{\frac {km}{n}}\right\}={\tfrac {1}{2}}(n-1).}


Since the right-hand side of the general case is symmetrical inm andn, this implies that

m1n+2mn++(n1)mn=n1m+2nm++(m1)nm.{\displaystyle \left\lfloor {\frac {m{\vphantom {1}}}{n}}\right\rfloor +\left\lfloor {\frac {2m}{n}}\right\rfloor +\dots +\left\lfloor {\frac {(n-1)m}{n}}\right\rfloor =\left\lfloor {\frac {n{\vphantom {1}}}{m}}\right\rfloor +\left\lfloor {\frac {2n}{m}}\right\rfloor +\dots +\left\lfloor {\frac {(m-1)n}{m}}\right\rfloor .}

More generally, ifm andn are positive,

x1n+m+xn+2m+xn++(n1)m+xn=x1m+n+xm+2n+xm++(m1)n+xm.{\displaystyle {\begin{aligned}&\left\lfloor {\frac {x{\vphantom {1}}}{n}}\right\rfloor +\left\lfloor {\frac {m+x}{n}}\right\rfloor +\left\lfloor {\frac {2m+x}{n}}\right\rfloor +\dots +\left\lfloor {\frac {(n-1)m+x}{n}}\right\rfloor \\[5mu]=&\left\lfloor {\frac {x{\vphantom {1}}}{m}}\right\rfloor +\left\lfloor {\frac {n+x}{m}}\right\rfloor +\left\lfloor {\frac {2n+x}{m}}\right\rfloor +\cdots +\left\lfloor {\frac {(m-1)n+x}{m}}\right\rfloor .\end{aligned}}}

This is sometimes called areciprocity law.[17]

Division by positive integers gives rise to an interesting and sometimes useful property. Assumingm,n>0{\displaystyle m,n>0},

mxnnxmnxm.{\displaystyle m\leq \left\lfloor {\frac {x}{n}}\right\rfloor \iff n\leq \left\lfloor {\frac {x}{m}}\right\rfloor \iff n\leq {\frac {\lfloor x\rfloor }{m}}.}

Similarly,

mxnnxmnxm.{\displaystyle m\geq \left\lceil {\frac {x}{n}}\right\rceil \iff n\geq \left\lceil {\frac {x}{m}}\right\rceil \iff n\geq {\frac {\lceil x\rceil }{m}}.}

Indeed,

mxnmxnnxmnxmmxn,{\displaystyle m\leq \left\lfloor {\frac {x}{n}}\right\rfloor \implies m\leq {\frac {x}{n}}\implies n\leq {\frac {x}{m}}\implies n\leq \left\lfloor {\frac {x}{m}}\right\rfloor \implies \ldots \implies m\leq \left\lfloor {\frac {x}{n}}\right\rfloor ,}

keeping in mind thatx/n=x/n.{\textstyle \lfloor x/n\rfloor ={\bigl \lfloor }\lfloor x\rfloor /n{\bigr \rfloor }.}The second equivalence involving the ceiling function can be proved similarly.

Nested divisions

[edit]

For positive integern, and arbitrary real numbersm,x:[18]

x/mn=xmn{\displaystyle \left\lfloor {\frac {\lfloor x/m\rfloor }{n}}\right\rfloor =\left\lfloor {\frac {x}{mn}}\right\rfloor }
x/mn=xmn.{\displaystyle \left\lceil {\frac {\lceil x/m\rceil }{n}}\right\rceil =\left\lceil {\frac {x}{mn}}\right\rceil .}

Continuity and series expansions

[edit]

None of the functions discussed in this article arecontinuous, but all arepiecewise linear: the functionsx{\displaystyle \lfloor x\rfloor },x{\displaystyle \lceil x\rceil }, and{x}{\displaystyle \{x\}} have discontinuities at the integers.

x{\displaystyle \lfloor x\rfloor } isupper semi-continuous andx{\displaystyle \lceil x\rceil } and{x}{\displaystyle \{x\}} are lower semi-continuous.

Since none of the functions discussed in this article are continuous, none of them have apower series expansion. Since floor and ceiling are not periodic, they do not have uniformly convergentFourier series expansions. The fractional part function has Fourier series expansion[19]{x}=121πk=1sin(2πkx)k{\displaystyle \{x\}={\frac {1}{2}}-{\frac {1}{\pi }}\sum _{k=1}^{\infty }{\frac {\sin(2\pi kx)}{k}}}forx not an integer.

At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: fory fixed andx a multiple ofy the Fourier series given converges toy/2, rather than tox mod y = 0. At points of continuity the series converges to the true value.

Using the formulax=x{x}{\displaystyle \lfloor x\rfloor =x-\{x\}} givesx=x12+1πk=1sin(2πkx)k{\displaystyle \lfloor x\rfloor =x-{\frac {1}{2}}+{\frac {1}{\pi }}\sum _{k=1}^{\infty }{\frac {\sin(2\pi kx)}{k}}} forx not an integer.

Applications

[edit]

Mod operator

[edit]

For an integerx and a positive integery, themodulo operation, denoted byx mody, gives the value of the remainder whenx is divided byy. This definition can be extended to realx andy,y ≠ 0, by the formula

xmody=xyxy.{\displaystyle x{\bmod {y}}=x-y\left\lfloor {\frac {x}{y}}\right\rfloor .}

Then it follows from the definition of floor function that this extended operation satisfies many natural properties. Notably,x mody is always between 0 andy, i.e.,

ify is positive,

0xmody<y,{\displaystyle 0\leq x{\bmod {y}}<y,}

and ify is negative,

0xmody>y.{\displaystyle 0\geq x{\bmod {y}}>y.}

Quadratic reciprocity

[edit]

Gauss's third proof ofquadratic reciprocity, as modified by Eisenstein, has two basic steps.[20][21]

Letp andq be distinct positive odd prime numbers, and letm=12(p1),{\displaystyle m={\tfrac {1}{2}}(p-1),}n=12(q1).{\displaystyle n={\tfrac {1}{2}}(q-1).}

First,Gauss's lemma is used to show that theLegendre symbols are given by

(qp)=(1)qp+2qp++mqp,(pq)=(1)pq+2pq++npq.{\displaystyle {\begin{aligned}\left({\frac {q}{p}}\right)&=(-1)^{\left\lfloor {\frac {q}{p}}\right\rfloor +\left\lfloor {\frac {2q}{p}}\right\rfloor +\dots +\left\lfloor {\frac {mq}{p}}\right\rfloor },\\[5mu]\left({\frac {p}{q}}\right)&=(-1)^{\left\lfloor {\frac {p}{q}}\right\rfloor +\left\lfloor {\frac {2p}{q}}\right\rfloor +\dots +\left\lfloor {\frac {np}{q}}\right\rfloor }.\end{aligned}}}

The second step is to use ageometric argument to show that

qp+2qp++mqp+pq+2pq++npq=mn.{\displaystyle \left\lfloor {\frac {q}{p}}\right\rfloor +\left\lfloor {\frac {2q}{p}}\right\rfloor +\dots +\left\lfloor {\frac {mq}{p}}\right\rfloor +\left\lfloor {\frac {p}{q}}\right\rfloor +\left\lfloor {\frac {2p}{q}}\right\rfloor +\dots +\left\lfloor {\frac {np}{q}}\right\rfloor =mn.}

Combining these formulas gives quadratic reciprocity in the form

(pq)(qp)=(1)mn=(1)p12q12.{\displaystyle \left({\frac {p}{q}}\right)\left({\frac {q}{p}}\right)=(-1)^{mn}=(-1)^{{\frac {p-1}{2}}{\frac {q-1}{2}}}.}

There are formulas that use floor to express the quadratic character of small numbers mod odd primesp:[22]

(2p)=(1)p+14,(3p)=(1)p+16.{\displaystyle {\begin{aligned}\left({\frac {2}{p}}\right)&=(-1)^{\left\lfloor {\frac {p+1}{4}}\right\rfloor },\\[5mu]\left({\frac {3}{p}}\right)&=(-1)^{\left\lfloor {\frac {p+1}{6}}\right\rfloor }.\end{aligned}}}

Rounding

[edit]

For an arbitrary real numberx{\displaystyle x},roundingx{\displaystyle x} to the nearest integer withtie breaking towards positive infinity is given byrpi(x)=x+12=122x{\displaystyle {\text{rpi}}(x)=\left\lfloor x+{\tfrac {1}{2}}\right\rfloor =\left\lceil {\tfrac {1}{2}}\lfloor 2x\rfloor \right\rceil }; rounding towards negative infinity is given asrni(x)=x12=122x{\displaystyle {\text{rni}}(x)=\left\lceil x-{\tfrac {1}{2}}\right\rceil =\left\lfloor {\tfrac {1}{2}}\lceil 2x\rceil \right\rfloor }.

If tie-breaking is away from 0, then the rounding function isri(x)=sgn(x)|x|+12{\displaystyle {\text{ri}}(x)=\operatorname {sgn}(x)\left\lfloor |x|+{\tfrac {1}{2}}\right\rfloor } (seesign function), androunding towards even can be expressed with the more cumbersomex=x+12+14(2x1)14(2x1)1{\displaystyle \lfloor x\rceil =\left\lfloor x+{\tfrac {1}{2}}\right\rfloor +{\bigl \lceil }{\tfrac {1}{4}}(2x-1){\bigr \rceil }-{\bigl \lfloor }{\tfrac {1}{4}}(2x-1){\bigr \rfloor }-1}, which is the above expression for rounding towards positive infinityrpi(x){\displaystyle {\text{rpi}}(x)} minus anintegralityindicator for14(2x1){\displaystyle {\tfrac {1}{4}}(2x-1)}.

Rounding areal numberx{\displaystyle x} to the nearest integer value forms a very basic type ofquantizer – auniform one. A typical (mid-tread) uniform quantizer with a quantizationstep size equal to some valueΔ{\displaystyle \Delta } can be expressed as

Q(x)=ΔxΔ+12{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor },

Number of digits

[edit]

The number of digits inbaseb of a positive integerk is

logbk+1=logb(k+1).{\displaystyle \lfloor \log _{b}{k}\rfloor +1=\lceil \log _{b}{(k+1)}\rceil .}

Number of strings without repeated characters

[edit]

The number of possiblestrings of arbitrary length that doesn't use any character twice is given by[23][better source needed]

(n)0++(n)n=en!{\displaystyle (n)_{0}+\cdots +(n)_{n}=\lfloor en!\rfloor }

where:

Forn = 26, this comes out to 1096259850353149530222034277.

Factors of factorials

[edit]

Letn be a positive integer andp a positive prime number. The exponent of the highest power ofp that dividesn! is given by a version ofLegendre's formula[24]

np+np2+np3+=nkakp1{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\dots ={\frac {n-\sum _{k}a_{k}}{p-1}}}

wheren=kakpk{\textstyle n=\sum _{k}a_{k}p^{k}} is the way of writingn in basep. This is a finite sum, since the floors are zero whenpk >n.

Beatty sequence

[edit]

TheBeatty sequence shows how every positiveirrational number gives rise to a partition of thenatural numbers into two sequences via the floor function.[25]

Euler's constant (γ)

[edit]

There are formulas forEuler's constant γ = 0.57721 56649 ... that involve the floor and ceiling, e.g.[26]

γ=1(1x1x)dx,{\displaystyle \gamma =\int _{1}^{\infty }\left({1 \over \lfloor x\rfloor }-{1 \over x}\right)\,dx,}
γ=limn1nk=1n(nknk),{\displaystyle \gamma =\lim _{n\to \infty }{\frac {1}{n}}\sum _{k=1}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right),}

and

γ=k=2(1)klog2kk=1213+2(1415+1617)+3(18115)+{\displaystyle \gamma =\sum _{k=2}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k}}={\tfrac {1}{2}}-{\tfrac {1}{3}}+2\left({\tfrac {1}{4}}-{\tfrac {1}{5}}+{\tfrac {1}{6}}-{\tfrac {1}{7}}\right)+3\left({\tfrac {1}{8}}-\cdots -{\tfrac {1}{15}}\right)+\cdots }

Riemann zeta function (ζ)

[edit]

The fractional part function also shows up in integral representations of theRiemann zeta function. It is straightforward to prove (using integration by parts)[27] that ifφ(x){\displaystyle \varphi (x)} is any function with a continuous derivative in the closed interval [a,b],

a<nbφ(n)=abφ(x)dx+ab({x}12)φ(x)dx+({a}12)φ(a)({b}12)φ(b).{\displaystyle \sum _{a<n\leq b}\varphi (n)=\int _{a}^{b}\varphi (x)\,dx+\int _{a}^{b}\left(\{x\}-{\tfrac {1}{2}}\right)\varphi '(x)\,dx+\left(\{a\}-{\tfrac {1}{2}}\right)\varphi (a)-\left(\{b\}-{\tfrac {1}{2}}\right)\varphi (b).}

Lettingφ(n)=ns{\displaystyle \varphi (n)=n^{-s}} forreal part ofs greater than 1 and lettinga andb be integers, and lettingb approach infinity gives

ζ(s)=s112{x}xs+1dx+1s1+12.{\displaystyle \zeta (s)=s\int _{1}^{\infty }{\frac {{\frac {1}{2}}-\{x\}}{x^{s+1}}}\,dx+{\frac {1}{s-1}}+{\frac {1}{2}}.}

This formula is valid for alls with real part greater than −1, (excepts = 1, where there is a pole) and combined with the Fourier expansion for {x} can be used to extend the zeta function to the entire complex plane and to prove its functional equation.[28]

Fors =σ +it in the critical strip 0 <σ < 1,

ζ(s)=seσω(eωeω)eitωdω.{\displaystyle \zeta (s)=s\int _{-\infty }^{\infty }e^{-\sigma \omega }(\lfloor e^{\omega }\rfloor -e^{\omega })e^{-it\omega }\,d\omega .}

In 1947van der Pol used this representation to construct an analogue computer for finding roots of the zeta function.[29]

Formulas for prime numbers

[edit]

The floor function appears in several formulas characterizing prime numbers. For example, sincenmn1m{\textstyle {\bigl \lfloor }{\frac {n}{m}}{\bigr \rfloor }-{\bigl \lfloor }{\frac {n-1}{m}}{\bigr \rfloor }} is equal to 1 ifm dividesn, and to 0 otherwise, it follows that a positive integern is a primeif and only if[30]

m=1(nmn1m)=2.{\displaystyle \sum _{m=1}^{\infty }\left({\biggl \lfloor }{\frac {n}{m}}{\biggr \rfloor }-{\biggl \lfloor }{\frac {n-1}{m}}{\biggr \rfloor }\right)=2.}

One may also give formulas for producing the prime numbers. For example, letpn be then-th prime, and for any integerr > 1, define the real numberα by the sum

α=m=1pmrm2.{\displaystyle \alpha =\sum _{m=1}^{\infty }p_{m}r^{-m^{2}}.}

Then[31]

pn=rn2αr2n1r(n1)2α.{\displaystyle p_{n}=\left\lfloor r^{n^{2}}\alpha \right\rfloor -r^{2n-1}\left\lfloor r^{(n-1)^{2}}\alpha \right\rfloor .}

A similar result is that there is a numberθ = 1.3064... (Mills' constant) with the property that

θ3,θ9,θ27,{\displaystyle \left\lfloor \theta ^{3}\right\rfloor ,\left\lfloor \theta ^{9}\right\rfloor ,\left\lfloor \theta ^{27}\right\rfloor ,\dots }

are all prime.[32]

There is also a numberω = 1.9287800... with the property that

2ω,22ω,222ω,{\displaystyle \left\lfloor 2^{\omega }\right\rfloor ,\left\lfloor 2^{2^{\omega }}\right\rfloor ,\left\lfloor 2^{2^{2^{\omega }}}\right\rfloor ,\dots }

are all prime.[32]

Letπ(x) be the number of primes less than or equal tox. It is a straightforward deduction fromWilson's theorem that[33]

π(n)=j=2n(j1)!+1j(j1)!j.{\displaystyle \pi (n)=\sum _{j=2}^{n}{\Biggl \lfloor }{\frac {(j-1)!+1}{j}}-\left\lfloor {\frac {(j-1)!}{j}}\right\rfloor {\Biggr \rfloor }.}

Also, ifn ≥ 2,[34]

π(n)=j=2n1/ k=2jjkkj.{\displaystyle \pi (n)=\sum _{j=2}^{n}{\Biggl \lfloor }1\,{\bigg /}\ {\sum _{k=2}^{j}\left\lfloor \left\lfloor {\frac {j}{k}}\right\rfloor {\frac {k}{j}}\right\rfloor }{\Biggr \rfloor }.}

None of the formulas in this section are of any practical use.[35][36]

Solved problems

[edit]

Ramanujan submitted these problems to theJournal of the Indian Mathematical Society.[37]

Ifn is a positive integer, prove that

  1. n3+n+26+n+46=n2+n+36,{\displaystyle \left\lfloor {\tfrac {n}{3}}\right\rfloor +\left\lfloor {\tfrac {n+2}{6}}\right\rfloor +\left\lfloor {\tfrac {n+4}{6}}\right\rfloor =\left\lfloor {\tfrac {n}{2}}\right\rfloor +\left\lfloor {\tfrac {n+3}{6}}\right\rfloor ,}
  2. 12+n+12=12+n+14,{\displaystyle \left\lfloor {\tfrac {1}{2}}+{\sqrt {n+{\tfrac {1}{2}}}}\right\rfloor =\left\lfloor {\tfrac {1}{2}}+{\sqrt {n+{\tfrac {1}{4}}}}\right\rfloor ,}
  3. n+n+1=4n+2.{\displaystyle \left\lfloor {\sqrt {n}}+{\sqrt {n+1}}\right\rfloor =\left\lfloor {\sqrt {4n+2}}\right\rfloor .}

Some generalizations to the above floor function identities have been proven.[38]

Unsolved problem

[edit]

The study ofWaring's problem has led to an unsolved problem:

Are there any positive integersk ≥ 6 such that[39]

3k2k(32)k>2k(32)k2 ?{\displaystyle 3^{k}-2^{k}{\Bigl \lfloor }{\bigl (}{\tfrac {3}{2}}{\bigr )}^{k}{\Bigr \rfloor }>2^{k}-{\Bigl \lfloor }{\bigl (}{\tfrac {3}{2}}{\bigr )}^{k}{\Bigr \rfloor }-2\ ?}

Mahler has proved there can only be a finite number of suchk; none are known.[40]

Computer implementations

[edit]
Int function from floating-point conversion inC

In most programming languages, the simplest method to convert a floating point number to an integer does not do floor or ceiling, but truncation. The reason for this is historical, as the first machines usedones' complement and truncation was simpler to implement (floor is simpler intwo's complement).FORTRAN was defined to require this behavior and thus almost all processors implement conversion this way. Some consider this to be an unfortunate historical design decision that has led to bugs handling negative offsets and graphics on the negative side of the origin.[citation needed]

Anarithmetic right-shift of a signed integerx{\displaystyle x} byn{\displaystyle n} is the same asx/2n{\displaystyle \left\lfloor x/2^{n}\right\rfloor }. Division by a power of 2 is often written as a right-shift, not for optimization as might be assumed, but because the floor of negative results is required. Assuming such shifts are "premature optimization" and replacing them with division can break software.[citation needed]

Many programming languages (includingC,C++,[41][42]C#,[43][44]Java,[45][46]Julia,[47]PHP,[48][49]R,[50] andPython[51]) provide standard functions for floor and ceiling, usually calledfloor andceil, or less commonlyceiling.[52] The languageAPL uses⌊x for floor. TheJ Programming Language, a follow-on to APL that is designed to use standard keyboard symbols, uses<. for floor and>. for ceiling.[53]ALGOL usesentier for floor.

InMicrosoft Excel the functionINT rounds down rather than toward zero,[54] whileFLOOR rounds toward zero, the opposite of what "int" and "floor" do in other languages. Since 2010FLOOR has been changed to error if the number is negative.[55] TheOpenDocument file format, as used byOpenOffice.org,Libreoffice and others,INT[56] andFLOOR both do floor, andFLOOR has a third argument to reproduce Excel's earlier behavior.[57]

See also

[edit]

Citations

[edit]
  1. ^Graham, Knuth, & Patashnik, Ch. 3.1
  2. ^1) Luke Heaton,A Brief History of Mathematical Thought, 2015,ISBN 1472117158 (n.p.)
    2) Albert A. Blanket al.,Calculus: Differential Calculus, 1968, p. 259
    3) John W. Warris, Horst Stocker,Handbook of mathematics and computational science, 1998,ISBN 0387947469, p. 151
  3. ^Lemmermeyer, pp. 10, 23.
  4. ^e.g. Cassels, Hardy & Wright, and Ribenboim use Gauss's notation. Graham, Knuth & Patashnik, and Crandall & Pomerance use Iverson's.
  5. ^Iverson, p. 12.
  6. ^Higham, p. 25.
  7. ^Mathwords: Floor Function.
  8. ^Mathwords: Ceiling Function
  9. ^Graham, Knuth, & Patashnik, p. 70.
  10. ^"LaTeX News, Issue 28"(PDF; 379 KB). The LaTeX Project. April 2018. Retrieved27 July 2024.
  11. ^Graham, Knuth, & Patashink, Ch. 3
  12. ^Graham, Knuth, & Patashnik, p. 73
  13. ^Graham, Knuth, & Patashnik, p. 85
  14. ^Graham, Knuth, & Patashnik, p. 85 and Ex. 3.15
  15. ^Graham, Knuth, & Patashnik, Ex. 3.12
  16. ^Graham, Knuth, & Patashnik, p. 94.
  17. ^Graham, Knuth, & Patashnik, p. 94
  18. ^Graham, Knuth, & Patashnik, p. 71, apply theorem 3.10 with x/m as input and the division by n as function
  19. ^Titchmarsh, p. 15, Eq. 2.1.7
  20. ^Lemmermeyer, § 1.4, Ex. 1.32–1.33
  21. ^Hardy & Wright, §§ 6.11–6.13
  22. ^Lemmermeyer, p. 25
  23. ^OEISsequence A000522 (Total number of arrangements of a set with n elements: a(n) = Sum_{k=0..n} n!/k!.) (See Formulas.)
  24. ^Hardy & Wright, Th. 416
  25. ^Graham, Knuth, & Patashnik, pp. 77–78
  26. ^These formulas are from the Wikipedia articleEuler's constant, which has many more.
  27. ^Titchmarsh, p. 13
  28. ^Titchmarsh, pp.14–15
  29. ^Crandall & Pomerance, p. 391
  30. ^Crandall & Pomerance, Ex. 1.3, p. 46. The infinite upper limit of the sum can be replaced withn. An equivalent condition isn > 1 is prime if and only ifm=1n(nmn1m)=1{\textstyle \sum _{m=1}^{\lfloor {\sqrt {n}}\rfloor }{\bigl (}{\bigl \lfloor }{\frac {n}{m}}{\bigr \rfloor }-{\bigl \lfloor }{\frac {n-1}{m}}{\bigr \rfloor }{\bigr )}=1} .
  31. ^Hardy & Wright, § 22.3
  32. ^abRibenboim, p. 186
  33. ^Ribenboim, p. 181
  34. ^Crandall & Pomerance, Ex. 1.4, p. 46
  35. ^Ribenboim, p. 180 says that "Despite the nil practical value of the formulas ... [they] may have some relevance to logicians who wish to understand clearly how various parts of arithmetic may be deduced from different axiomatzations ... "
  36. ^Hardy & Wright, pp. 344—345 "Any one of these formulas (or any similar one) would attain a different status if the exact value of the number α ... could be expressed independently of the primes. There seems no likelihood of this, but it cannot be ruled out as entirely impossible."
  37. ^Ramanujan, Question 723,Papers p. 332
  38. ^Somu, Sai Teja; Kukla, Andrzej (2022)."On some generalizations to floor function identities of Ramanujan"(PDF).Integers.22.arXiv:2109.03680.
  39. ^Hardy & Wright, p. 337
  40. ^Mahler, Kurt (1957). "On the fractional parts of the powers of a rational number II".Mathematika.4 (2):122–124.doi:10.1112/S0025579300001170.
  41. ^"C++ reference offloor function". Retrieved5 December 2010.
  42. ^"C++ reference ofceil function". Retrieved5 December 2010.
  43. ^dotnet-bot."Math.Floor Method (System)".docs.microsoft.com. Retrieved28 November 2019.
  44. ^dotnet-bot."Math.Ceiling Method (System)".docs.microsoft.com. Retrieved28 November 2019.
  45. ^"Math (Java SE 9 & JDK 9 )".docs.oracle.com. Retrieved20 November 2018.
  46. ^"Math (Java SE 9 & JDK 9 )".docs.oracle.com. Retrieved20 November 2018.
  47. ^"Math (Julia v1.10)".docs.julialang.org/en/v1/. Retrieved4 September 2024.
  48. ^"PHP manual forceil function". Retrieved18 July 2013.
  49. ^"PHP manual forfloor function". Retrieved18 July 2013.
  50. ^"R: Rounding of Numbers".
  51. ^"Python manual formath module". Retrieved18 July 2013.
  52. ^Sullivan, p. 86.
  53. ^"Vocabulary".J Language. Retrieved6 September 2011.
  54. ^"INT function". Retrieved29 October 2021.
  55. ^"FLOOR function". Retrieved29 October 2021.
  56. ^"Documentation/How Tos/Calc: INT function". Retrieved29 October 2021.
  57. ^"Documentation/How Tos/Calc: FLOOR function". Retrieved29 October 2021.

References

[edit]

External links

[edit]
Wikimedia Commons has media related toFloor and ceiling functions.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Floor_and_ceiling_functions&oldid=1276659154"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp