Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Infinite compositions of analytic functions

From Wikipedia, the free encyclopedia
Mathematical theory about infinitely iterated function composition

In mathematics,infinitecompositions ofanalytic functions (ICAF) offer alternative formulations ofanalytic continued fractions,series,products and other infinite expansions, and the theory evolving from such compositions may shed light on theconvergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions offixed point equations involving infinite expansions.Complex dynamics offers another venue foriteration of systems of functions rather than a single function. For infinite compositions of asingle function seeIterated function. For compositions of a finite number of functions, useful infractal theory, seeIterated function system.

Although the title of this article specifies analytic functions, there are results for more generalfunctions of a complex variable as well.

Notation

[edit]

There are several notations describing infinite compositions, including the following:

Forward compositions:Fk,n(z)=fkfk+1fn1fn(z).{\displaystyle F_{k,n}(z)=f_{k}\circ f_{k+1}\circ \dots \circ f_{n-1}\circ f_{n}(z).}

Backward compositions:Gk,n(z)=fnfn1fk+1fk(z).{\displaystyle G_{k,n}(z)=f_{n}\circ f_{n-1}\circ \dots \circ f_{k+1}\circ f_{k}(z).}

In each case convergence is interpreted as the existence of the following limits:

limnF1,n(z),limnG1,n(z).{\displaystyle \lim _{n\to \infty }F_{1,n}(z),\qquad \lim _{n\to \infty }G_{1,n}(z).}

For convenience, setFn(z) =F1,n(z) andGn(z) =G1,n(z).

One may also writeFn(z)=Rnk=1fk(z)=f1f2fn(z){\displaystyle F_{n}(z)={\underset {k=1}{\overset {n}{\mathop {R} }}}\,f_{k}(z)=f_{1}\circ f_{2}\circ \cdots \circ f_{n}(z)} andGn(z)=Lnk=1gk(z)=gngn1g1(z){\displaystyle G_{n}(z)={\underset {k=1}{\overset {n}{\mathop {L} }}}\,g_{k}(z)=g_{n}\circ g_{n-1}\circ \cdots \circ g_{1}(z)}

Comment: It is not clear when the first explorations of infinite compositions of analytic functions not restricted to sequences of functions of a specific kind occurred. Possibly in the 1980s.[1]

Contraction theorem

[edit]

Many results can be considered extensions of the following result:

Contraction Theorem for Analytic Functions[2]Letf be analytic in a simply-connected regionS and continuous on the closureS ofS. Supposef(S) is a bounded set contained inS. Then for allz inS there exists anattractive fixed point α off inS such that:Fn(z)=(fff)(z)α.{\displaystyle F_{n}(z)=(f\circ f\circ \cdots \circ f)(z)\to \alpha .}

Infinite compositions of contractive functions

[edit]

Let {fn} be a sequence of functions analytic on a simply-connected domainS. Suppose there exists a compact set Ω ⊂S such that for eachn,fn(S) ⊂ Ω.

Forward (inner or right) Compositions Theorem{Fn} converges uniformly on compact subsets ofS to a constant functionF(z) =λ.[3]

Backward (outer or left) Compositions Theorem{Gn} converges uniformly on compact subsets ofS toγ ∈ Ω if and only if the sequence of fixed points {γn} of the {fn} converges toγ.[4]

Additional theory resulting from investigations based on these two theorems, particularly Forward Compositions Theorem, include location analysis for the limits obtained in the following reference.[5] For a different approach to Backward Compositions Theorem, see the following reference.[6]

Regarding Backward Compositions Theorem, the examplef2n(z) = 1/2 andf2n−1(z) = −1/2 forS = {z : |z| < 1} demonstrates the inadequacy of simply requiring contraction into a compact subset, like Forward Compositions Theorem.

For functions not necessarily analytic theLipschitz condition suffices:

Theorem[7]SupposeS{\displaystyle S} is a simply connected compact subset ofC{\displaystyle \mathbb {C} } and lettn:SS{\displaystyle t_{n}:S\to S} be a family of functions that satisfiesn,z1,z2S,ρ:|tn(z1)tn(z2)|ρ|z1z2|,ρ<1.{\displaystyle \forall n,\forall z_{1},z_{2}\in S,\exists \rho :\quad \left|t_{n}(z_{1})-t_{n}(z_{2})\right|\leq \rho |z_{1}-z_{2}|,\quad \rho <1.}Define:Gn(z)=(tntn1t1)(z)Fn(z)=(t1t2tn)(z){\displaystyle {\begin{aligned}G_{n}(z)&=\left(t_{n}\circ t_{n-1}\circ \cdots \circ t_{1}\right)(z)\\F_{n}(z)&=\left(t_{1}\circ t_{2}\circ \cdots \circ t_{n}\right)(z)\end{aligned}}}ThenFn(z)βS{\displaystyle F_{n}(z)\to \beta \in S} uniformly onS.{\displaystyle S.} Ifαn{\displaystyle \alpha _{n}} is the unique fixed point oftn{\displaystyle t_{n}} thenGn(z)α{\displaystyle G_{n}(z)\to \alpha } uniformly onS{\displaystyle S} if and only if|αnα|=εn0{\displaystyle |\alpha _{n}-\alpha |=\varepsilon _{n}\to 0}.

Infinite compositions of other functions

[edit]

Non-contractive complex functions

[edit]

Results involvingentire functions include the following, as examples. Set

fn(z)=anz+cn,2z2+cn,3z3+ρn=supr{|cn,r|1r1}{\displaystyle {\begin{aligned}f_{n}(z)&=a_{n}z+c_{n,2}z^{2}+c_{n,3}z^{3}+\cdots \\\rho _{n}&=\sup _{r}\left\{\left|c_{n,r}\right|^{\frac {1}{r-1}}\right\}\end{aligned}}}

Then the following results hold:

Theorem E1[8]Ifan ≡ 1,n=1ρn<{\displaystyle \sum _{n=1}^{\infty }\rho _{n}<\infty }thenFnF is entire.

Theorem E2[9]Setεn = |an−1| suppose there exists non-negativeδn,M1,M2,R such that the following holds:n=1εn<,n=1δn<,n=1(1+δn)<M1,n=1(1+εn)<M2,ρn<δnRM1M2.{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }\varepsilon _{n}&<\infty ,\\\sum _{n=1}^{\infty }\delta _{n}&<\infty ,\\\prod _{n=1}^{\infty }(1+\delta _{n})&<M_{1},\\\prod _{n=1}^{\infty }(1+\varepsilon _{n})&<M_{2},\\\rho _{n}&<{\frac {\delta _{n}}{RM_{1}M_{2}}}.\end{aligned}}}ThenGn(z) →G(z) is analytic for |z| <R. Convergence is uniform on compact subsets of {z : |z| <R}.

Additional elementary results include:

Theorem GF3[7]Supposefk(z)=z+ρkφk(z){\displaystyle f_{k}(z)=z+\rho _{k}\varphi _{k}(z)} where there existR,M>0{\displaystyle R,M>0} such that|z|<R{\displaystyle |z|<R} implies|φk(z)|<M,k, {\displaystyle |\varphi _{k}(z)|<M,\forall k,\ } Furthermore, supposeρk0,k=1ρk<{\textstyle \rho _{k}\geq 0,\sum _{k=1}^{\infty }\rho _{k}<\infty } andR>Mk=1ρk.{\textstyle R>M\sum _{k=1}^{\infty }\rho _{k}.} Then forR<RMk=1ρk{\textstyle R*<R-M\sum _{k=1}^{\infty }\rho _{k}}Gn(z)(fnfn1f1)(z)G(z) for {z:|z|<R}{\displaystyle G_{n}(z)\equiv \left(f_{n}\circ f_{n-1}\circ \cdots \circ f_{1}\right)(z)\to G(z)\qquad {\text{ for }}\{z:|z|<R*\}}

Theorem GF4[7]Supposefk(z)=z+ρkφk(z){\displaystyle f_{k}(z)=z+\rho _{k}\varphi _{k}(z)} where there existR,M>0{\displaystyle R,M>0} such that|z|<R{\displaystyle |z|<R} and|ζ|<R{\displaystyle |\zeta |<R} implies|φk(z)|<M{\displaystyle |\varphi _{k}(z)|<M} and|φk(z)φk(ζ)|r|zζ|,k. {\displaystyle |\varphi _{k}(z)-\varphi _{k}(\zeta )|\leq r|z-\zeta |,\forall k.\ } Furthermore, supposeρk0,k=1ρk<{\textstyle \rho _{k}\geq 0,\sum _{k=1}^{\infty }\rho _{k}<\infty } andR>Mk=1ρk.{\textstyle R>M\sum _{k=1}^{\infty }\rho _{k}.} Then forR<RMk=1ρk{\textstyle R*<R-M\sum _{k=1}^{\infty }\rho _{k}}Fn(z)(f1f2fn)(z)F(z) for {z:|z|<R}{\displaystyle F_{n}(z)\equiv \left(f_{1}\circ f_{2}\circ \cdots \circ f_{n}\right)(z)\to F(z)\qquad {\text{ for }}\{z:|z|<R*\}}

Linear fractional transformations

[edit]

Results[9] for compositions oflinear fractional (Möbius) transformations include the following, as examples:

Theorem LFT1On the set of convergence of a sequence {Fn} of non-singular LFTs, the limit function is either:

  1. a non-singular LFT,
  2. a function taking on two distinct values, or
  3. a constant.

In (a), the sequence converges everywhere in the extended plane. In (b), the sequence converges either everywhere, and to the same value everywhere except at one point, or it converges at only two points. Case (c) can occur with every possible set of convergence.[10]

Theorem LFT2[11]If {Fn} converges to an LFT, thenfn converge to the identity functionf(z) =z.

Theorem LFT3[12]Iffnf and all functions arehyperbolic orloxodromic Möbius transformations, thenFn(z) →λ, a constant, for allzβ=limnβn{\textstyle z\neq \beta =\lim _{n\to \infty }\beta _{n}}, where {βn} are the repulsive fixed points of the {fn}.

Theorem LFT4[13]Iffnf wheref isparabolic with fixed pointγ. Let the fixed-points of the {fn} be {γn} and {βn}. Ifn=1|γnβn|<andn=1n|βn+1βn|<{\displaystyle \sum _{n=1}^{\infty }\left|\gamma _{n}-\beta _{n}\right|<\infty \quad {\text{and}}\quad \sum _{n=1}^{\infty }n\left|\beta _{n+1}-\beta _{n}\right|<\infty }thenFn(z) →λ, a constant in the extended complex plane, for allz.

Examples and applications

[edit]

Continued fractions

[edit]

The value of the infinite continued fraction

a1b1+a2b2+{\displaystyle {\cfrac {a_{1}}{b_{1}+{\cfrac {a_{2}}{b_{2}+\cdots }}}}}

may be expressed as the limit of the sequence {Fn(0)} where

fn(z)=anbn+z.{\displaystyle f_{n}(z)={\frac {a_{n}}{b_{n}+z}}.}

As a simple example, a well-known result (Worpitsky's circle theorem[14]) follows from an application of Theorem (A):

Consider the continued fraction

a1ζ1+a2ζ1+{\displaystyle {\cfrac {a_{1}\zeta }{1+{\cfrac {a_{2}\zeta }{1+\cdots }}}}}

with

fn(z)=anζ1+z.{\displaystyle f_{n}(z)={\frac {a_{n}\zeta }{1+z}}.}

Stipulate that |ζ| < 1 and |z| <R < 1. Then for 0 <r < 1,

|an|<rR(1R)|fn(z)|<rR<Ra1ζ1+a2ζ1+=F(ζ){\displaystyle |a_{n}|<rR(1-R)\Rightarrow \left|f_{n}(z)\right|<rR<R\Rightarrow {\frac {a_{1}\zeta }{1+{\frac {a_{2}\zeta }{1+\cdots }}}}=F(\zeta )}, analytic for |z| < 1. SetR = 1/2.

Example.F(z)=(i1)z1+i+z + (2i)z1+2i+z + (3i)z1+3i+z +,{\displaystyle F(z)={\frac {(i-1)z}{1+i+z{\text{ }}+}}{\text{ }}{\frac {(2-i)z}{1+2i+z{\text{ }}+}}{\text{ }}{\frac {(3-i)z}{1+3i+z{\text{ }}+}}\cdots ,}[15,15]{\displaystyle [-15,15]}

Example: Continued fraction1 – Topographical (moduli) image of a continued fraction (one for each point) in the complex plane. [−15,15]

Example.[9] Afixed-point continued fraction form (a single variable).

fk,n(z)=αk,nβk,nαk,n+βk,nz,αk,n=αk,n(z),βk,n=βk,n(z),Fn(z)=(f1,nfn,n)(z){\displaystyle f_{k,n}(z)={\frac {\alpha _{k,n}\beta _{k,n}}{\alpha _{k,n}+\beta _{k,n}-z}},\alpha _{k,n}=\alpha _{k,n}(z),\beta _{k,n}=\beta _{k,n}(z),F_{n}(z)=\left(f_{1,n}\circ \cdots \circ f_{n,n}\right)(z)}
αk,n=xcos(ty)+iysin(tx),βk,n=cos(ty)+isin(tx),t=k/n{\displaystyle \alpha _{k,n}=x\cos(ty)+iy\sin(tx),\beta _{k,n}=\cos(ty)+i\sin(tx),t=k/n}
Example: Infinite Brooch - Topographical (moduli) image of acontinued fraction form in the complex plane. (6<x<9.6),(4.8<y<8)

Direct functional expansion

[edit]

Examples illustrating the conversion of a function directly into a composition follow:

Example 1.[8][15] Supposeϕ{\displaystyle \phi } is an entire function satisfying the following conditions:

{ϕ(tz)=t(ϕ(z)+ϕ(z)2)|t|>1ϕ(0)=0ϕ(0)=1{\displaystyle {\begin{cases}\phi (tz)=t\left(\phi (z)+\phi (z)^{2}\right)&|t|>1\\\phi (0)=0\\\phi '(0)=1\end{cases}}}

Then

fn(z)=z+z2tnFn(z)ϕ(z){\displaystyle f_{n}(z)=z+{\frac {z^{2}}{t^{n}}}\Longrightarrow F_{n}(z)\to \phi (z)}.

Example 2.[8]

fn(z)=z+z22nFn(z)12(e2z1){\displaystyle f_{n}(z)=z+{\frac {z^{2}}{2^{n}}}\Longrightarrow F_{n}(z)\to {\frac {1}{2}}\left(e^{2z}-1\right)}

Example 3.[7]

fn(z)=z1z24nFn(z)tan(z){\displaystyle f_{n}(z)={\frac {z}{1-{\tfrac {z^{2}}{4^{n}}}}}\Longrightarrow F_{n}(z)\to \tan(z)}

Example 4.[7]

gn(z)=24nz(1+z24n1)Gn(z)arctan(z){\displaystyle g_{n}(z)={\frac {2\cdot 4^{n}}{z}}\left({\sqrt {1+{\frac {z^{2}}{4^{n}}}}}-1\right)\Longrightarrow G_{n}(z)\to \arctan(z)}

Calculation of fixed-points

[edit]

Theorem (B) can be applied to determine the fixed-points of functions defined by infinite expansions or certain integrals. The following examples illustrate the process:

Example FP1.[4] For |ζ| ≤ 1 let

G(ζ)=eζ43+ζ+eζ83+ζ+eζ123+ζ+{\displaystyle G(\zeta )={\frac {\tfrac {e^{\zeta }}{4}}{3+\zeta +{\cfrac {\tfrac {e^{\zeta }}{8}}{3+\zeta +{\cfrac {\tfrac {e^{\zeta }}{12}}{3+\zeta +\cdots }}}}}}}

To find α =G(α), first we define:

tn(z)=eζ4n3+ζ+zfn(ζ)=t1t2tn(0){\displaystyle {\begin{aligned}t_{n}(z)&={\cfrac {\tfrac {e^{\zeta }}{4n}}{3+\zeta +z}}\\f_{n}(\zeta )&=t_{1}\circ t_{2}\circ \cdots \circ t_{n}(0)\end{aligned}}}

Then calculateGn(ζ)=fnf1(ζ){\displaystyle G_{n}(\zeta )=f_{n}\circ \cdots \circ f_{1}(\zeta )} with ζ = 1, which gives: α = 0.087118118... to ten decimal places after ten iterations.

Theorem FP2[9]Letφ(ζ,t) be analytic inS = {z : |z| <R} for allt in [0, 1] and continuous int. Setfn(ζ)=1nk=1nφ(ζ,kn).{\displaystyle f_{n}(\zeta )={\frac {1}{n}}\sum _{k=1}^{n}\varphi \left(\zeta ,{\tfrac {k}{n}}\right).}If |φ(ζ,t)| ≤r <R forζS andt ∈ [0, 1], thenζ=01φ(ζ,t)dt{\displaystyle \zeta =\int _{0}^{1}\varphi (\zeta ,t)\,dt}has a unique solution,α inS, withlimnGn(ζ)=α.{\displaystyle \lim _{n\to \infty }G_{n}(\zeta )=\alpha .}

Evolution functions

[edit]

Consider a time interval, normalized toI = [0, 1]. ICAFs can be constructed to describe continuous motion of a point,z, over the interval, but in such a way that at each "instant" the motion is virtually zero (seeZeno's Arrow): For the interval divided into n equal subintervals, 1 ≤kn setgk,n(z)=z+φk,n(z){\displaystyle g_{k,n}(z)=z+\varphi _{k,n}(z)} analytic or simply continuous – in a domainS, such that

limnφk,n(z)=0{\displaystyle \lim _{n\to \infty }\varphi _{k,n}(z)=0} for allk and allz inS,

andgk,n(z)S{\displaystyle g_{k,n}(z)\in S}.

Principal example

[edit]

Source:[9]

gk,n(z)=z+1nϕ(z,kn)Gk,n(z)=(gk,ngk1,ng1,n)(z)Gn(z)=Gn,n(z){\displaystyle {\begin{aligned}g_{k,n}(z)&=z+{\frac {1}{n}}\phi \left(z,{\tfrac {k}{n}}\right)\\G_{k,n}(z)&=\left(g_{k,n}\circ g_{k-1,n}\circ \cdots \circ g_{1,n}\right)(z)\\G_{n}(z)&=G_{n,n}(z)\end{aligned}}}

implies

λn(z)Gn(z)z=1nk=1nϕ(Gk1,n(z)kn)1nk=1nψ(z,kn)01ψ(z,t)dt,{\displaystyle \lambda _{n}(z)\doteq G_{n}(z)-z={\frac {1}{n}}\sum _{k=1}^{n}\phi \left(G_{k-1,n}(z){\tfrac {k}{n}}\right)\doteq {\frac {1}{n}}\sum _{k=1}^{n}\psi \left(z,{\tfrac {k}{n}}\right)\sim \int _{0}^{1}\psi (z,t)\,dt,}

where the integral is well-defined ifdzdt=ϕ(z,t){\displaystyle {\tfrac {dz}{dt}}=\phi (z,t)} has a closed-form solutionz(t). Then

λn(z0)01ϕ(z(t),t)dt.{\displaystyle \lambda _{n}(z_{0})\approx \int _{0}^{1}\phi (z(t),t)\,dt.}

Otherwise, the integrand is poorly defined although the value of the integral is easily computed. In this case one might call the integral a "virtual" integral.

Example.ϕ(z,t)=2tcosy1sinxcosy+i12tsinx1sinxcosy,01ψ(z,t)dt{\displaystyle \phi (z,t)={\frac {2t-\cos y}{1-\sin x\cos y}}+i{\frac {1-2t\sin x}{1-\sin x\cos y}},\int _{0}^{1}\psi (z,t)\,dt}

Example 1: Virtual tunnels – Topographical (moduli) image of virtual integrals (one for each point) in the complex plane. [−10,10]
Two contours flowing towards an attractive fixed point (red on the left). The white contour (c = 2) terminates before reaching the fixed point. The second contour (c(n) = square root ofn) terminates at the fixed point. For both contours,n = 10,000

Example. Let:

gn(z)=z+cnnϕ(z),withf(z)=z+ϕ(z).{\displaystyle g_{n}(z)=z+{\frac {c_{n}}{n}}\phi (z),\quad {\text{with}}\quad f(z)=z+\phi (z).}

Next, setT1,n(z)=gn(z),Tk,n(z)=gn(Tk1,n(z)),{\displaystyle T_{1,n}(z)=g_{n}(z),T_{k,n}(z)=g_{n}(T_{k-1,n}(z)),} andTn(z) =Tn,n(z). Let

T(z)=limnTn(z){\displaystyle T(z)=\lim _{n\to \infty }T_{n}(z)}

when that limit exists. The sequence {Tn(z)} defines contours γ = γ(cn,z) that follow the flow of the vector fieldf(z). If there exists an attractive fixed point α, meaning |f(z) − α| ≤ ρ|z − α| for 0 ≤ ρ < 1, thenTn(z) →T(z) ≡ α along γ = γ(cn,z), provided (for example)cn=n{\displaystyle c_{n}={\sqrt {n}}}. Ifcnc > 0, thenTn(z) →T(z), a point on the contour γ = γ(c,z). It is easily seen that

γϕ(ζ)dζ=limncnk=1nϕ2(Tk1,n(z)){\displaystyle \oint _{\gamma }\phi (\zeta )\,d\zeta =\lim _{n\to \infty }{\frac {c}{n}}\sum _{k=1}^{n}\phi ^{2}\left(T_{k-1,n}(z)\right)}

and

L(γ(z))=limncnk=1n|ϕ(Tk1,n(z))|,{\displaystyle L(\gamma (z))=\lim _{n\to \infty }{\frac {c}{n}}\sum _{k=1}^{n}\left|\phi \left(T_{k-1,n}(z)\right)\right|,}

when these limits exist.

These concepts are marginally related toactive contour theory in image processing, and are simple generalizations of theEuler method

Self-replicating expansions

[edit]

Series

[edit]

The series defined recursively byfn(z) =z +gn(z) have the property that the nth term is predicated on the sum of the firstn − 1 terms. In order to employ theorem (GF3) it is necessary to show boundedness in the following sense: If eachfn is defined for |z| <M then |Gn(z)| <M must follow before |fn(z) − z| = |gn(z)| ≤ n is defined for iterative purposes. This is becausegn(Gn1(z)){\displaystyle g_{n}(G_{n-1}(z))} occurs throughout the expansion. The restriction

|z|<R=MCk=1βk>0{\displaystyle |z|<R=M-C\sum _{k=1}^{\infty }\beta _{k}>0}

serves this purpose. ThenGn(z) →G(z) uniformly on the restricted domain.

Example (S1). Set

fn(z)=z+1ρn2z,ρ>π6{\displaystyle f_{n}(z)=z+{\frac {1}{\rho n^{2}}}{\sqrt {z}},\qquad \rho >{\sqrt {\frac {\pi }{6}}}}

andM = ρ2. ThenR = ρ2 − (π/6) > 0. Then, ifS={z:|z|<R,Re(z)>0}{\displaystyle S=\left\{z:|z|<R,\operatorname {Re} (z)>0\right\}},z inS implies |Gn(z)| <M and theorem (GF3) applies, so that

Gn(z)=z+g1(z)+g2(G1(z))+g3(G2(z))++gn(Gn1(z))=z+1ρ12z+1ρ22G1(z)+1ρ32G2(z)++1ρn2Gn1(z){\displaystyle {\begin{aligned}G_{n}(z)&=z+g_{1}(z)+g_{2}(G_{1}(z))+g_{3}(G_{2}(z))+\cdots +g_{n}(G_{n-1}(z))\\&=z+{\frac {1}{\rho \cdot 1^{2}}}{\sqrt {z}}+{\frac {1}{\rho \cdot 2^{2}}}{\sqrt {G_{1}(z)}}+{\frac {1}{\rho \cdot 3^{2}}}{\sqrt {G_{2}(z)}}+\cdots +{\frac {1}{\rho \cdot n^{2}}}{\sqrt {G_{n-1}(z)}}\end{aligned}}}

converges absolutely, hence is convergent.

Example (S2):fn(z)=z+1n2φ(z),φ(z)=2cos(x/y)+i2sin(x/y),>Gn(z)=fnfn1f1(z),[10,10],n=50{\displaystyle f_{n}(z)=z+{\frac {1}{n^{2}}}\cdot \varphi (z),\varphi (z)=2\cos(x/y)+i2\sin(x/y),>G_{n}(z)=f_{n}\circ f_{n-1}\circ \cdots \circ f_{1}(z),\qquad [-10,10],n=50}

Example (S2)- A topographical (moduli) image of a self generating series.

Products

[edit]

The product defined recursively by

fn(z)=z(1+gn(z)),|z|M,{\displaystyle f_{n}(z)=z(1+g_{n}(z)),\qquad |z|\leqslant M,}

has the appearance

Gn(z)=zk=1n(1+gk(Gk1(z))).{\displaystyle G_{n}(z)=z\prod _{k=1}^{n}\left(1+g_{k}\left(G_{k-1}(z)\right)\right).}

In order to apply Theorem GF3 it is required that:

|zgn(z)|Cβn,k=1βk<.{\displaystyle \left|zg_{n}(z)\right|\leq C\beta _{n},\qquad \sum _{k=1}^{\infty }\beta _{k}<\infty .}

Once again, a boundedness condition must support

|Gn1(z)gn(Gn1(z))|Cβn.{\displaystyle \left|G_{n-1}(z)g_{n}(G_{n-1}(z))\right|\leq C\beta _{n}.}

If one knowsn in advance, the following will suffice:

|z|R=MPwhereP=n=1(1+Cβn).{\displaystyle |z|\leqslant R={\frac {M}{P}}\qquad {\text{where}}\quad P=\prod _{n=1}^{\infty }\left(1+C\beta _{n}\right).}

ThenGn(z) →G(z) uniformly on the restricted domain.

Example (P1). Supposefn(z)=z(1+gn(z)){\displaystyle f_{n}(z)=z(1+g_{n}(z))} withgn(z)=z2n3,{\displaystyle g_{n}(z)={\tfrac {z^{2}}{n^{3}}},} observing after a few preliminary computations, that |z| ≤ 1/4 implies |Gn(z)| < 0.27. Then

|Gn(z)Gn(z)2n3|<(0.02)1n3=Cβn{\displaystyle \left|G_{n}(z){\frac {G_{n}(z)^{2}}{n^{3}}}\right|<(0.02){\frac {1}{n^{3}}}=C\beta _{n}}

and

Gn(z)=zk=1n1(1+Gk(z)2n3){\displaystyle G_{n}(z)=z\prod _{k=1}^{n-1}\left(1+{\frac {G_{k}(z)^{2}}{n^{3}}}\right)}

converges uniformly.

Example (P2).

gk,n(z)=z(1+1nφ(z,kn)),{\displaystyle g_{k,n}(z)=z\left(1+{\frac {1}{n}}\varphi \left(z,{\tfrac {k}{n}}\right)\right),}
Gn,n(z)=(gn,ngn1,ng1,n)(z)=zk=1n(1+Pk,n(z)),{\displaystyle G_{n,n}(z)=\left(g_{n,n}\circ g_{n-1,n}\circ \cdots \circ g_{1,n}\right)(z)=z\prod _{k=1}^{n}(1+P_{k,n}(z)),}
Pk,n(z)=1nφ(Gk1,n(z),kn),{\displaystyle P_{k,n}(z)={\frac {1}{n}}\varphi \left(G_{k-1,n}(z),{\tfrac {k}{n}}\right),}
k=1n1(1+Pk,n(z))=1+P1,n(z)+P2,n(z)++Pk1,n(z)+Rn(z)01π(z,t)dt+1+Rn(z),{\displaystyle \prod _{k=1}^{n-1}\left(1+P_{k,n}(z)\right)=1+P_{1,n}(z)+P_{2,n}(z)+\cdots +P_{k-1,n}(z)+R_{n}(z)\sim \int _{0}^{1}\pi (z,t)\,dt+1+R_{n}(z),}
φ(z)=xcos(y)+iysin(x),01(zπ(z,t)1)dt,[15,15]:{\displaystyle \varphi (z)=x\cos(y)+iy\sin(x),\int _{0}^{1}(z\pi (z,t)-1)\,dt,\qquad [-15,15]:}
Example (P2): Picasso's Universe – a derived virtual integral from a self-generating infinite product. Click on image for higher resolution.

Continued fractions

[edit]

Example (CF1): A self-generating continued fraction.[9]

Fn(z)=ρ(z)δ1+ρ(F1(z))δ2+ρ(F2(z))δ3+ρ(Fn1(z))δn,ρ(z)=cos(y)cos(y)+sin(x)+isin(x)cos(y)+sin(x),[0<x<20],[0<y<20],δk1{\displaystyle {\begin{aligned}F_{n}(z)&={\frac {\rho (z)}{\delta _{1}+}}{\frac {\rho (F_{1}(z))}{\delta _{2}+}}{\frac {\rho (F_{2}(z))}{\delta _{3}+}}\cdots {\frac {\rho (F_{n-1}(z))}{\delta _{n}}},\\\rho (z)&={\frac {\cos(y)}{\cos(y)+\sin(x)}}+i{\frac {\sin(x)}{\cos(y)+\sin(x)}},\qquad [0<x<20],[0<y<20],\qquad \delta _{k}\equiv 1\end{aligned}}}
Example CF1: Diminishing returns – a topographical (moduli) image of a self-generating continued fraction.

Example (CF2): Best described as a self-generating reverseEuler continued fraction.[9]

Gn(z)=ρ(Gn1(z))1+ρ(Gn1(z)) ρ(Gn2(z))1+ρ(Gn2(z))ρ(G1(z))1+ρ(G1(z)) ρ(z)1+ρ(z)z,{\displaystyle G_{n}(z)={\frac {\rho (G_{n-1}(z))}{1+\rho (G_{n-1}(z))-}}\ {\frac {\rho (G_{n-2}(z))}{1+\rho (G_{n-2}(z))-}}\cdots {\frac {\rho (G_{1}(z))}{1+\rho (G_{1}(z))-}}\ {\frac {\rho (z)}{1+\rho (z)-z}},}
ρ(z)=ρ(x+iy)=xcos(y)+iysin(x),[15,15],n=30{\displaystyle \rho (z)=\rho (x+iy)=x\cos(y)+iy\sin(x),\qquad [-15,15],n=30}
Example CF2: Dream of Gold – a topographical (moduli) image of a self-generating reverse Euler continued fraction.

See also

[edit]

References

[edit]
  1. ^Gill, John (1988)."Compositions of analytic functions of the form Fn(z)=Fn-1(fn(z)),fn->f".Journal of Computational and Applied Mathematics.23:179–184.
  2. ^Henrici, P. (1988) [1974].Applied and Computational Complex Analysis. Vol. 1. Wiley.ISBN 978-0-471-60841-7.
  3. ^Lorentzen, Lisa (November 1990)."Compositions of contractions".Journal of Computational and Applied Mathematics.32 (1–2):169–178.doi:10.1016/0377-0427(90)90428-3.
  4. ^abGill, J. (1991). "The use of the sequence Fn(z)=fn∘⋯∘f1(z) in computing the fixed points of continued fractions, products, and series".Appl. Numer. Math.8 (6):469–476.doi:10.1016/0168-9274(91)90109-D.
  5. ^Keen, Linda; Lakic, Nikola (2007)."Accumulation constants of iterated function systems with Bloch target domains".Annales Academiae Scientiarum Fennicae Mathematica.32 (1). Helsinki: Finnish Academy of Science and Letters.
  6. ^Keen, Linda; Lakic, Nikola (2003). "Forward iterated function systems". In Jiang, Yunping; Wang, Yuefei (eds.).Complex dynamics and related topics: lectures from the Morningside Center of Mathematics(PDF). Sommerville: International Press. pp. 292–299.ISBN 1-57146-121-3.OCLC 699694753.
  7. ^abcdeGill, J. (2017)."A Primer on the Elementary Theory of Infinite Compositions of Complex Functions"(PDF).Communications in the Analytic Theory of Continued Fractions.XXIII.
  8. ^abcKojima, Shota (May 2012). "On the convergence of infinite compositions of entire functions".Archiv der Mathematik.98 (5):453–465.doi:10.1007/s00013-012-0385-z.S2CID 121444171.
  9. ^abcdefgGill, J. (2012)."Convergence of Infinite Compositions of Complex Functions"(PDF).Communications in the Analytic Theory of Continued Fractions.XIX.
  10. ^Piranian, G.; Thron, W. J. (1957)."Convergence properties of sequences of linear fractional transformations".Michigan Mathematical Journal.4 (2).doi:10.1307/mmj/1028989001.
  11. ^de Pree, J. D.; Thron, W. J. (December 1962). "On sequences of Moebius transformations".Mathematische Zeitschrift.80 (1):184–193.doi:10.1007/BF01162375.S2CID 120487262.
  12. ^Mandell, Michael; Magnus, Arne (1970). "On convergence of sequences of linear fractional transformations".Mathematische Zeitschrift.115 (1):11–17.doi:10.1007/BF01109744.S2CID 119407993.
  13. ^Gill, John (1973)."Infinite compositions of Möbius transformations".Transactions of the American Mathematical Society.176: 479.doi:10.1090/S0002-9947-1973-0316690-6.
  14. ^Beardon, A. F. (2001). "Worpitzky's theorem on continued fractions".Journal of Computational and Applied Mathematics.131 (1–2):143–148.Bibcode:2001JCoAM.131..143B.doi:10.1016/S0377-0427(00)00318-6.MR 1835708.
  15. ^Steinmetz, N. (2011) [1993].Rational Iteration. de Gruyter.ISBN 978-3-11-088931-4.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Infinite_compositions_of_analytic_functions&oldid=1294342464"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp