Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Infinite-order pentagonal tiling

From Wikipedia, the free encyclopedia
Infinite-order pentagonal tiling
Infinite-order pentagonal tiling
Poincaré disk model of thehyperbolic plane
TypeHyperbolic regular tiling
Vertex configuration5
Schläfli symbol{5,∞}
Wythoff symbol∞ | 5 2
Coxeter diagram
Symmetry group[∞,5], (*∞52)
DualOrder-5 apeirogonal tiling
PropertiesVertex-transitive,edge-transitive,face-transitive

In 2-dimensionalhyperbolic geometry, theinfinite-order pentagonal tiling is aregular tiling. It hasSchläfli symbol of {5,∞}. All vertices areideal, located at "infinity", seen on the boundary of thePoincaré hyperbolic disk projection.

Symmetry

[edit]

There is a half symmetry form,, seen with alternating colors:

Related polyhedra and tiling

[edit]

This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (5n).

FiniteCompact hyperbolicParacompact

{5,3}

{5,4}

{5,5}

{5,6}

{5,7}

{5,8}...

{5,∞}
Paracompact uniform apeirogonal/pentagonal tilings
Symmetry: [∞,5], (*∞52)[∞,5]+
(∞52)
[1+,∞,5]
(*∞55)
[∞,5+]
(5*∞)
{∞,5}t{∞,5}r{∞,5}2t{∞,5}=t{5,∞}2r{∞,5}={5,∞}rr{∞,5}tr{∞,5}sr{∞,5}h{∞,5}h2{∞,5}s{5,∞}
Uniform duals
V∞5V5.∞.∞V5.∞.5.∞V∞.10.10V5V4.5.4.∞V4.10.∞V3.3.5.3.∞V(∞.5)5V3.5.3.5.3.∞

See also

[edit]
Wikimedia Commons has media related toInfinite-order pentagonal tiling.

References

[edit]

External links

[edit]


Other
Spherical
Regular
Semi-
regular
Hyper-
bolic
Retrieved from "https://en.wikipedia.org/w/index.php?title=Infinite-order_pentagonal_tiling&oldid=1292473393"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp