Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Indexed language

From Wikipedia, the free encyclopedia

Indexed languages are a class offormal languages discovered byAlfred Aho;[1] they are described byindexed grammars and can be recognized bynested stack automata.[2]

Indexed languages are aproper subset ofcontext-sensitive languages.[1] They qualify as anabstract family of languages (furthermore a full AFL) and hence satisfy many closure properties. However, they are not closed under intersection or complement.[1]

The class of indexed languages haspractical importance innatural language processing as a computationally affordable[citation needed] generalization ofcontext-free languages, sinceindexed grammars can describe many of the nonlocal constraints occurring in natural languages.

Gerald Gazdar (1988)[3] and Vijayashanker (1987)[4] introduced amildly context-sensitive language class now known as linear indexed grammars (LIG).[5] Linear indexed grammars have additional restrictions relative to indexed grammars. LIGs areweakly equivalent (generate the same language class) astree adjoining grammars.[6]

Examples

[edit]

The following languages are indexed, but are not context-free:

{anbncndn|n1}{\displaystyle \{a^{n}b^{n}c^{n}d^{n}|n\geq 1\}}[3]
{anbmcndm|m,n0}{\displaystyle \{a^{n}b^{m}c^{n}d^{m}|m,n\geq 0\}}[2]

These two languages are also indexed, but are not even mildly context sensitive under Gazdar's characterization:

{a2n|n0}{\displaystyle \{a^{2^{n}}|n\geq 0\}}[2]
{www|w{a,b}+}{\displaystyle \{www|w\in \{a,b\}^{+}\}}[3]

On the other hand, the following language is not indexed:[7]

{(abn)n|n0}{\displaystyle \{(ab^{n})^{n}|n\geq 0\}}

Properties

[edit]

Hopcroft andUllman tend to consider indexed languages as a "natural" class, since they are generated by several formalisms, such as:[9]

Hayashi[14] generalized thepumping lemma to indexed grammars.Conversely, Gilman[7] gives a "shrinking lemma" for indexed languages.

See also

[edit]

References

[edit]
  1. ^abcdAho, Alfred (1968)."Indexed grammars—an extension of context-free grammars".Journal of the ACM.15 (4):647–671.doi:10.1145/321479.321488.S2CID 9539666.
  2. ^abcPartee, Barbara;ter Meulen, Alice; Wall, Robert E. (1990).Mathematical Methods in Linguistics. Kluwer Academic Publishers. pp. 536–542.ISBN 978-90-277-2245-4.
  3. ^abcGazdar, Gerald (1988). "Applicability of Indexed Grammars to Natural Languages". In Reyle, U.; Rohrer, C. (eds.).Natural Language Parsing and Linguistic Theories. Studies in Linguistics and Philosophy. Vol. 35. Springer Netherlands. pp. 69–94.doi:10.1007/978-94-009-1337-0_3.ISBN 978-94-009-1337-0.
  4. ^Vijayashanker, K. (1987).A study of tree adjoining grammars (Thesis).ProQuest 303610666.
  5. ^Kallmeyer, Laura (2010).Parsing Beyond Context-Free Grammars. Springer. p. 31.ISBN 978-3-642-14846-0.
  6. ^Kallmeyer, Laura (16 August 2010).Parsing Beyond Context-Free Grammars. Springer. p. 32.ISBN 978-3-642-14846-0.
  7. ^abGilman, Robert H. (1996). "A Shrinking Lemma for Indexed Languages".Theoretical Computer Science.163 (1–2):277–281.arXiv:math/9509205.doi:10.1016/0304-3975(96)00244-7.S2CID 14479068.
  8. ^Hopcroft, John;Ullman, Jeffrey (1979).Introduction to automata theory, languages, and computation. Addison-Wesley. p. 390.ISBN 978-0-201-02988-8.
  9. ^Introduction to automata theory, languages, and computation,[8] Bibliographic notes, p.394-395
  10. ^Aho, Alfred V. (July 1969)."Nested Stack Automata".Journal of the ACM.16 (3):383–406.doi:10.1145/321526.321529.S2CID 685569.
  11. ^Fischer, Michael J. (October 1968). "Grammars with macro-like productions".9th Annual Symposium on Switching and Automata Theory (Swat 1968). pp. 131–142.doi:10.1109/SWAT.1968.12.
  12. ^Greibach, Sheila A. (March 1970). "Full AFLs and nested iterated substitution".Information and Control.16 (1):7–35.doi:10.1016/s0019-9958(70)80039-0.
  13. ^Maibaum, T.S.E. (June 1974)."A generalized approach to formal languages".Journal of Computer and System Sciences.8 (3):409–439.doi:10.1016/s0022-0000(74)80031-0.
  14. ^Hayashi, Takeshi (1973)."On derivation trees of indexed grammars: an extension of the {$uvwxy$}-theorem".Publications of the Research Institute for Mathematical Sciences.9 (1):61–92.doi:10.2977/prims/1195192738.

External links

[edit]
Each category of languages, except those marked by a*, is aproper subset of the category directly above it.Any language in each category is generated by a grammar and by an automaton in the category in the same line.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Indexed_language&oldid=1319229284"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp