Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Indeterminate form

From Wikipedia, the free encyclopedia
Expression in mathematical analysis

Incalculus, it is usually possible to compute thelimit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function. For example,

limxc(f(x)+g(x))=limxcf(x)+limxcg(x),limxc(f(x)g(x))=limxcf(x)limxcg(x),{\displaystyle {\begin{aligned}\lim _{x\to c}{\bigl (}f(x)+g(x){\bigr )}&=\lim _{x\to c}f(x)+\lim _{x\to c}g(x),\\[3mu]\lim _{x\to c}{\bigl (}f(x)g(x){\bigr )}&=\lim _{x\to c}f(x)\cdot \lim _{x\to c}g(x),\end{aligned}}}

and likewise for other arithmetic operations; this is sometimes called thealgebraic limit theorem. However, certain combinations of particular limiting values cannot be computed in this way, and knowing the limit of each function separately does not suffice to determine the limit of the combination. In these particular situations, the limit is said to take anindeterminate form, described by one of the informal expressions

00, , 0×, , 00, 1, or 0,{\displaystyle {\frac {0}{0}},~{\frac {\infty }{\infty }},~0\times \infty ,~\infty -\infty ,~0^{0},~1^{\infty },{\text{ or }}\infty ^{0},}

among a wide variety of uncommon others, where each expression stands for the limit of a function constructed by an arithmetical combination of two functions whose limits respectively tend to0,{\displaystyle 0,}1,{\displaystyle 1,} or{\displaystyle \infty } as indicated.[1]

A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instancelimx01/x2=,{\textstyle \lim _{x\to 0}1/x^{2}=\infty ,} is not considered indeterminate.[2] The term was originally introduced byCauchy's studentMoigno in the middle of the 19th century.

The most common example of an indeterminate form is the quotient of two functions each of which converges to zero. This indeterminate form is denoted by0/0{\displaystyle 0/0}. For example, asx{\displaystyle x} approaches0,{\displaystyle 0,} the ratiosx/x3{\displaystyle x/x^{3}},x/x{\displaystyle x/x}, andx2/x{\displaystyle x^{2}/x} go to{\displaystyle \infty },1{\displaystyle 1}, and0{\displaystyle 0} respectively. In each case, if the limits of the numerator and denominator are substituted, the resulting expression is0/0{\displaystyle 0/0}, which is indeterminate. In this sense,0/0{\displaystyle 0/0} can take on the values0{\displaystyle 0},1{\displaystyle 1}, or{\displaystyle \infty }, by appropriate choices of functions to put in the numerator and denominator. A pair of functions for which the limit is any particular given value may in fact be found. Even more surprising, perhaps, the quotient of the two functions may in fact diverge, and not merely diverge to infinity. For example,xsin(1/x)/x{\displaystyle x\sin(1/x)/x}.

So the fact that twofunctionsf(x){\displaystyle f(x)} andg(x){\displaystyle g(x)} converge to0{\displaystyle 0} asx{\displaystyle x} approaches somelimit pointc{\displaystyle c} is insufficient to determine thelimit

limxcf(x)g(x).{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}.}

An expression that arises by ways other than applying the algebraic limit theorem may have the same form of an indeterminate form. However it is not appropriate to call an expression "indeterminate form" if the expression is made outside the context of determining limits.An example is the expression00{\displaystyle 0^{0}}. Whether this expression is left undefined, or is defined to equal1{\displaystyle 1}, depends on the field of application and may vary between authors. For more, see the articleZero to the power of zero. Note that0{\displaystyle 0^{\infty }} and other expressions involving infinityare not indeterminate forms.

Some examples and non-examples

[edit]

Indeterminate form 0/0

[edit]
"0/0" redirects here. For the symbol, seePercent sign. For 0 divided by 0, seeDivision by zero.
  • Graph showing a horizontal line at y = 1
    Fig. 1:y =x/x
  • Graph showing a straight line passing from lower left to upper right through the origin with a slope of 1
    Fig. 2:y =x2/x
  • Graph showing a curve that oscillates across the x axis with increasing magnitude towards the y axis, intersecting it at y = 1
    Fig. 3:y =sin x/x
  • Graph showing an increasing curve with decreasing slope, vanishing rapidly towards the origin
    Fig. 4:y =x − 49/x − 7 (forx = 49)
  • Graph showing a horizontal line at y = 2
    Fig. 5:y =ax/x wherea = 2
  • Graph asymptotically approaching infinity from both sides of the y axis, and asymptomatically approaching the x axis away from it
    Fig. 6:y =x/x3

The indeterminate form0/0{\displaystyle 0/0} is particularly common incalculus, because it often arises in the evaluation ofderivatives using their definition in terms of limit.

As mentioned above,

limx0xx=1,{\displaystyle \lim _{x\to 0}{\frac {x}{x}}=1,\qquad } (see fig. 1)

while

limx0x2x=0,{\displaystyle \lim _{x\to 0}{\frac {x^{2}}{x}}=0,\qquad } (see fig. 2)

This is enough to show that0/0{\displaystyle 0/0} is an indeterminate form. Other examples with this indeterminate form include

limx0sin(x)x=1,{\displaystyle \lim _{x\to 0}{\frac {\sin(x)}{x}}=1,\qquad } (see fig. 3)

and

limx49x49x7=14,{\displaystyle \lim _{x\to 49}{\frac {x-49}{{\sqrt {x}}\,-7}}=14,\qquad } (see fig. 4)

Direct substitution of the number thatx{\displaystyle x} approaches into any of these expressions shows that these are examples correspond to the indeterminate form0/0{\displaystyle 0/0}, but these limits can assume many different values. Any desired valuea{\displaystyle a} can be obtained for this indeterminate form as follows:

limx0axx=a.{\displaystyle \lim _{x\to 0}{\frac {ax}{x}}=a.\qquad } (see fig. 5)

The value{\displaystyle \infty } can also be obtained (in the sense of divergence to infinity):

limx0xx3=.{\displaystyle \lim _{x\to 0}{\frac {x}{x^{3}}}=\infty .\qquad } (see fig. 6)

Indeterminate form 00

[edit]
Main article:Zero to the power of zero
Graph showing a horizontal line at y = 1
Graph ofy =x0
Graph showing a horizontal line at y = 0
Graph ofy = 0x

The following limits illustrate that the expression00{\displaystyle 0^{0}} is an indeterminate form:limx0+x0=1,limx0+0x=0.{\displaystyle {\begin{aligned}\lim _{x\to 0^{+}}x^{0}&=1,\\\lim _{x\to 0^{+}}0^{x}&=0.\end{aligned}}}

Thus, in general, knowing thatlimxcf(x)=0{\displaystyle \textstyle \lim _{x\to c}f(x)\;=\;0} andlimxcg(x)=0{\displaystyle \textstyle \lim _{x\to c}g(x)\;=\;0} is not sufficient to evaluate the limitlimxcf(x)g(x).{\displaystyle \lim _{x\to c}f(x)^{g(x)}.}

If the functionsf{\displaystyle f} andg{\displaystyle g} areanalytic atc{\displaystyle c}, andf{\displaystyle f} is positive forx{\displaystyle x} sufficiently close (but not equal) toc{\displaystyle c}, then the limit off(x)g(x){\displaystyle f(x)^{g(x)}} will be1{\displaystyle 1}.[3] Otherwise, use the transformation in thetable below to evaluate the limit.

Expressions that are not indeterminate forms

[edit]

The expression1/0{\displaystyle 1/0} is not commonly regarded as an indeterminate form, because if the limit off(x)/g(x){\displaystyle f(x)/g(x)} asg(x)0{\displaystyle g(x)\rightarrow 0} exists then there is no ambiguity as to its value, as it always diverges. Specifically, with the constraint thatf(x){\displaystyle f(x)} approaches1{\displaystyle 1} andg(x){\displaystyle g(x)} approaches0,{\displaystyle 0,} we may choosef{\displaystyle f} andg{\displaystyle g} so that:

  1. f(x)/g(x){\displaystyle f(x)/g(x)} approaches+{\displaystyle +\infty }
  2. f(x)/g(x){\displaystyle f(x)/g(x)} approaches{\displaystyle -\infty }
  3. The limit fails to exist.

In each case the absolute value|f(x)/g(x)|{\displaystyle |f(x)/g(x)|} approaches+{\displaystyle +\infty }, and so the quotientf(x)/g(x){\displaystyle f(x)/g(x)} must diverge, in the sense of theextended real numbers (in the framework of theprojectively extended real line, the limit is theunsigned infinity{\displaystyle \infty } in all three cases[4]). Similarly, any expression of the forma/0{\displaystyle a/0} witha0{\displaystyle a\neq 0} (includinga=+{\displaystyle a=+\infty } anda={\displaystyle a=-\infty }) is not an indeterminate form, since a quotient giving rise to such an expression will always diverge.

The expression0{\displaystyle 0^{\infty }} is not an indeterminate form. The expression0+{\displaystyle 0^{+\infty }} obtained from consideringlimxcf(x)g(x){\displaystyle \lim _{x\to c}f(x)^{g(x)}} gives the limit0,{\displaystyle 0,} provided thatf(x){\displaystyle f(x)} remains nonnegative asx{\displaystyle x} approachesc{\displaystyle c}. The expression0{\displaystyle 0^{-\infty }} is similarly equivalent to1/0{\displaystyle 1/0}; iff(x)>0{\displaystyle f(x)>0} asx{\displaystyle x} approachesc{\displaystyle c}, the limit comes out as+{\displaystyle +\infty }.

To see why, letL=limxcf(x)g(x),{\displaystyle L=\lim _{x\to c}f(x)^{g(x)},} wherelimxcf(x)=0,{\displaystyle \lim _{x\to c}{f(x)}=0,} andlimxcg(x)=.{\displaystyle \lim _{x\to c}{g(x)}=\infty .} By taking the natural logarithm of both sides and usinglimxclnf(x)=,{\displaystyle \lim _{x\to c}\ln {f(x)}=-\infty ,} we get thatlnL=limxc(g(x)×lnf(x))=×=,{\displaystyle \ln L=\lim _{x\to c}({g(x)}\times \ln {f(x)})=\infty \times {-\infty }=-\infty ,} which means thatL=e=0.{\displaystyle L={e}^{-\infty }=0.}

Evaluating indeterminate forms

[edit]

The adjectiveindeterminate doesnot imply that the limit does not exist, as many of the examples above show. In many cases, algebraic elimination,L'Hôpital's rule, or other methods can be used to manipulate the expression so that the limit can be evaluated.

Equivalent infinitesimal

[edit]

When two variablesα{\displaystyle \alpha } andβ{\displaystyle \beta } converge to zero at the same limit point andlimβα=1{\displaystyle \textstyle \lim {\frac {\beta }{\alpha }}=1}, they are calledequivalent infinitesimal (equiv.αβ{\displaystyle \alpha \sim \beta }).

Moreover, if variablesα{\displaystyle \alpha '} andβ{\displaystyle \beta '} are such thatαα{\displaystyle \alpha \sim \alpha '} andββ{\displaystyle \beta \sim \beta '}, then:limβα=limβα{\displaystyle \lim {\frac {\beta }{\alpha }}=\lim {\frac {\beta '}{\alpha '}}}

Here is a brief proof:

Suppose there are two equivalent infinitesimalsαα{\displaystyle \alpha \sim \alpha '} andββ{\displaystyle \beta \sim \beta '}.

limβα=limββαβαα=limββlimααlimβα=limβα{\displaystyle \lim {\frac {\beta }{\alpha }}=\lim {\frac {\beta \beta '\alpha '}{\beta '\alpha '\alpha }}=\lim {\frac {\beta }{\beta '}}\lim {\frac {\alpha '}{\alpha }}\lim {\frac {\beta '}{\alpha '}}=\lim {\frac {\beta '}{\alpha '}}}

For the evaluation of the indeterminate form0/0{\displaystyle 0/0}, one can make use of the following facts about equivalentinfinitesimals (e.g.,xsinx{\displaystyle x\sim \sin x} ifx becomes closer to zero):[5]

xsinx,xarcsinx,xsinhx,xtanx,xarctanx,xln(1+x),1cosxx22,coshx1x22,ax1xlna,ex1x,(1+x)a1ax.{\displaystyle {\begin{aligned}x&\sim \sin x,\\x&\sim \arcsin x,\\x&\sim \sinh x,\\x&\sim \tan x,\\x&\sim \arctan x,\\x&\sim \ln(1+x),\\1-\cos x&\sim {\frac {x^{2}}{2}},\\\cosh x-1&\sim {\frac {x^{2}}{2}},\\a^{x}-1&\sim x\ln a,\\e^{x}-1&\sim x,\\(1+x)^{a}-1&\sim ax.\end{aligned}}}

For example:

limx01x3[(2+cosx3)x1]=limx0exln2+cosx31x3=limx01x2ln2+cosx3=limx01x2ln(cosx13+1)=limx0cosx13x2=limx0x26x2=16{\displaystyle {\begin{aligned}\lim _{x\to 0}{\frac {1}{x^{3}}}\left[\left({\frac {2+\cos x}{3}}\right)^{x}-1\right]&=\lim _{x\to 0}{\frac {e^{x\ln {\frac {2+\cos x}{3}}}-1}{x^{3}}}\\&=\lim _{x\to 0}{\frac {1}{x^{2}}}\ln {\frac {2+\cos x}{3}}\\&=\lim _{x\to 0}{\frac {1}{x^{2}}}\ln \left({\frac {\cos x-1}{3}}+1\right)\\&=\lim _{x\to 0}{\frac {\cos x-1}{3x^{2}}}\\&=\lim _{x\to 0}-{\frac {x^{2}}{6x^{2}}}\\&=-{\frac {1}{6}}\end{aligned}}}

In the 2nd equality,ey1y{\displaystyle e^{y}-1\sim y} wherey=xln2+cosx3{\displaystyle y=x\ln {2+\cos x \over 3}} asy become closer to 0 is used, andyln(1+y){\displaystyle y\sim \ln {(1+y)}} wherey=cosx13{\displaystyle y={{\cos x-1} \over 3}} is used in the 4th equality, and1cosxx22{\displaystyle 1-\cos x\sim {x^{2} \over 2}} is used in the 5th equality.

L'Hôpital's rule

[edit]
Main article:L'Hôpital's rule

L'Hôpital's rule is a general method for evaluating the indeterminate forms0/0{\displaystyle 0/0} and/{\displaystyle \infty /\infty }. This rule states that (under appropriate conditions)

limxcf(x)g(x)=limxcf(x)g(x),{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}},}

wheref{\displaystyle f'} andg{\displaystyle g'} are thederivatives off{\displaystyle f} andg{\displaystyle g}. (Note that this rule doesnot apply to expressions/0{\displaystyle \infty /0},1/0{\displaystyle 1/0}, and so on, as these expressions are not indeterminate forms.) These derivatives will allow one to perform algebraic simplification and eventually evaluate the limit.

L'Hôpital's rule can also be applied to other indeterminate forms, using first an appropriate algebraic transformation. For example, to evaluate the form 00:

lnlimxcf(x)g(x)=limxclnf(x)1/g(x).{\displaystyle \ln \lim _{x\to c}f(x)^{g(x)}=\lim _{x\to c}{\frac {\ln f(x)}{1/g(x)}}.}

The right-hand side is of the form/{\displaystyle \infty /\infty }, so L'Hôpital's rule applies to it. Note that this equation is valid (as long as the right-hand side is defined) because thenatural logarithm (ln) is acontinuous function; it is irrelevant how well-behavedf{\displaystyle f} andg{\displaystyle g} may (or may not) be as long asf{\displaystyle f} is asymptotically positive. (the domain of logarithms is the set of all positive real numbers.)

Although L'Hôpital's rule applies to both0/0{\displaystyle 0/0} and/{\displaystyle \infty /\infty }, one of these forms may be more useful than the other in a particular case (because of the possibility of algebraic simplification afterwards). One can change between these forms by transformingf/g{\displaystyle f/g} to(1/g)/(1/f){\displaystyle (1/g)/(1/f)}.

List of indeterminate forms

[edit]

The following table lists the most common indeterminate forms and the transformations for applying l'Hôpital's rule.

Indeterminate formConditionsTransformation to0/0{\displaystyle 0/0}Transformation to/{\displaystyle \infty /\infty }
00{\displaystyle {\frac {0}{0}}}limxcf(x)=0, limxcg(x)=0{\displaystyle \lim _{x\to c}f(x)=0,\ \lim _{x\to c}g(x)=0\!}
limxcf(x)g(x)=limxc1/g(x)1/f(x){\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {1/g(x)}{1/f(x)}}\!}
{\displaystyle {\frac {\infty }{\infty }}}limxcf(x)=, limxcg(x)={\displaystyle \lim _{x\to c}f(x)=\infty ,\ \lim _{x\to c}g(x)=\infty \!}limxcf(x)g(x)=limxc1/g(x)1/f(x){\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {1/g(x)}{1/f(x)}}\!}
0{\displaystyle 0\cdot \infty }limxcf(x)=0, limxcg(x)={\displaystyle \lim _{x\to c}f(x)=0,\ \lim _{x\to c}g(x)=\infty \!}limxcf(x)g(x)=limxcf(x)1/g(x){\displaystyle \lim _{x\to c}f(x)g(x)=\lim _{x\to c}{\frac {f(x)}{1/g(x)}}\!}limxcf(x)g(x)=limxcg(x)1/f(x){\displaystyle \lim _{x\to c}f(x)g(x)=\lim _{x\to c}{\frac {g(x)}{1/f(x)}}\!}
{\displaystyle \infty -\infty }limxcf(x)=, limxcg(x)={\displaystyle \lim _{x\to c}f(x)=\infty ,\ \lim _{x\to c}g(x)=\infty \!}limxc(f(x)g(x))=limxc1/g(x)1/f(x)1/(f(x)g(x)){\displaystyle \lim _{x\to c}(f(x)-g(x))=\lim _{x\to c}{\frac {1/g(x)-1/f(x)}{1/(f(x)g(x))}}\!}limxc(f(x)g(x))=lnlimxcef(x)eg(x){\displaystyle \lim _{x\to c}(f(x)-g(x))=\ln \lim _{x\to c}{\frac {e^{f(x)}}{e^{g(x)}}}\!}
00{\displaystyle 0^{0}}limxcf(x)=0+,limxcg(x)=0{\displaystyle \lim _{x\to c}f(x)=0^{+},\lim _{x\to c}g(x)=0\!}limxcf(x)g(x)=explimxcg(x)1/lnf(x){\displaystyle \lim _{x\to c}f(x)^{g(x)}=\exp \lim _{x\to c}{\frac {g(x)}{1/\ln f(x)}}\!}limxcf(x)g(x)=explimxclnf(x)1/g(x){\displaystyle \lim _{x\to c}f(x)^{g(x)}=\exp \lim _{x\to c}{\frac {\ln f(x)}{1/g(x)}}\!}
1{\displaystyle 1^{\infty }}limxcf(x)=1, limxcg(x)={\displaystyle \lim _{x\to c}f(x)=1,\ \lim _{x\to c}g(x)=\infty \!}limxcf(x)g(x)=explimxclnf(x)1/g(x){\displaystyle \lim _{x\to c}f(x)^{g(x)}=\exp \lim _{x\to c}{\frac {\ln f(x)}{1/g(x)}}\!}limxcf(x)g(x)=explimxcg(x)1/lnf(x){\displaystyle \lim _{x\to c}f(x)^{g(x)}=\exp \lim _{x\to c}{\frac {g(x)}{1/\ln f(x)}}\!}
0{\displaystyle \infty ^{0}}limxcf(x)=, limxcg(x)=0{\displaystyle \lim _{x\to c}f(x)=\infty ,\ \lim _{x\to c}g(x)=0\!}limxcf(x)g(x)=explimxcg(x)1/lnf(x){\displaystyle \lim _{x\to c}f(x)^{g(x)}=\exp \lim _{x\to c}{\frac {g(x)}{1/\ln f(x)}}\!}limxcf(x)g(x)=explimxclnf(x)1/g(x){\displaystyle \lim _{x\to c}f(x)^{g(x)}=\exp \lim _{x\to c}{\frac {\ln f(x)}{1/g(x)}}\!}

See also

[edit]

References

[edit]

Citations

[edit]
  1. ^Varberg, Purcell & Rigdon (2007), p. 423, 429, 430, 431, 432.
  2. ^Weisstein, Eric W."Indeterminate".Wolfram MathWorld. Retrieved2019-12-02.
  3. ^Rotando, Louis M.; Korn, Henry (January 1977). "The indeterminate form 00".Mathematics Magazine.50 (1):41–42.doi:10.2307/2689754.JSTOR 2689754.
  4. ^"Undefined vs Indeterminate in Mathematics".Cut The Knot. Retrieved2019-12-02.
  5. ^"Table of equivalent infinitesimals"(PDF).Vaxa Software.

Bibliographies

[edit]
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Indeterminate_form&oldid=1315232917"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp