Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Incircle and excircles

From Wikipedia, the free encyclopedia
(Redirected fromIncircle)
Circles tangent to all three sides of a triangle
"Incircle" redirects here. For incircles of non-triangle polygons, seeTangential quadrilateral andTangential polygon.
Not to be confused withCircumcircle.
Incircle and excircles of a triangle.
  Extended sides of triangleABC
  Incircle (incenter atI)
  Excircles (excenters atJA,JB,JC)
  Internalangle bisectors
  External angle bisectors (forming the excentral triangle)

Ingeometry, theincircle orinscribed circle of atriangle is the largestcircle that can be contained in the triangle; it touches (istangent to) the three sides. The center of the incircle is atriangle center called the triangle'sincenter.[1]

Anexcircle orescribed circle[2] of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to theextensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.[3]

The center of the incircle, called theincenter, can be found as the intersection of the threeinternalangle bisectors.[3][4] The center of an excircle is the intersection of the internal bisector of one angle (at vertexA, for example) and theexternal bisectors of the other two. The center of this excircle is called theexcenter relative to the vertexA, or theexcenter ofA.[3] Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form anorthocentric system.[5]

Incircle and Incenter

[edit]
See also:Incenter

SupposeABC{\displaystyle \triangle ABC} has an incircle with radiusr{\displaystyle r} and centerI{\displaystyle I}. Leta{\displaystyle a} be the length ofBC¯{\displaystyle {\overline {BC}}},b{\displaystyle b} the length ofAC¯{\displaystyle {\overline {AC}}}, andc{\displaystyle c} the length ofAB¯{\displaystyle {\overline {AB}}}.

Also letTA{\displaystyle T_{A}},TB{\displaystyle T_{B}}, andTC{\displaystyle T_{C}} be the touchpoints where the incircle touchesBC¯{\displaystyle {\overline {BC}}},AC¯{\displaystyle {\overline {AC}}}, andAB¯{\displaystyle {\overline {AB}}}.

Incenter

[edit]

The incenter is the point where the internalangle bisectors ofABC,BCA, and BAC{\displaystyle \angle ABC,\angle BCA,{\text{ and }}\angle BAC} meet.

Trilinear coordinates

[edit]

Thetrilinear coordinates for a point in the triangle is the ratio of all the distances to the triangle sides. Because the incenter is the same distance from all sides of the triangle, the trilinear coordinates for the incenter are[6]

 1:1:1.{\displaystyle \ 1:1:1.}

Barycentric coordinates

[edit]

Thebarycentric coordinates for a point in a triangle give weights such that the point is the weighted average of the triangle vertex positions.Barycentric coordinates for the incenter are given by

a:b:c{\displaystyle a:b:c}

wherea{\displaystyle a},b{\displaystyle b}, andc{\displaystyle c} are the lengths of the sides of the triangle, or equivalently (using thelaw of sines) by

sinA:sinB:sinC{\displaystyle \sin A:\sin B:\sin C}

whereA{\displaystyle A},B{\displaystyle B}, andC{\displaystyle C} are the angles at the three vertices.

Cartesian coordinates

[edit]

TheCartesian coordinates of the incenter are a weighted average of the coordinates of the three vertices using the side lengths of the triangle relative to the perimeter (that is, using the barycentric coordinates given above, normalized to sum to unity) as weights. The weights are positive so the incenter lies inside the triangle as stated above. If the three vertices are located at(xa,ya){\displaystyle (x_{a},y_{a})},(xb,yb){\displaystyle (x_{b},y_{b})}, and(xc,yc){\displaystyle (x_{c},y_{c})}, and the sides opposite these vertices have corresponding lengthsa{\displaystyle a},b{\displaystyle b}, andc{\displaystyle c}, then the incenter is at[citation needed]

(axa+bxb+cxca+b+c,aya+byb+cyca+b+c)=a(xa,ya)+b(xb,yb)+c(xc,yc)a+b+c.{\displaystyle \left({\frac {ax_{a}+bx_{b}+cx_{c}}{a+b+c}},{\frac {ay_{a}+by_{b}+cy_{c}}{a+b+c}}\right)={\frac {a\left(x_{a},y_{a}\right)+b\left(x_{b},y_{b}\right)+c\left(x_{c},y_{c}\right)}{a+b+c}}.}

Radius

[edit]

The inradiusr{\displaystyle r} of the incircle in a triangle with sides of lengtha{\displaystyle a},b{\displaystyle b},c{\displaystyle c} is given by[7]

r=(sa)(sb)(sc)s,{\displaystyle r={\sqrt {\frac {(s-a)(s-b)(s-c)}{s}}},}

wheres=12(a+b+c){\displaystyle s={\tfrac {1}{2}}(a+b+c)} is thesemiperimeter (seeHeron's formula).

The tangency points of the incircle divide the sides into segments of lengthssa{\displaystyle s-a} fromA{\displaystyle A},sb{\displaystyle s-b} fromB{\displaystyle B}, andsc{\displaystyle s-c} fromC{\displaystyle C} (seeTangent lines to a circle).[8]

Distances to the vertices

[edit]

Denote the incenter ofABC{\displaystyle \triangle ABC} asI{\displaystyle I}.

The distance from vertexA{\displaystyle A} to the incenterI{\displaystyle I} is:

AI¯=d(A,I)=csinB2cosC2=bsinC2cosB2.{\displaystyle {\overline {AI}}=d(A,I)=c\,{\frac {\sin {\frac {B}{2}}}{\cos {\frac {C}{2}}}}=b\,{\frac {\sin {\frac {C}{2}}}{\cos {\frac {B}{2}}}}.}

Derivation of the formula stated above

[edit]

Use theLaw of sines in the triangleIAB{\displaystyle \triangle IAB}.

We getAI¯sinB2=csinAIB{\displaystyle {\frac {\overline {AI}}{\sin {\frac {B}{2}}}}={\frac {c}{\sin \angle AIB}}}.We have thatAIB=πA2B2=π2+C2{\displaystyle \angle AIB=\pi -{\frac {A}{2}}-{\frac {B}{2}}={\frac {\pi }{2}}+{\frac {C}{2}}}.

It follows thatAI¯=c sinB2cosC2{\displaystyle {\overline {AI}}=c\ {\frac {\sin {\frac {B}{2}}}{\cos {\frac {C}{2}}}}}.

The equality with the second expression is obtained the same way.

The distances from the incenter to the vertices combined with the lengths of the triangle sides obey the equation[9]

IA¯IA¯CA¯AB¯+IB¯IB¯AB¯BC¯+IC¯IC¯BC¯CA¯=1.{\displaystyle {\frac {{\overline {IA}}\cdot {\overline {IA}}}{{\overline {CA}}\cdot {\overline {AB}}}}+{\frac {{\overline {IB}}\cdot {\overline {IB}}}{{\overline {AB}}\cdot {\overline {BC}}}}+{\frac {{\overline {IC}}\cdot {\overline {IC}}}{{\overline {BC}}\cdot {\overline {CA}}}}=1.}

Additionally,[10]

IA¯IB¯IC¯=4Rr2,{\displaystyle {\overline {IA}}\cdot {\overline {IB}}\cdot {\overline {IC}}=4Rr^{2},}

whereR{\displaystyle R} andr{\displaystyle r} are the triangle'scircumradius andinradius respectively.

Other properties

[edit]

The collection of triangle centers may be given the structure of agroup under coordinate-wise multiplication of trilinear coordinates; in this group, the incenter forms theidentity element.[6]

Incircle and its radius properties

[edit]

Distances between vertex and nearest touchpoints

[edit]

The distances from a vertex to the two nearest touchpoints are equal; for example:[11]

d(A,TB)=d(A,TC)=12(b+ca)=sa.{\displaystyle d\left(A,T_{B}\right)=d\left(A,T_{C}\right)={\tfrac {1}{2}}(b+c-a)=s-a.}

Other properties

[edit]

If thealtitudes from sides of lengthsa{\displaystyle a},b{\displaystyle b}, andc{\displaystyle c} areha{\displaystyle h_{a}},hb{\displaystyle h_{b}}, andhc{\displaystyle h_{c}}, then the inradiusr{\displaystyle r} is one third theharmonic mean of these altitudes; that is,[12]

r=11ha+1hb+1hc.{\displaystyle r={\frac {1}{{\dfrac {1}{h_{a}}}+{\dfrac {1}{h_{b}}}+{\dfrac {1}{h_{c}}}}}.}

The product of the incircle radiusr{\displaystyle r} and thecircumcircle radiusR{\displaystyle R} of a triangle with sidesa{\displaystyle a},b{\displaystyle b}, andc{\displaystyle c} is[13]

rR=abc2(a+b+c).{\displaystyle rR={\frac {abc}{2(a+b+c)}}.}

Some relations among the sides, incircle radius, and circumcircle radius are:[14]

ab+bc+ca=s2+(4R+r)r,a2+b2+c2=2s22(4R+r)r.{\displaystyle {\begin{aligned}ab+bc+ca&=s^{2}+(4R+r)r,\\a^{2}+b^{2}+c^{2}&=2s^{2}-2(4R+r)r.\end{aligned}}}

Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter (the center of its incircle). There are either one, two, or three of these for any given triangle.[15]

The incircle radius is no greater than one-ninth the sum of the altitudes.[16]: 289 

The squared distance from the incenterI{\displaystyle I} to thecircumcenterO{\displaystyle O} is given by[17]: 232 

OI¯2=R(R2r)=abca+b+c[abc(a+bc)(ab+c)(a+b+c)1]{\displaystyle {\overline {OI}}^{2}=R(R-2r)={\frac {a\,b\,c\,}{a+b+c}}\left[{\frac {a\,b\,c\,}{(a+b-c)\,(a-b+c)\,(-a+b+c)}}-1\right]}

and the distance from the incenter to the centerN{\displaystyle N} of thenine point circle is[17]: 232 

IN¯=12(R2r)<12R.{\displaystyle {\overline {IN}}={\tfrac {1}{2}}(R-2r)<{\tfrac {1}{2}}R.}

The incenter lies in themedial triangle (whose vertices are the midpoints of the sides).[17]: 233, Lemma 1 

Relation to area of the triangle

[edit]
"Inradius" redirects here. For the three-dimensional equivalent, seeInscribed sphere.

The radius of the incircle is related to thearea of the triangle.[18] The ratio of the area of the incircle to the area of the triangle is less than or equal toπ/33{\displaystyle \pi {\big /}3{\sqrt {3}}},with equality holding only forequilateral triangles.[19]

SupposeABC{\displaystyle \triangle ABC} has an incircle with radiusr{\displaystyle r} and centerI{\displaystyle I}. Leta{\displaystyle a} be the length ofBC¯{\displaystyle {\overline {BC}}},b{\displaystyle b} the length ofAC¯{\displaystyle {\overline {AC}}}, andc{\displaystyle c} the length ofAB¯{\displaystyle {\overline {AB}}}.

Now, the incircle is tangent toAB¯{\displaystyle {\overline {AB}}} at some pointTC{\displaystyle T_{C}}, and soATCI{\displaystyle \angle AT_{C}I} is right. Thus, the radiusTCI{\displaystyle T_{C}I} is analtitude ofIAB{\displaystyle \triangle IAB}.

Therefore,IAB{\displaystyle \triangle IAB} has base lengthc{\displaystyle c} and heightr{\displaystyle r}, and so has area12cr{\displaystyle {\tfrac {1}{2}}cr}.

Similarly,IAC{\displaystyle \triangle IAC} has area12br{\displaystyle {\tfrac {1}{2}}br} andIBC{\displaystyle \triangle IBC} has area12ar{\displaystyle {\tfrac {1}{2}}ar}.

Since these three triangles decomposeABC{\displaystyle \triangle ABC}, we see that the areaΔ ofABC{\displaystyle \Delta {\text{ of}}\triangle ABC} is:

Δ=12(a+b+c)r=sr,{\displaystyle \Delta ={\tfrac {1}{2}}(a+b+c)r=sr,}

     and    r=Δs,{\displaystyle r={\frac {\Delta }{s}},}

whereΔ{\displaystyle \Delta } is the area ofABC{\displaystyle \triangle ABC} ands=12(a+b+c){\displaystyle s={\tfrac {1}{2}}(a+b+c)} is itssemiperimeter.

For an alternative formula, considerITCA{\displaystyle \triangle IT_{C}A}. This is a right-angled triangle with one side equal tor{\displaystyle r} and the other side equal torcotA2{\displaystyle r\cot {\tfrac {A}{2}}}. The same is true forIBA{\displaystyle \triangle IB'A}. The large triangle is composed of six such triangles and the total area is:[citation needed]

Δ=r2(cotA2+cotB2+cotC2).{\displaystyle \Delta =r^{2}\left(\cot {\tfrac {A}{2}}+\cot {\tfrac {B}{2}}+\cot {\tfrac {C}{2}}\right).}

Gergonne triangle and point

[edit]
  TriangleABC
  Incircle (incenter atI)
  Contact triangleTATBTC
  Lines between opposite vertices ofABC andTATBTC (concur at Gergonne pointGe)

TheGergonne triangle (ofABC{\displaystyle \triangle ABC}) is defined by the three touchpoints of the incircle on the three sides. The touchpoint oppositeA{\displaystyle A} is denotedTA{\displaystyle T_{A}}, etc.

This Gergonne triangle,TATBTC{\displaystyle \triangle T_{A}T_{B}T_{C}}, is also known as thecontact triangle orintouch triangle ofABC{\displaystyle \triangle ABC}. Its area is

KT=K2r2sabc{\displaystyle K_{T}=K{\frac {2r^{2}s}{abc}}}

whereK{\displaystyle K},r{\displaystyle r}, ands{\displaystyle s} are the area, radius of the incircle, and semiperimeter of the original triangle, anda{\displaystyle a},b{\displaystyle b}, andc{\displaystyle c} are the side lengths of the original triangle. This is the same area as that of theextouch triangle.[20]

The three linesATA{\displaystyle AT_{A}},BTB{\displaystyle BT_{B}}, andCTC{\displaystyle CT_{C}} intersect in a single point called theGergonne point, denoted asGe{\displaystyle G_{e}} (ortriangle centerX7). The Gergonne point lies in the openorthocentroidal disk punctured at its own center, and can be any point therein.[21]

The Gergonne point of a triangle has a number of properties, including that it is thesymmedian point of the Gergonne triangle.[22]

Trilinear coordinates for the vertices of the intouch triangle are given by[citation needed]

TA=0:sec2B2:sec2C2TB=sec2A2:0:sec2C2TC=sec2A2:sec2B2:0.{\displaystyle {\begin{array}{ccccccc}T_{A}&=&0&:&\sec ^{2}{\frac {B}{2}}&:&\sec ^{2}{\frac {C}{2}}\\[2pt]T_{B}&=&\sec ^{2}{\frac {A}{2}}&:&0&:&\sec ^{2}{\frac {C}{2}}\\[2pt]T_{C}&=&\sec ^{2}{\frac {A}{2}}&:&\sec ^{2}{\frac {B}{2}}&:&0.\end{array}}}

Trilinear coordinates for the Gergonne point are given by[citation needed]

sec2A2:sec2B2:sec2C2,{\displaystyle \sec ^{2}{\tfrac {A}{2}}:\sec ^{2}{\tfrac {B}{2}}:\sec ^{2}{\tfrac {C}{2}},}

or, equivalently, by theLaw of Sines,

bcb+ca:cac+ab:aba+bc.{\displaystyle {\frac {bc}{b+c-a}}:{\frac {ca}{c+a-b}}:{\frac {ab}{a+b-c}}.}

Excircles and excenters

[edit]
  Extended sides ofABC
  Incircle (incenter atI)
  Excircles (excenters atJA,JB,JC)
  Internalangle bisectors
  External angle bisectors (forming the excentral triangle)

Anexcircle orescribed circle[2] of the triangle is a circle lying outside the triangle, tangent to one of its sides, and tangent to theextensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.[3]

The center of an excircle is the intersection of the internal bisector of one angle (at vertexA{\displaystyle A}, for example) and theexternal bisectors of the other two. The center of this excircle is called theexcenter relative to the vertexA{\displaystyle A}, or theexcenter ofA{\displaystyle A}.[3] Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form anorthocentric system.[5]

Trilinear coordinates of excenters

[edit]

While theincenter ofABC{\displaystyle \triangle ABC} hastrilinear coordinates1:1:1{\displaystyle 1:1:1}, the excenters have trilinears[citation needed]

JA=1:1:1JB=1:1:1JC=1:1:1{\displaystyle {\begin{array}{rrcrcr}J_{A}=&-1&:&1&:&1\\J_{B}=&1&:&-1&:&1\\J_{C}=&1&:&1&:&-1\end{array}}}

Exradii

[edit]

The radii of the excircles are called theexradii.

The exradius of the excircle oppositeA{\displaystyle A} (so touchingBC{\displaystyle BC}, centered atJA{\displaystyle J_{A}}) is[23][24]

ra=rssa=s(sb)(sc)sa,{\displaystyle r_{a}={\frac {rs}{s-a}}={\sqrt {\frac {s(s-b)(s-c)}{s-a}}},} wheres=12(a+b+c).{\displaystyle s={\tfrac {1}{2}}(a+b+c).}

SeeHeron's formula.

Derivation of exradii formula

[edit]

Source:[23]

Let the excircle at sideAB{\displaystyle AB} touch at sideAC{\displaystyle AC} extended atG{\displaystyle G}, and let this excircle'sradius berc{\displaystyle r_{c}} and its center beJc{\displaystyle J_{c}}. ThenJcG{\displaystyle J_{c}G} is an altitude ofACJc{\displaystyle \triangle ACJ_{c}}, soACJc{\displaystyle \triangle ACJ_{c}} has area12brc{\displaystyle {\tfrac {1}{2}}br_{c}}. By a similar argument,BCJc{\displaystyle \triangle BCJ_{c}} has area12arc{\displaystyle {\tfrac {1}{2}}ar_{c}} andABJc{\displaystyle \triangle ABJ_{c}} has area12crc{\displaystyle {\tfrac {1}{2}}cr_{c}}. Thus the areaΔ{\displaystyle \Delta } of triangleABC{\displaystyle \triangle ABC} is

Δ=12(a+bc)rc=(sc)rc{\displaystyle \Delta ={\tfrac {1}{2}}(a+b-c)r_{c}=(s-c)r_{c}}.

So, by symmetry, denotingr{\displaystyle r} as the radius of the incircle,

Δ=sr=(sa)ra=(sb)rb=(sc)rc{\displaystyle \Delta =sr=(s-a)r_{a}=(s-b)r_{b}=(s-c)r_{c}}.

By theLaw of Cosines, we have

cosA=b2+c2a22bc{\displaystyle \cos A={\frac {b^{2}+c^{2}-a^{2}}{2bc}}}

Combining this with the identitysin2A+cos2A=1{\displaystyle \sin ^{2}\!A+\cos ^{2}\!A=1}, we have

sinA=a4b4c4+2a2b2+2b2c2+2a2c22bc{\displaystyle \sin A={\frac {\sqrt {-a^{4}-b^{4}-c^{4}+2a^{2}b^{2}+2b^{2}c^{2}+2a^{2}c^{2}}}{2bc}}}

ButΔ=12bcsinA{\displaystyle \Delta ={\tfrac {1}{2}}bc\sin A}, and so

Δ=14a4b4c4+2a2b2+2b2c2+2a2c2=14(a+b+c)(a+b+c)(ab+c)(a+bc)=s(sa)(sb)(sc),{\displaystyle {\begin{aligned}\Delta &={\tfrac {1}{4}}{\sqrt {-a^{4}-b^{4}-c^{4}+2a^{2}b^{2}+2b^{2}c^{2}+2a^{2}c^{2}}}\\[5mu]&={\tfrac {1}{4}}{\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}\\[5mu]&={\sqrt {s(s-a)(s-b)(s-c)}},\end{aligned}}}

which isHeron's formula.

Combining this withsr=Δ{\displaystyle sr=\Delta }, we have

r2=Δ2s2=(sa)(sb)(sc)s.{\displaystyle r^{2}={\frac {\Delta ^{2}}{s^{2}}}={\frac {(s-a)(s-b)(s-c)}{s}}.}

Similarly,(sa)ra=Δ{\displaystyle (s-a)r_{a}=\Delta } gives

ra2=s(sb)(sc)sara=s(sb)(sc)sa.{\displaystyle {\begin{aligned}&r_{a}^{2}={\frac {s(s-b)(s-c)}{s-a}}\\[4pt]&\implies r_{a}={\sqrt {\frac {s(s-b)(s-c)}{s-a}}}.\end{aligned}}}

Other properties

[edit]

From the formulas above one can see that the excircles are always larger than the incircle and that the largest excircle is the one tangent to the longest side and the smallest excircle is tangent to the shortest side. Further, combining these formulas yields:[25]

Δ=rrarbrc.{\displaystyle \Delta ={\sqrt {rr_{a}r_{b}r_{c}}}.}

Other excircle properties

[edit]

The circularhull of the excircles is internally tangent to each of the excircles and is thus anApollonius circle.[26] The radius of this Apollonius circle isr2+s24r{\displaystyle {\tfrac {r^{2}+s^{2}}{4r}}} wherer{\displaystyle r} is the incircle radius ands{\displaystyle s} is the semiperimeter of the triangle.[27]

The following relations hold among the inradiusr{\displaystyle r}, the circumradiusR{\displaystyle R}, the semiperimeters{\displaystyle s}, and the excircle radiira{\displaystyle r_{a}},rb{\displaystyle r_{b}},rc{\displaystyle r_{c}}:[14]

ra+rb+rc=4R+r,rarb+rbrc+rcra=s2,ra2+rb2+rc2=(4R+r)22s2.{\displaystyle {\begin{aligned}r_{a}+r_{b}+r_{c}&=4R+r,\\r_{a}r_{b}+r_{b}r_{c}+r_{c}r_{a}&=s^{2},\\r_{a}^{2}+r_{b}^{2}+r_{c}^{2}&=\left(4R+r\right)^{2}-2s^{2}.\end{aligned}}}

The circle through the centers of the three excircles has radius2R{\displaystyle 2R}.[14]

IfH{\displaystyle H} is theorthocenter ofABC{\displaystyle \triangle ABC}, then[14]

ra+rb+rc+r=AH¯+BH¯+CH¯+2R,ra2+rb2+rc2+r2=AH¯2+BH¯2+CH¯2+(2R)2.{\displaystyle {\begin{aligned}r_{a}+r_{b}+r_{c}+r&={\overline {AH}}+{\overline {BH}}+{\overline {CH}}+2R,\\r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r^{2}&={\overline {AH}}^{2}+{\overline {BH}}^{2}+{\overline {CH}}^{2}+(2R)^{2}.\end{aligned}}}

Nagel triangle and Nagel point

[edit]
Main article:Extouch triangle
  Extended sides of triangleABC
  Excircles ofABC (tangent atTA. TB, TC)
  Nagel/Extouch triangleTATBTC
  Splitters: lines connecting opposite vertices ofABC andTATBTC (concur atNagel pointN)

TheNagel triangle orextouch triangle ofABC{\displaystyle \triangle ABC} is denoted by the verticesTA{\displaystyle T_{A}},TB{\displaystyle T_{B}}, andTC{\displaystyle T_{C}} that are the three points where the excircles touch the referenceABC{\displaystyle \triangle ABC} and whereTA{\displaystyle T_{A}} is opposite ofA{\displaystyle A}, etc. ThisTATBTC{\displaystyle \triangle T_{A}T_{B}T_{C}} is also known as theextouch triangle ofABC{\displaystyle \triangle ABC}. Thecircumcircle of the extouchTATBTC{\displaystyle \triangle T_{A}T_{B}T_{C}} is called theMandart circle(cf.Mandart inellipse).

The three line segmentsATA¯{\displaystyle {\overline {AT_{A}}}},BTB¯{\displaystyle {\overline {BT_{B}}}} andCTC¯{\displaystyle {\overline {CT_{C}}}} are called thesplitters of the triangle; they each bisect the perimeter of the triangle,[citation needed]

AB¯+BTA¯=AC¯+CTA¯=12(AB¯+BC¯+AC¯).{\displaystyle {\overline {AB}}+{\overline {BT_{A}}}={\overline {AC}}+{\overline {CT_{A}}}={\frac {1}{2}}\left({\overline {AB}}+{\overline {BC}}+{\overline {AC}}\right).}

The splitters intersect in a single point, the triangle'sNagel pointNa{\displaystyle N_{a}} (ortriangle centerX8).

Trilinear coordinates for the vertices of the extouch triangle are given by[citation needed]

TA=0:csc2B2:csc2C2TB=csc2A2:0:csc2C2TC=csc2A2:csc2B2:0{\displaystyle {\begin{array}{ccccccc}T_{A}&=&0&:&\csc ^{2}{\frac {B}{2}}&:&\csc ^{2}{\frac {C}{2}}\\[2pt]T_{B}&=&\csc ^{2}{\frac {A}{2}}&:&0&:&\csc ^{2}{\frac {C}{2}}\\[2pt]T_{C}&=&\csc ^{2}{\frac {A}{2}}&:&\csc ^{2}{\frac {B}{2}}&:&0\end{array}}}

Trilinear coordinates for the Nagel point are given by[citation needed]

csc2A2:csc2B2:csc2C2,{\displaystyle \csc ^{2}{\tfrac {A}{2}}:\csc ^{2}{\tfrac {B}{2}}:\csc ^{2}{\tfrac {C}{2}},}

or, equivalently, by theLaw of Sines,

b+caa:c+abb:a+bcc.{\displaystyle {\frac {b+c-a}{a}}:{\frac {c+a-b}{b}}:{\frac {a+b-c}{c}}.}

The Nagel point is theisotomic conjugate of the Gergonne point.[citation needed]

Related constructions

[edit]

Nine-point circle and Feuerbach point

[edit]
Main article:Nine-point circle
The nine-point circle is tangent to the incircle and excircles

Ingeometry, thenine-point circle is acircle that can be constructed for any giventriangle. It is so named because it passes through nine significantconcyclic points defined from the triangle. These ninepoints are:[28][29]

In 1822, Karl Feuerbach discovered that any triangle's nine-point circle is externallytangent to that triangle's three excircles and internally tangent to its incircle; this result is known asFeuerbach's theorem. He proved that:[30]

... the circle which passes through the feet of the altitudes of a triangle is tangent to all four circles which in turn are tangent to the three sides of the triangle ... (Feuerbach 1822)

Thetriangle center at which the incircle and the nine-point circle touch is called theFeuerbach point.

The incircle may be described as thepedal circle of the incenter. The locus of points whose pedal circles are tangent to the nine-point circle is known as theMcCay cubic.

Incentral and excentral triangles

[edit]

The points of intersection of the interior angle bisectors ofABC{\displaystyle \triangle ABC} with the segmentsBC{\displaystyle BC},CA{\displaystyle CA}, andAB{\displaystyle AB} are the vertices of theincentral triangle. Trilinear coordinates for the vertices of the incentral triangleABC{\displaystyle \triangle A'B'C'} are given by[citation needed]

A=0:1:1B=1:0:1C=1:1:0{\displaystyle {\begin{array}{ccccccc}A'&=&0&:&1&:&1\\[2pt]B'&=&1&:&0&:&1\\[2pt]C'&=&1&:&1&:&0\end{array}}}

Theexcentral triangle of a reference triangle has vertices at the centers of the reference triangle's excircles. Its sides are on the external angle bisectors of the reference triangle (see figure attop of page). Trilinear coordinates for the vertices of the excentral triangleABC{\displaystyle \triangle A'B'C'} are given by[citation needed]

A=1:1:1B=1:1:1C=1:1:1{\displaystyle {\begin{array}{ccrcrcr}A'&=&-1&:&1&:&1\\[2pt]B'&=&1&:&-1&:&1\\[2pt]C'&=&1&:&1&:&-1\end{array}}}

Equations for four circles

[edit]

Letx:y:z{\displaystyle x:y:z} be a variable point intrilinear coordinates, and letu=cos2(A/2){\displaystyle u=\cos ^{2}\left(A/2\right)},v=cos2(B/2){\displaystyle v=\cos ^{2}\left(B/2\right)},w=cos2(C/2){\displaystyle w=\cos ^{2}\left(C/2\right)}. The four circles described above are given equivalently by either of the two given equations:[31]: 210–215 

Euler's theorem

[edit]

Euler's theorem states that in a triangle:

(Rr)2=d2+r2,{\displaystyle (R-r)^{2}=d^{2}+r^{2},}

whereR{\displaystyle R} andr{\displaystyle r} are the circumradius and inradius respectively, andd{\displaystyle d} is the distance between thecircumcenter and the incenter.

For excircles the equation is similar:

(R+rex)2=dex2+rex2,{\displaystyle \left(R+r_{\text{ex}}\right)^{2}=d_{\text{ex}}^{2}+r_{\text{ex}}^{2},}

whererex{\displaystyle r_{\text{ex}}} is the radius of one of the excircles, anddex{\displaystyle d_{\text{ex}}} is the distance between the circumcenter and that excircle's center.[32][33][34]

Generalization to other polygons

[edit]

Some (but not all)quadrilaterals have an incircle. These are calledtangential quadrilaterals. Among their many properties perhaps the most important is that their two pairs of opposite sides have equal sums. This is called thePitot theorem.[35]

More generally, a polygon with any number of sides that has an inscribed circle (that is, one that is tangent to each side) is called atangential polygon.

Generalization to topological triangles

[edit]

If you considertopological triangles, you can also define a notion of inscribed circle that fits inside. It is no longer described as tangent to all sides since your topological triangle might not be differentiable everywhere. Rather it is defined as a circle whose center has the same minimal distance to each side. Its a proven fact that an inscribed circle always exists in any topological triangle.[36]

See also

[edit]

Notes

[edit]
  1. ^Kay (1969, p. 140)
  2. ^abAltshiller-Court (1925, p. 74)
  3. ^abcdeAltshiller-Court (1925, p. 73)
  4. ^Kay (1969, p. 117)
  5. ^abJohnson 1929, p. 182.
  6. ^abEncyclopedia of Triangle CentersArchived 2012-04-19 at theWayback Machine, accessed 2014-10-28.
  7. ^Kay (1969, p. 201)
  8. ^Chu, Thomas,The Pentagon, Spring 2005, p. 45, problem 584.
  9. ^Allaire, Patricia R.; Zhou, Junmin; Yao, Haishen (March 2012), "Proving a nineteenth century ellipse identity",Mathematical Gazette,96:161–165,doi:10.1017/S0025557200004277,S2CID 124176398.
  10. ^Altshiller-Court, Nathan (1980),College Geometry, Dover Publications. #84, p. 121.
  11. ^Mathematical Gazette, July 2003, 323-324.
  12. ^Kay (1969, p. 203)
  13. ^Johnson 1929, p. 189, #298(d).
  14. ^abcdBell, Amy.""Hansen's right triangle theorem, its converse and a generalization",Forum Geometricorum 6, 2006, 335–342"(PDF). Archived fromthe original(PDF) on 2021-08-31. Retrieved2012-05-05.
  15. ^Kodokostas, Dimitrios, "Triangle Equalizers",Mathematics Magazine 83, April 2010, pp. 141-146.
  16. ^Posamentier, Alfred S., and Lehmann, Ingmar.The Secrets of Triangles, Prometheus Books, 2012.
  17. ^abcFranzsen, William N. (2011)."The distance from the incenter to the Euler line"(PDF).Forum Geometricorum.11:231–236.MR 2877263. Archived fromthe original(PDF) on 2020-12-05. Retrieved2012-05-09..
  18. ^Coxeter, H.S.M. "Introduction to Geometry 2nd ed. Wiley, 1961.
  19. ^Minda, D., and Phelps, S., "Triangles, ellipses, and cubic polynomials",American Mathematical Monthly 115, October 2008, 679-689: Theorem 4.1.
  20. ^Weisstein, Eric W. "Contact Triangle." From MathWorld--A Wolfram Web Resource.https://mathworld.wolfram.com/ContactTriangle.html
  21. ^Christopher J. Bradley and Geoff C. Smith, "The locations of triangle centers",Forum Geometricorum 6 (2006), 57–70.http://forumgeom.fau.edu/FG2006volume6/FG200607index.htmlArchived 2016-03-04 at theWayback Machine
  22. ^Dekov, Deko (2009)."Computer-generated Mathematics : The Gergonne Point"(PDF).Journal of Computer-generated Euclidean Geometry.1:1–14. Archived fromthe original(PDF) on 2010-11-05.
  23. ^abAltshiller-Court (1925, p. 79)
  24. ^Kay (1969, p. 202)
  25. ^Baker, Marcus, "A collection of formulae for the area of a plane triangle",Annals of Mathematics, part 1 in vol. 1(6), January 1885, 134-138. (See also part 2 in vol. 2(1), September 1885, 11-18.)
  26. ^"Grinberg, Darij, and Yiu, Paul, "The Apollonius Circle as a Tucker Circle",Forum Geometricorum 2, 2002: pp. 175-182"(PDF). Archived fromthe original(PDF) on 2023-06-25. Retrieved2012-05-02.
  27. ^"Stevanovi´c, Milorad R., "The Apollonius circle and related triangle centers",Forum Geometricorum 3, 2003, 187-195"(PDF). Archived fromthe original(PDF) on 2022-10-06. Retrieved2012-05-03.
  28. ^Altshiller-Court (1925, pp. 103–110)
  29. ^Kay (1969, pp. 18, 245)
  30. ^Feuerbach, Karl Wilhelm; Buzengeiger, Carl Heribert Ignatz (1822),Eigenschaften einiger merkwürdigen Punkte des geradlinigen Dreiecks und mehrerer durch sie bestimmten Linien und Figuren. Eine analytisch-trigonometrische Abhandlung (in German) (Monograph ed.), Nürnberg: Wiessner.
  31. ^Whitworth, William Allen.Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions, Forgotten Books, 2012 (orig. Deighton, Bell, and Co., 1866).https://www.forgottenbooks.com/en/search?q=%22Trilinear+coordinates%22
  32. ^Nelson, Roger, "Euler's triangle inequality via proof without words",Mathematics Magazine 81(1), February 2008, 58-61.
  33. ^Johnson 1929, p. 187.
  34. ^"Emelyanov, Lev, and Emelyanova, Tatiana. "Euler's formula and Poncelet's porism",Forum Geometricorum 1, 2001: pp. 137–140"(PDF). Archived fromthe original(PDF) on 2023-01-17. Retrieved2012-05-02.
  35. ^Josefsson (2011, See in particular pp. 65–66.)
  36. ^Al-Ajrawi, Ezzaddin (20 October 2024)."Inscribing Spheres in Topologically Embedded Simplices".The American Mathematical Monthly.131 (9):806–813.doi:10.1080/00029890.2024.2380233.ISSN 0002-9890.

References

[edit]

External links

[edit]

Interactive

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Incircle_and_excircles&oldid=1322636901"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp