Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Idempotent matrix

From Wikipedia, the free encyclopedia
Matrix that, squared, equals itself

Inlinear algebra, anidempotent matrix is amatrix which, when multiplied by itself, yields itself.[1][2] That is, the matrixA{\displaystyle A} is idempotent if and only ifA2=A{\displaystyle A^{2}=A}. For this productA2{\displaystyle A^{2}} to bedefined,A{\displaystyle A} must necessarily be asquare matrix. Viewed this way, idempotent matrices areidempotent elements ofmatrix rings.

Example

[edit]

Examples of2×2{\displaystyle 2\times 2} idempotent matrices are:[1001][3612]{\displaystyle {\begin{bmatrix}1&0\\0&1\end{bmatrix}}\qquad {\begin{bmatrix}3&-6\\1&-2\end{bmatrix}}}

Examples of3×3{\displaystyle 3\times 3} idempotent matrices are:[100010001][224134123]{\displaystyle {\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}\qquad {\begin{bmatrix}2&-2&-4\\-1&3&4\\1&-2&-3\end{bmatrix}}}

Real 2 × 2 case

[edit]

If a matrix(abcd){\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} is idempotent, then

Thus, a necessary condition for a2×2{\displaystyle 2\times 2} matrix to be idempotent is that either it isdiagonal or itstrace equals 1.For idempotent diagonal matrices,a{\displaystyle a} andd{\displaystyle d} must be either 1 or 0.

Ifb=c{\displaystyle b=c}, the matrix(abb1a){\displaystyle {\begin{pmatrix}a&b\\b&1-a\end{pmatrix}}} will be idempotent provideda2+b2=a,{\displaystyle a^{2}+b^{2}=a,} soa satisfies thequadratic equation

a2a+b2=0,{\displaystyle a^{2}-a+b^{2}=0,} or(a12)2+b2=14{\displaystyle \left(a-{\frac {1}{2}}\right)^{2}+b^{2}={\frac {1}{4}}}

which is acircle with center (1/2, 0) and radius 1/2. In terms of an angle θ,

A=12(1cosθsinθsinθ1+cosθ){\displaystyle A={\frac {1}{2}}{\begin{pmatrix}1-\cos \theta &\sin \theta \\\sin \theta &1+\cos \theta \end{pmatrix}}} is idempotent.

However,b=c{\displaystyle b=c} is not a necessary condition: any matrix

(abc1a){\displaystyle {\begin{pmatrix}a&b\\c&1-a\end{pmatrix}}} witha2+bc=a{\displaystyle a^{2}+bc=a} is idempotent.

Properties

[edit]

Singularity and regularity

[edit]

The only non-singular idempotent matrix is theidentity matrix; that is, if a non-identity matrix is idempotent, its number of independent rows (and columns) is less than its number of rows (and columns).

This can be seen from writingA2=A{\displaystyle A^{2}=A}, assuming thatA has full rank (is non-singular), and pre-multiplying byA1{\displaystyle A^{-1}} to obtainA=IA=A1A2=A1A=I{\displaystyle A=IA=A^{-1}A^{2}=A^{-1}A=I}.

When an idempotent matrix is subtracted from the identity matrix, the result is also idempotent. This holds since

(IA)(IA)=IAA+A2=IAA+A=IA.{\displaystyle (I-A)(I-A)=I-A-A+A^{2}=I-A-A+A=I-A.}

If a matrixA is idempotent then for all positive integers n,An=A{\displaystyle A^{n}=A}. This can be shown using proof by induction. Clearly we have the result forn=1{\displaystyle n=1}, asA1=A{\displaystyle A^{1}=A}. Suppose thatAk1=A{\displaystyle A^{k-1}=A}. Then,Ak=Ak1A=AA=A{\displaystyle A^{k}=A^{k-1}A=AA=A}, sinceA is idempotent. Hence by the principle of induction, the result follows.

Eigenvalues

[edit]

An idempotent matrix is alwaysdiagonalizable.[3] Itseigenvalues are either 0 or 1: ifx{\displaystyle \mathbf {x} } is a non-zero eigenvector of some idempotent matrixA{\displaystyle A} andλ{\displaystyle \lambda } its associated eigenvalue, thenλx=Ax=A2x=Aλx=λAx=λ2x,{\textstyle \lambda \mathbf {x} =A\mathbf {x} =A^{2}\mathbf {x} =A\lambda \mathbf {x} =\lambda A\mathbf {x} =\lambda ^{2}\mathbf {x} ,} which impliesλ{0,1}.{\displaystyle \lambda \in \{0,1\}.} This further implies that thedeterminant of an idempotent matrix is always 0 or 1. As stated above, if the determinant is equal to one, the matrix isinvertible and is therefore theidentity matrix.

Trace

[edit]

Thetrace of an idempotent matrix—the sum of the elements on its main diagonal—equals therank of the matrix and thus is always an integer. This provides an easy way of computing the rank, or alternatively an easy way of determining the trace of a matrix whose elements are not specifically known (which is helpful instatistics, for example, in establishing the degree ofbias in using asample variance as an estimate of apopulation variance).

Relationships between idempotent matrices

[edit]

In regression analysis, the matrixM=IX(XX)1X{\displaystyle M=I-X(X'X)^{-1}X'} is known to produce the residualse{\displaystyle e} from the regression of the vector of dependent variablesy{\displaystyle y} on the matrix of covariatesX{\displaystyle X}. (See the section on Applications.) Now, letX1{\displaystyle X_{1}} be a matrix formed from a subset of the columns ofX{\displaystyle X}, and letM1=IX1(X1X1)1X1{\displaystyle M_{1}=I-X_{1}(X_{1}'X_{1})^{-1}X_{1}'}. It is easy to show that bothM{\displaystyle M} andM1{\displaystyle M_{1}} are idempotent, but a somewhat surprising fact is thatMM1=M{\displaystyle MM_{1}=M}. This is becauseMX1=0{\displaystyle MX_{1}=0}, or in other words, the residuals from the regression of the columns ofX1{\displaystyle X_{1}} onX{\displaystyle X} are 0 sinceX1{\displaystyle X_{1}} can be perfectly interpolated as it is a subset ofX{\displaystyle X} (by direct substitution it is also straightforward to show thatMX=0{\displaystyle MX=0}). This leads to two other important results: one is that(M1M){\displaystyle (M_{1}-M)} is symmetric and idempotent, and the other is that(M1M)M=0{\displaystyle (M_{1}-M)M=0}, i.e.,(M1M){\displaystyle (M_{1}-M)} is orthogonal toM{\displaystyle M}. These results play a key role, for example, in the derivation of the F test.

Anysimilar matrices of an idempotent matrix are also idempotent. Idempotency is conserved under achange of basis. This can be shown through multiplication of the transformed matrixSAS1{\displaystyle SAS^{-1}} withA{\displaystyle A} being idempotent:(SAS1)2=(SAS1)(SAS1)=SA(S1S)AS1=SA2S1=SAS1{\displaystyle (SAS^{-1})^{2}=(SAS^{-1})(SAS^{-1})=SA(S^{-1}S)AS^{-1}=SA^{2}S^{-1}=SAS^{-1}}.

Applications

[edit]

Idempotent matrices arise frequently inregression analysis andeconometrics. For example, inordinary least squares, the regression problem is to choose a vectorβ of coefficient estimates so as to minimize the sum of squared residuals (mispredictions)ei: in matrix form,

Minimize(yXβ)T(yXβ){\displaystyle (y-X\beta )^{\textsf {T}}(y-X\beta )}

wherey{\displaystyle y} is a vector ofdependent variable observations, andX{\displaystyle X} is a matrix each of whose columns is a column of observations on one of theindependent variables. The resulting estimator is

β^=(XTX)1XTy{\displaystyle {\hat {\beta }}=\left(X^{\textsf {T}}X\right)^{-1}X^{\textsf {T}}y}

where superscriptT indicates atranspose, and the vector of residuals is[2]

e^=yXβ^=yX(XTX)1XTy=[IX(XTX)1XT]y=My.{\displaystyle {\hat {e}}=y-X{\hat {\beta }}=y-X\left(X^{\textsf {T}}X\right)^{-1}X^{\textsf {T}}y=\left[I-X\left(X^{\textsf {T}}X\right)^{-1}X^{\textsf {T}}\right]y=My.}

Here bothM{\displaystyle M} andX(XTX)1XT{\displaystyle X\left(X^{\textsf {T}}X\right)^{-1}X^{\textsf {T}}}(the latter being known as thehat matrix) are idempotent and symmetric matrices, a fact which allows simplification when the sum of squared residuals is computed:

e^Te^=(My)T(My)=yTMTMy=yTMMy=yTMy.{\displaystyle {\hat {e}}^{\textsf {T}}{\hat {e}}=(My)^{\textsf {T}}(My)=y^{\textsf {T}}M^{\textsf {T}}My=y^{\textsf {T}}MMy=y^{\textsf {T}}My.}

The idempotency ofM{\displaystyle M} plays a role in other calculations as well, such as in determining the variance of the estimatorβ^{\displaystyle {\hat {\beta }}}.

An idempotent linear operatorP{\displaystyle P} is a projection operator on therange spaceR(P){\displaystyle R(P)} along itsnull spaceN(P){\displaystyle N(P)}.P{\displaystyle P} is anorthogonal projection operator if and only if it is idempotent andsymmetric.

See also

[edit]

References

[edit]
  1. ^Chiang, Alpha C. (1984).Fundamental Methods of Mathematical Economics (3rd ed.). New York: McGraw–Hill. p. 80.ISBN 0070108137.
  2. ^abGreene, William H. (2003).Econometric Analysis (5th ed.). Upper Saddle River, NJ: Prentice–Hall. pp. 808–809.ISBN 0130661899.
  3. ^Horn, Roger A.; Johnson, Charles R. (1990).Matrix analysis. Cambridge University Press. p. p. 148.ISBN 0521386322.
Matrix classes
Explicitly constrained entries
Constant
Conditions oneigenvalues or eigenvectors
Satisfying conditions onproducts orinverses
With specific applications
Used instatistics
Used ingraph theory
Used in science and engineering
Related terms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Idempotent_matrix&oldid=1295655894"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp