IOIO-OTG Board, with its trademark "all white" PCB | |
| Released | April 2011; 14 years ago (2011-04) |
|---|---|
| Introductory price | $39.95 (IOIO-OTG)[1] |
| CPU | MicrochipPIC24FJ256[1] |
| Connectivity | Host :USB/USB-OTG,Bluetooth I/O :GPIO,PWM,I2C,SPI,UART, Input capture,Capacitive sensing |
| Website | github |
IOIO (pronouncedyo-yo) is a series ofopen sourcePIC microcontroller-based boards that allowAndroidmobile applications to interact with external electronics.[2][3][4] The device was invented by Ytai Ben-Tsvi in 2011, and was first manufactured bySparkFun Electronics.[2][5][6][7] The name "IOIO" is inspired by the function of the device, which enables applications to receive external input ("I") and produce external output ("O").[4]
The IOIO board contains a singlePIC MCU that acts as aUSB host/USB slave and communicates with anAndroid app running on a connected Android device.[8] The board provides connectivity viaUSB,USB-OTG orBluetooth, and is controllable from within an Android application using the Java API.[1][4][9][10][11]
In addition to basicdigital input/output andanalog input, the IOIO library also handlesPWM,I2C,SPI,UART, Input capture,Capacitive sensing and advancedmotor control.[3] To connect to older Android devices that useUSB 2.0 in slave mode, newer IOIO models useUSB On-The-Go to act as a host for such devices.[1] Some models also support theGoogle Open Accessory USB protocol.[4]
The IOIO motor control API can drive up to 9 motors and any number of binary actuators in synchronization and cycle-accurate precision.[12][13] Developers may send a sequence of high-level commands to the IOIO, which performs the low-level waveform generation on-chip.[12][13] The IOIO firmware supports 3 different kinds of motors;stepper motors,DC motors andservo motors.[12][13]
Device firmware may be updated on-site by the user.[3] For first-generation devices updating is performed using an Android device and theIOIO Manager application available onGoogle Play.[3][14] Second-generation IOIO-OTG devices must be updated using a desktop computer running theIOIODude application.[15]
The IOIO supports both computers and Android devices as first-class hosts, and provides the exact API on both types of devices.[3][needs independent confirmation] First-generation devices can only communicate with PCs over Bluetooth, while IOIO-OTG devices can use either Bluetooth or USB.[3] PC applications may use APIs forJava orC# to communicate with the board; Java being the official API.[11][16]
The IOIO hardware and software is entirely open source,[17] and enabled the creation of hundreds of DIY robotic projects around the world.[18][19][20][21][22]
The board has been featured in various learning kits, which aim to help students write Android applications that can interact with the external world.[3][23][24][25]
TheQualcomm Snapdragon Micro Rover is a3D printed robot that leverages anAndroidsmartphone and the IOIO to control the robot's motors and sensors.[26][27] A team led by Israeli inventor Dr. Guy Hoffman created an emotionally-sensitive robot, that relies on the IOIO to control the robot's hardware.[28]
The IOIO has been variously described as a "geek's paradise", "an easy way to get I/O from an Android device’s USB connection" and "a USB I/O breakout board for Android smartphones which turns your handset into a super-Arduino of sorts".[18][29][30][31] It featured as a recommended "gift for geeks" in aScientific Computing article.[25]
According to SlashGear, an online electronics magazine:
You could hook up the IOIO for Android and a couple of heat sensors, and whip up an app that measures room temperature and then emails you if it’s getting too hot. Thanks to a range of I/O choices – including Digital Input/Output, PWM, Analog Input, I2C, SPI and UART control – you could also connect your home thermostat to automatically adjust the heating in response.
According toSparkFun, the first manufacturer of the device:
You can combine the awesome computing power, Internet/Bluetooth connectivity, touch screen, and a variety of sensors from your Android device with the ability to easily add peripheral devices to interact with the outside world. Also, using the IOIO does not require any hardware or software modifications to your Android device, thus preserving the warranty as well as making the functionality available to non-hackers.
According to Ytai Ben-Tsvi, the inventor of the device:
Android phones are powerful mobile computers having internet connectivity and a rich variety of built-in sensors (camera, GPS, IMU, touch screen). They are also very easy to write applications for, thanks to the great work done by the Android SDK developers. For many applications, all they are really missing is connectivity to external peripherals. This is exactly where IOIO fits in: it enriches the inherent capabilities of the Android device with the ability to communicate with external circuits.
— Ytai Ben-Tsvi, "Meet IOIO - I/O for Android"[33]

The first-generation IOIO boards (known asIOIO V1) contain the following on-board features:[34][35] This generation only supports USB slave mode, and requires a USB master as the host (PC or newer Android phones).[2][7]
The IOIO V1 is a 3.3 Vlogic level device, and features a 5 V DC/DCswitching regulator and a 3.3Vlinear regulator.[36] The 5 V regulator supports a 5–15 V input range and up to 1.5 A load.[7] This facilitates charging a connected Android device as well as driving several small motors or similar loads.
| Feature | Details | Description |
|---|---|---|
| USB connector | type A, female | Used to connect to the Android device. |
| GND pins | 9 pins | Ground connection. |
| VIN pins | 3 pins | Used for power supply to the board. Voltage between 5 and 15 V should be supplied. |
| 5 V pins | 3 pins | Normally used as 5 V output to user electronics, when the board is powered from VIN. Can be used as 5V input in case VIN is not connected. |
| 3.3 V pins | 3 pins | 3.3 V output to user electronics. |
| I/O pins | 48 pins | General purpose I/O pins. Some have special functions, such as ADC, Input Capture, UART, PWM, Comparator or for programming the PIC MCU (ICSP). |
| Power LED | Lights when the IOIO is getting power. | |
| Stat LED | Lights briefly during power-up and then becomes under application control. | |
| MCLR pin | Not normally used. Its purpose is for programming new bootloader firmware on the IOIO board. | |
| Charge current trimmer (CHG) | Adjusts the amount of charge current supplied on the VBUS line of the USB to the Android device. Turning in the (+) direction increases charge current. |

The second-generation IOIO boards (known asIOIO-OTG) contain the following on-board features:[37][38][39] As the name suggests, a key feature of this generation is the introduction ofUSB-OTG, supporting USB master or slave mode. This enables the IOIO to connect to older Android phones that only support USB slave mode, in addition.[1][9]
The IOIO-OTG is a 3.3 Vlogic level device, with some of the pins being 5 V tolerant. It features a 5 V DC/DCswitching regulator and a 3.3 Vlinear regulator. The 5 V regulator supports a 5–15 V input range and up to 3 A load.[1] This facilitates charging a connectedAndroid device as well as driving several small motors or similar loads.
| Feature | Details | Description |
|---|---|---|
| USB connector | micro-AB, female | Used to connect to host computer, an Android device or a Bluetooth dongle. |
| Power jack | 2-pin JST, female | Used for power supply to the board. Voltage between 5–15 V should be supplied. |
| GND pins | 10 pins | Ground connection. |
| VIN pins | 3 pins | Used for outputting the supply voltage to your circuit, or as an alternative input to the power jack. |
| 5V pins | 3 pins | 5V output from the on-board regulator, which can be used in your circuit. |
| 3.3 V pins | 3 pins | 3.3 V from the on-board regulator, which can be used in your circuit. |
| I/O pins | 46 pins | General purpose I/O pins. Some have special functions, such as ADC, Input Capture, UART, PWM, Comparator or for programming the PIC MCU (ICSP). |
| PWR LED | red | Lights when the IOIO is getting power. |
| STAT LED | yellow | General purpose on-board LED, under application control. |
| MCLR pin | Not normally used. Its purpose is for programming new bootloader firmware on the IOIO board. | |
| BOOT pin | Special pin used for getting the IOIO into bootloader mode on power-up. Note that this pin is shared with the stat LED. | |
| Charge current trimmer (CHG) | Adjusts the amount of current supplied on the VBUS line of the USB when acting as a USB host. Typically used in battery-powered application with Android to prevent the Android from draining the battery quickly. Turning in the (+) direction increases charge current. | |
| Host switch | In "A" mode, the IOIO-OTG will detect whether it should act as host or as device automatically, according to whichever USB connector is plugged in (micro-A or micro-B). To support non-standard USB cables or adapters that use micro-B type, move the switch to the "H" position to force host mode. |