Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hypoexponential distribution

From Wikipedia, the free encyclopedia
Concept in probability theory
Hypoexponential
Parametersλ1,,λk>0{\displaystyle \lambda _{1},\dots ,\lambda _{k}>0\,} rates (real)
Supportx[0;){\displaystyle x\in [0;\infty )\!}
PDFExpressed as aphase-type distribution
αexΘΘ1{\displaystyle -{\boldsymbol {\alpha }}e^{x\Theta }\Theta {\boldsymbol {1}}}
Has no other simple form; see article for details
CDFExpressed as a phase-type distribution
1αexΘ1{\displaystyle 1-{\boldsymbol {\alpha }}e^{x\Theta }{\boldsymbol {1}}}
Meani=1k1/λi{\displaystyle \sum _{i=1}^{k}1/\lambda _{i}\,}
MedianGeneral closed form does not exist[1]
Mode(k1)/λ{\displaystyle (k-1)/\lambda } ifλk=λ{\displaystyle \lambda _{k}=\lambda }, for all k
Variancei=1k1/λi2{\displaystyle \sum _{i=1}^{k}1/\lambda _{i}^{2}}
Skewness2(i=1k1/λi3)/(i=1k1/λi2)3/2{\displaystyle 2(\sum _{i=1}^{k}1/\lambda _{i}^{3})/(\sum _{i=1}^{k}1/\lambda _{i}^{2})^{3/2}}
Excess kurtosisno simple closed form
MGFα(tIΘ)1Θ1{\displaystyle {\boldsymbol {\alpha }}(tI-\Theta )^{-1}\Theta \mathbf {1} }
CFα(itIΘ)1Θ1{\displaystyle {\boldsymbol {\alpha }}(itI-\Theta )^{-1}\Theta \mathbf {1} }

Inprobability theory thehypoexponential distribution or thegeneralizedErlang distribution is acontinuous distribution, that has found use in the same fields as the Erlang distribution, such asqueueing theory,teletraffic engineering and more generally instochastic processes. It is called the hypoexponetial distribution as it has acoefficient of variation less than one, compared to thehyper-exponential distribution which has coefficient of variation greater than one and theexponential distribution which has coefficient of variation of one.

Overview

[edit]

TheErlang distribution is a series ofk exponential distributions all with rateλ{\displaystyle \lambda }. The hypoexponential is a series ofk exponential distributions each with their own rateλi{\displaystyle \lambda _{i}}, the rate of theith{\displaystyle i^{th}} exponential distribution. If we havek independently distributed exponential random variablesXi{\displaystyle X_{i}}, then the random variable,

X=i=1kXi{\displaystyle X=\sum _{i=1}^{k}X_{i}}

is hypoexponentially distributed. The hypoexponential has a minimum coefficient of variation of1/k{\displaystyle 1/k}.

Relation to the phase-type distribution

[edit]

As a result of the definition it is easier to consider this distribution as a special case of thephase-type distribution.[2] The phase-type distribution is the time to absorption of a finite stateMarkov process. If we have ak+1 state process, where the firstk states are transient and the statek+1 is an absorbing state, then the distribution of time from the start of the process until the absorbing state is reached is phase-type distributed. This becomes the hypoexponential if we start in the first 1 and move skip-free from statei toi+1 with rateλi{\displaystyle \lambda _{i}} until statek transitions with rateλk{\displaystyle \lambda _{k}} to the absorbing statek+1. This can be written in the form of a subgenerator matrix,

[λ1λ10000λ2λ20000λk2λk20000λk1λk10000λk].{\displaystyle \left[{\begin{matrix}-\lambda _{1}&\lambda _{1}&0&\dots &0&0\\0&-\lambda _{2}&\lambda _{2}&\ddots &0&0\\\vdots &\ddots &\ddots &\ddots &\ddots &\vdots \\0&0&\ddots &-\lambda _{k-2}&\lambda _{k-2}&0\\0&0&\dots &0&-\lambda _{k-1}&\lambda _{k-1}\\0&0&\dots &0&0&-\lambda _{k}\end{matrix}}\right]\;.}

For simplicity denote the above matrixΘΘ(λ1,,λk){\displaystyle \Theta \equiv \Theta (\lambda _{1},\dots ,\lambda _{k})}. If the probability of starting in each of thek states is

α=(1,0,,0){\displaystyle {\boldsymbol {\alpha }}=(1,0,\dots ,0)}

thenHypo(λ1,,λk)=PH(α,Θ).{\displaystyle Hypo(\lambda _{1},\dots ,\lambda _{k})=PH({\boldsymbol {\alpha }},\Theta ).}

Two parameter case

[edit]

Where the distribution has two parameters (λ1λ2{\displaystyle \lambda _{1}\neq \lambda _{2}}) the explicit forms of the probability functions and the associated statistics are:[3]

CDF:F(x)=1λ2λ2λ1eλ1xλ1λ1λ2eλ2x{\displaystyle F(x)=1-{\frac {\lambda _{2}}{\lambda _{2}-\lambda _{1}}}e^{-\lambda _{1}x}-{\frac {\lambda _{1}}{\lambda _{1}-\lambda _{2}}}e^{-\lambda _{2}x}}

PDF:f(x)=λ1λ2λ1λ2(exλ2exλ1){\displaystyle f(x)={\frac {\lambda _{1}\lambda _{2}}{\lambda _{1}-\lambda _{2}}}(e^{-x\lambda _{2}}-e^{-x\lambda _{1}})}

Mean:1λ1+1λ2{\displaystyle {\frac {1}{\lambda _{1}}}+{\frac {1}{\lambda _{2}}}}

Variance:1λ12+1λ22{\displaystyle {\frac {1}{\lambda _{1}^{2}}}+{\frac {1}{\lambda _{2}^{2}}}}

Coefficient of variation:λ12+λ22λ1+λ2{\displaystyle {\frac {\sqrt {\lambda _{1}^{2}+\lambda _{2}^{2}}}{\lambda _{1}+\lambda _{2}}}}

The coefficient of variation is always less than 1.

Given the sample mean (x¯{\displaystyle {\bar {x}}}) and sample coefficient of variation (c{\displaystyle c}), the parametersλ1{\displaystyle \lambda _{1}} andλ2{\displaystyle \lambda _{2}} can be estimated as follows:

λ1=2x¯[1+1+2(c21)]1{\displaystyle \lambda _{1}={\frac {2}{\bar {x}}}\left[1+{\sqrt {1+2(c^{2}-1)}}\right]^{-1}}

λ2=2x¯[11+2(c21)]1{\displaystyle \lambda _{2}={\frac {2}{\bar {x}}}\left[1-{\sqrt {1+2(c^{2}-1)}}\right]^{-1}}

These estimators can be derived from the methods of moments by setting1λ1+1λ2=x¯{\displaystyle {\frac {1}{\lambda _{1}}}+{\frac {1}{\lambda _{2}}}={\bar {x}}} andλ12+λ22λ1+λ2=c{\displaystyle {\frac {\sqrt {\lambda _{1}^{2}+\lambda _{2}^{2}}}{\lambda _{1}+\lambda _{2}}}=c}.

The resulting parametersλ1{\displaystyle \lambda _{1}} andλ2{\displaystyle \lambda _{2}} are real values ifc2[0.5,1]{\displaystyle c^{2}\in [0.5,1]}.

Characterization

[edit]

A random variableXHypo(λ1,,λk){\displaystyle X\sim Hypo(\lambda _{1},\dots ,\lambda _{k})} hascumulative distribution function given by,

F(x)=1αexΘ1{\displaystyle F(x)=1-{\boldsymbol {\alpha }}e^{x\Theta }{\boldsymbol {1}}}

anddensity function,

f(x)=αexΘΘ1,{\displaystyle f(x)=-{\boldsymbol {\alpha }}e^{x\Theta }\Theta {\boldsymbol {1}}\;,}

where1{\displaystyle {\boldsymbol {1}}} is acolumn vector of ones of the sizek andeA{\displaystyle e^{A}} is thematrix exponential ofA. Whenλiλj{\displaystyle \lambda _{i}\neq \lambda _{j}} for allij{\displaystyle i\neq j}, thedensity function can be written as

f(x)=i=1kλiexλi(j=1,jikλjλjλi)=i=1ki(0)λiexλi{\displaystyle f(x)=\sum _{i=1}^{k}\lambda _{i}e^{-x\lambda _{i}}\left(\prod _{j=1,j\neq i}^{k}{\frac {\lambda _{j}}{\lambda _{j}-\lambda _{i}}}\right)=\sum _{i=1}^{k}\ell _{i}(0)\lambda _{i}e^{-x\lambda _{i}}}

where1(x),,k(x){\displaystyle \ell _{1}(x),\dots ,\ell _{k}(x)} are theLagrange basis polynomials associated with the pointsλ1,,λk{\displaystyle \lambda _{1},\dots ,\lambda _{k}}.

The distribution hasLaplace transform of

L{f(x)}=α(sIΘ)1Θ1{\displaystyle {\mathcal {L}}\{f(x)\}=-{\boldsymbol {\alpha }}(sI-\Theta )^{-1}\Theta {\boldsymbol {1}}}

Which can be used to find moments,

E[Xn]=(1)nn!αΘn1.{\displaystyle E[X^{n}]=(-1)^{n}n!{\boldsymbol {\alpha }}\Theta ^{-n}{\boldsymbol {1}}\;.}

General case

[edit]

In the general casewhere there area{\displaystyle a} distinct sums of exponential distributionswith ratesλ1,λ2,,λa{\displaystyle \lambda _{1},\lambda _{2},\cdots ,\lambda _{a}} and a number of terms in eachsum equals tor1,r2,,ra{\displaystyle r_{1},r_{2},\cdots ,r_{a}} respectively. The cumulativedistribution function fort0{\displaystyle t\geq 0} is given by

F(t)=1(j=1aλjrj)k=1al=1rkΨk,l(λk)trklexp(λkt)(rkl)!(l1)!,{\displaystyle F(t)=1-\left(\prod _{j=1}^{a}\lambda _{j}^{r_{j}}\right)\sum _{k=1}^{a}\sum _{l=1}^{r_{k}}{\frac {\Psi _{k,l}(-\lambda _{k})t^{r_{k}-l}\exp(-\lambda _{k}t)}{(r_{k}-l)!(l-1)!}},}

with

Ψk,l(x)=l1xl1(j=0,jka(λj+x)rj).{\displaystyle \Psi _{k,l}(x)=-{\frac {\partial ^{l-1}}{\partial x^{l-1}}}\left(\prod _{j=0,j\neq k}^{a}\left(\lambda _{j}+x\right)^{-r_{j}}\right).}

with the additional conventionλ0=0,r0=1{\displaystyle \lambda _{0}=0,r_{0}=1}.[4]

Uses

[edit]

This distribution has been used in population genetics,[5] cell biology,[6][7] and queuing theory.[8][9]

See also

[edit]

References

[edit]
  1. ^"HypoexponentialDistribution".Wolfram Language & System Documentation Center. Wolfram. 2012. Retrieved27 February 2024.
  2. ^Legros, Benjamin; Jouini, Oualid (2015)."A linear algebraic approach for the computation of sums of Erlang random variables".Applied Mathematical Modelling.39 (16):4971–4977.doi:10.1016/j.apm.2015.04.013.
  3. ^Bolch, Gunter; Greiner, Stefan; de Meer, Hermann;Trivedi, Kishor S. (2006).Queuing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (2nd ed.). Wiley. pp. 24–25.doi:10.1002/0471791571.ISBN 978-0-471-79157-7.
  4. ^Amari, Suprasad V.; Misra, Ravindra B. (1997). "Closed-form expressions for distribution of sum of exponential random variables".IEEE Transactions on Reliability.46 (4):519–522.doi:10.1109/24.693785.
  5. ^Strimmer, Korbinian; Pybus, Oliver G. (2001)."Exploring the demographic history of DNA sequences using the generalized skyline plot".Molecular Biology and Evolution.18 (12):2298–2305.doi:10.1093/oxfordjournals.molbev.a003776.PMID 11719579.
  6. ^Yates, Christian A.; Ford, Matthew J.; Mort, Richard L. (2017)."A multi-stage representation of cell proliferation as a Markov process".Bulletin of Mathematical Biology.79 (12):2905–2928.arXiv:1705.09718.doi:10.1007/s11538-017-0356-4.PMC 5709504.PMID 29030804.
  7. ^Gavagnin, Enrico; Ford, Matthew J.; Mort, Richard L.; Rogers, Tim; Yates, Christian A. (2019). "The invasion speed of cell migration models with realistic cell cycle time distributions".Journal of Theoretical Biology.481:91–99.arXiv:1806.03140.doi:10.1016/j.jtbi.2018.09.010.PMID 30219568.
  8. ^Călinescu, Malenia (August 2009)."Forecasting and capacity planning for ambulance services"(PDF).Faculty of Sciences.Vrije Universiteit Amsterdam. Archived fromthe original(PDF) on 15 February 2010.
  9. ^Bekker, René; Koeleman, Paulien M. (2011)."Scheduling admissions and reducing variability in bed demand".Health Care Management Science.14 (3):237–249.doi:10.1007/s10729-011-9163-x.PMC 3158339.PMID 21667090.

Further reading

[edit]
  • M. F. Neuts. (1981) Matrix-Geometric Solutions in Stochastic Models: an Algorithmic Approach, Chapter 2: Probability Distributions of Phase Type; Dover Publications Inc.
  • G. Latouche, V. Ramaswami. (1999) Introduction to Matrix Analytic Methods in Stochastic Modelling, 1st edition. Chapter 2: PH Distributions; ASA SIAM,
  • Colm A. O'Cinneide (1999).Phase-type distribution: open problems and a few properties, Communication in Statistic - Stochastic Models, 15(4), 731–757.
  • L. Leemis and J. McQueston (2008).Univariate distribution relationships, The American Statistician, 62(1), 45—53.
  • S. Ross. (2007) Introduction to Probability Models, 9th edition, New York: Academic Press
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hypoexponential_distribution&oldid=1323411895"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp