Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hyperinteger

From Wikipedia, the free encyclopedia
Hyperreal number that is equal to its own integer part

Innonstandard analysis, ahyperintegern is ahyperreal number that is equal to its owninteger part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinaryinteger. An example of an infinite hyperinteger is given by the class of thesequence(1, 2, 3, ...) in theultrapower construction of the hyperreals.

Discussion

[edit]

The standard integer partfunction:

x{\displaystyle \lfloor x\rfloor }

is defined for allrealx and equals the greatest integer not exceedingx. By thetransfer principle of nonstandard analysis, there exists a natural extension:

{\displaystyle {}^{*}\!\lfloor \,\cdot \,\rfloor }

defined for all hyperrealx, and we say thatx is a hyperinteger ifx=x.{\displaystyle x={}^{*}\!\lfloor x\rfloor .} Thus, the hyperintegers are theimage of the integer part function on the hyperreals.

Internal sets

[edit]

The setZ{\displaystyle ^{*}\mathbb {Z} } of all hyperintegers is aninternal subset of the hyperreal lineR{\displaystyle ^{*}\mathbb {R} }. The set of all finite hyperintegers (i.e.Z{\displaystyle \mathbb {Z} } itself) is not an internal subset. Elements of the complementZZ{\displaystyle ^{*}\mathbb {Z} \setminus \mathbb {Z} } are called, depending on the author,nonstandard,unlimited, orinfinite hyperintegers. The reciprocal of an infinite hyperinteger is always aninfinitesimal.

Nonnegative hyperintegers are sometimes calledhypernatural numbers. Similar remarks apply to the setsN{\displaystyle \mathbb {N} } andN{\displaystyle ^{*}\mathbb {N} }. Note that the latter gives anon-standard model of arithmetic in the sense ofSkolem.

References

[edit]
Number systems
Sets ofdefinable numbers
Composition algebras
Split
types
Otherhypercomplex
Infinities andinfinitesimals
Other types
History
Related branches
Formalizations
Individual concepts
Mathematicians
Textbooks
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hyperinteger&oldid=1318332192"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp